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Abstract

The increasing availability of whole genome sequencing of bacteria has accelerated the discovery of novel species which may 
not have been easy to discriminate using standard phenotypic or single gene methods. Phylogenomic analysis of genome 
sequences from a collection of coagulase- negative staphylococcal species isolated from captive fruit bats revealed two clus-
ters which were close to Staphylococcus kloosii. To assess the relatedness of the strains we used digital DNA–DNA hybridization 
(dDDH) and two methods for average nucleotide identity (ANI) computation which predicted two novel species having dDDH 
less than 70 % and ANI less than 95%. We propose these species as Staphylococcus lloydii sp. nov. (type strain 23_2_7_LYT=NCTC 
14453T=DSM 111639T) and Staphylococcus durrellii sp. nov (type strain 27_4_6_LYT=NCTC 14454T=DSM 111640T).

Staphylococci inhabit the skin and mucosae of most mam-
mals and birds [1]. They are typically harmless commensal 
organisms, but can cause bacterial infection as opportun-
istic invaders of wounds or implant devices, or where host 
defences are compromised [2]. There are currently more 
than 50 recognized coagulase- negative and coagulase- 
positive species within the genus Staphylococcus, many of 
which are difficult to differentiate using either traditional 
phenotypic methods or single gene methods such as 16S 
rRNA [3]. Multilocus sequence analysis methods such as 
ribosomal MLST are more discriminatory, but the increas-
ing availability of whole genome sequencing (WGS) and the 
use of phylogenomics not only allow the inference of spe-
cies delineation but also allow species to be placed in their 
evolutionary context within genera [4–7]. The traditional 
technique of DNA–DNA hybridization (DDH) has been 
the gold standard for species delineation of closely related 
microbial species, but has been mostly superseded by in 
silico methods based on whole genome sequences [6, 7]. The 

similarity between two whole genomes can be measured as 
the average nucleotide identity (ANI), with 95 % similarity 
being a widely accepted species cut- off that is broadly in line 
with the DDH threshold [8]. Calculation of the genome- to- 
genome distance (GGD) gives better concurrence with DDH 
and several methods have been described to infer a digital 
DDH (dDDH) value based on a 70 % threshold for species 
identity [6, 7]. Genome blast distance phylogeny (GBDP) is 
one such method which has demonstrated robust agreement 
with DDH values, and includes resampling to provide con-
fidence intervals for the results. It is incorporated into the 
workflow of the Type Strain Genome Server (TYGS), which 
calculates the closest related type strains, utilizes GBDP to 
calculate the dDDH, and the intergenomic distances to infer 
a phylogenetic tree [7].

Whole genome phylogenies of staphylococcal species have 
been used to define clades within the genus. For example, 
Naushad et al. defined five clades in bovine coagulase- negative 
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staphylococci, the most recently diverged of which contains 
nine species including Staphylococcus saprophyticus, Staphy-
lococcus arlettae and Staphylococcus kloosii [9].

We have previously assembled a collection of staphylococcal 
isolates recovered from captive Livingstone’s bats (Pteropus 
livingstonii), a critically endangered species of fruit bat native 
to the Comoros Islands, and from captive and free- ranging 
UK native bats [10]. Phenotypic identification of these isolates 
suggested that S. kloosii were numerous, but for some isolates 
recovered from Livingstone’s bats in Jersey Zoo, the species 
identification was not supported by matrix- assisted laser 
desorption- ionization time- of- flight mass spectrometry 
(MALDI- TOF MS). To help resolve these discrepancies 
we sequenced the whole genomes of seven representative 
presumptive S. kloosii isolates on the Illumina platform. 
Phylogenomic analysis of these data revealed two novel line-
ages related to, but distinct from, S. kloosii. We then used 
long- read sequencing on the Oxford nanopore platform 
to construct closed hybrid assemblies for a single repre-
sentative isolate of each of these two clusters, plus a single  
S. kloosi isolate. Calculation of GGD and ANI based on these 
sequences established that the novel lineages correspond to 
new species which we designate Staphylococcus lloydii sp. nov. 
and Staphylococcus durrellii sp. nov.

METHODS
Bacterial isolates
Frozen stored isolates from captive Livingstone’s fruit bats 
in Jersey Zoo (Channel Islands) collected as described in 
Fountain et al., and from captive and free- ranging UK native 
bats were used [10]. Isolates had previously been identified 
phenotypically using the Staph ID32 test kit (bioMérieux) 
and two MALDI- TOF MS runs, with the second run using 
an updated database to include more relevant animal associ-
ated species (Bruker Microflex LT, Bruker Daltonics; database 
versions 6 and 7). The identification and origin of the isolates 
are listed in Table 1.

Phenotypic identification
Isolates were identified using aerobic growth at 37 °C on 
Columbia agar with 5 % sheep blood, Gram- staining, slide 
clumping- factor test and tube coagulase test using rabbit 
plasma (Pro- Lab Diagnostics), catalase test, modified oxidase 
test using 1 % Kovacs oxidase reagent (Acros Organics, 
Thermo Fisher Scientific), DNase agar test, oxacillin- 
resistance screening agar (ORSAB) and Staph ID32 test kit (all 
reagents from Oxoid, Thermo Fisher Scientific, unless other-
wise stated). Further antimicrobial resistance was assessed 
by disc diffusion tests on Muller–Hinton agar as described in 
Fountain et al. with the addition of the antibiotic polymyxin 
B (300 IU) [10].

Genome sequencing
In order to provide additional evidence concerning the 
identification of the isolates for which the MALDI- TOF MS 
data was equivocal, we chose seven isolates for full genome 
sequencing on the Illumina Hi- Seq platform. Although all 
seven isolates were characterised as S. kloosi on the basis of the 
phenotypic tests, the MALDI- TOF MS data did not confirm 
these assignments for four of these isolates.

These seven isolates were genome sequenced using Illumina 
Hiseq (MicrobesNG). DNA was extracted using incubation 
with lysostaphin, RNase A and proteinase K, followed by 
purification using SPRI beads. Libraries were prepared using 
the Nextera XT Library Prep Kit (Illumina) and sequenced 
on the Illumina HiSeq using a 250 bp paired- end protocol.

Phylogenetic analysis using a maximum- likelihood tree 
constructed in RAxML- NG based on core- gene analysis 
of the Illumina data using Roary revealed two clusters that 
were related to, but distinct from, S. kloosi (data not shown) 
[11, 12]. In order to further characterize these two clusters, 
a representative isolate from each was selected for long 
read sequencing using Oxford Nanopore (Oxford Nano-
pore Technologies), as well as a third isolate confirmed as  
S. kloosi. Genomic DNA was extracted using the Wizard DNA 

Table 1. Identity and origin of seven presumptive S. kloosii isolates from captive bats and results of whole genome sequencing

Isolate ID Species Host species (sample site)† No. of contigs G+C content % Length (bp) Plasmids (bp)

17942E* (2_7_1_Y) S. kloosii SB (L) 5 32.79 2 700 772 49440, 25020, 21690, 5440

14_7_6_SW S. kloosii LFB (S) 10 32.85 2 644 309 None

14_4_1_W S. kloosii WB (S) 12 32.79 2 743 246 31207, 21157, 3877

18_1_E_LY S. lloydii LFB (ME) 8 33.24 2 544 180 None

23_2_7_LYT* S. lloydii LFB (S) 1 33.24 2 568 697 None

23_2_20_HW S. lloydii LFB (S) 9 33.5 2 501 648 None

27_4_7_LYT* S. durrellii LFB (O) 3 32.51 2 633 060 86290, 4692

*Denotes isolates with closed genomes assembled from long and short reads. Length and G+C content of assemblies of genomes of S. kloosii,  
S. lloydii sp. nov. and S. durrellii sp. nov. from bats in base pairs plus lengths of plasmids inferred using Mob- suite [15].
†LFB, Livingstone’s fruit bat; WB, whiskered bat (Myotis mystacinus); SB, serotine bat (Eptesicus serotinus); L, lesion; S, skin; O, oropharynx; ME, 
mouth ejecta.
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Extraction Kit (Promega). Libraries were prepared using the 
Rapid Barcoding Kit and multiplexed samples were sequenced 
using a R9.4.1 flow cell on a MinION (Oxford Nanopore 
Technologies). Reads were demultiplexed using Deepbinner 
followed by hybrid assembly to produce a closed genome 
using Unicycler [13, 14]. Genomes were annotated using 
Prokka [15]. Potential plasmid sequences were confirmed 
using plasmidSPAdes and investigated using Mob- recon 
from Mob- suite to classify them against the database of 
known plasmids [16, 17]. Closed genomes were aligned using 
progressiveMauve [18].

Species identification
ANI comparisons of the genomes were calculated using both 
the blast method in Kostas Lab webserver and OrthoANI 
using usearch in Chunlab webserver [8, 19, 20]. The TYGS 
was used to calculate GGD and 16S rRNA sequence simi-
larity, using genomes in the public databases as described in 
Meier- Kolthoff et al. [7]. The method is as follows: All pair-
wise comparisons among the set of genomes were conducted 
using GBDP and accurate intergenomic distances inferred 
under the algorithm ‘trimming’ and distance formula d5. 
One hundred distance replicates were calculated each. dDDH 

values and confidence intervals were calculated using the 
recommended settings of the Genome- to- Genome Distance 
Calculator (GGDC 2.1). The resulting intergenomic distances 
were used to infer a balanced minimum- evolution tree 
with branch support via FastME 2.1.4 including SPR post-
processing. Branch support was inferred from 100 pseudo- 
bootstrap replicates each [7].

RESULTS AND DISCUSSION
Genomes
Seven genome sequences were produced: three closed 
genomes using hybrid assembly of short and long reads, 
and four more from short reads with fewer than 12 contigs 
(Table 1). Phylogenetic analysis, ANI and dDDH calcula-
tion as detailed below identified two novel species which we 
henceforth refer to as S. lloydii sp. nov. and S. durrellii sp. nov. 
(Fig. 1, Table 2)

Genome distance analysis
The TYGS analysis identified the 28 type strains that were 
most similar to the seven genomes from bats. The four bat 
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Fig. 1. Tree inferred with FastME 2.1.6.1 from GBDP distances calculated from genome sequences using the TYGS workflow [7]. The 
branch lengths are scaled in terms of GBDP distance formula d5. The numbers above branches are GBDP pseudo- bootstrap support 
values >60 % from 100 replications, with an average branch support of 77.6 %. The tree was rooted at the midpoint. Coloured branches 
and tip labels are isolates from bats. Four of these form two distinct clusters separate from any known species (blue and red).
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genomes that were not unequivocally assigned as S. kloosi 
using MALDI- TOF MS are resolved into two novel lineages, 
one of which is a cluster of three similar isolates, and the fourth 
(27_4_6_LYT) representing a more diverged lineage. These 
lineages appear distant from all type strains, suggesting they 
represent two new species. In contrast, the three sequenced 
isolates that were assigned as S. kloosi by MALDI- TOF MS 
cluster much more closely with the type strain of this species 
(Fig. 1).

The four isolates corresponding to the two diverged lineages 
described above have a mean ANI less than 95 % and dDDH 
less than 70 %, when compared to the S. kloosi type strain 
NCTC 12415 (isolated from squirrel skin), thus confirming 

they are novel species (Table 2). This analysis also confirms 
that the other three sequenced isolates that cluster with  
S. kloosi fall within the sequence divergence threshold for this 
species.

To further compare the genome content of the two novel 
species with S. kloosi, we used progressiveMauve to align 
the three closed genomes generated using hybrid assembly 
(Fig.  2). This analysis revealed a high degree of synteny 
between the genomes (conserved gene order) except for a 
localized rearrangement (shown in magenta) reflecting 
bacteriophages present in S. kloosii and S. lloydii sp. nov. but 
absent from S. durrellii sp. nov. The two phages each have 
different insertion points and only share around 30 % blastn 

Table 2. Genome distance measures of seven bat isolates against S. kloosii type strain NCTC12415, and mean MALDI- TOF MS score for species 
assignment

ANI>95 %, dDDH>70 % and MALDI- TOF MS>1.7 indicate strong species identification. nr, MALDI- TOF MS score not reported.

Isolate ID Species MALDI- TOF MS score 
(S. kloosii)

16S rRNA sequence 
identity (S. kloosii 

AB009940)

Mean ANI (vs 
type Strain)

dDDH (vs type strain) 
[confidence Interval]

17942E (2_7_1_Y) S. kloosii >2 99.88 99 91.3 [89.1–93.0]

14_7_6_SW S. kloosii >2 100 99 91.2 [89.0–93.0]

14_4_1_W S. kloosii >2 100 96 68.4 [65.6–71.4]

18_1_E_LY S. lloydii 1.41 100 90 42.5 [40.0–45.1]

23_2_7_LYT S. lloydii 1.47 100 90 42.5 [40.0–45.1]

23_2_20_HW S. lloydii S. simiae (nr), S. succinus 
(1.31)

100 90 42.4 [39.9–45.0]

27_4_6_LYT S. durrellii 1.44 99.53 86 38.1 [35.6–40.6]

Fig. 2. ProgressiveMauve alignment of closed genomes of S. kloosii, (top) S. lloydii sp. nov. (middle) and S. durrellii sp. nov. (bottom) from 
bats. Apart from one small reordering (magenta) which represents a bacteriophage, there is most variation closest to the origin of 
replication on the extreme left and right of the figure.
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similarity. All isolates of the two novel species lack the urease 
operon and phenotypic testing confirmed that they do not 
produce urease.

S. durrellii sp. nov. is predicted by Mob- typer to contain two 
plasmids classified as novel plasmids closest to pC221 from  
S. aureus (4692 bp) and pC2014-2 from S. equorum (86 290 bp) 
[17].

Phenotypic and chemotaxonomic characterization
Using Gram stain the isolates were purple cocci, and occurred 
singly, paired and in clusters. Smooth, shiny, domed, non- 
haemolytic colonies were seen after 24 h aerobic growth on 
Columbia 5 % sheep blood agar (Table 3); however, S. durrellii 
sp. nov. also showed mucoid growth (Fig. 3). The phenotypic 
characteristics of the seven isolates are detailed in Table 4.

CONCLUSION
We produced whole genome sequence data for staphylococcal 
isolates that could not be identified with confidence on the 

basis of MALDI- TOF MS data. Phylogenetic analysis of the 
genome data revealed two novel clusters, for which a TYGS 
search did not provide any alternative species designation 
[6, 7]. Comparisons of representative isolates of these clus-
ters with the S. kloosi type strain based on ANI and dDDH 
confirmed that these isolates were sufficiently divergent as to 
be regarded as separate novel staphylococcal species which we 
designate Staphylococcus lloydii sp. nov. and Staphylococcus 
durrellii sp. nov. Further work is needed to establish the host 
species range of these novel species which have so far only 
been isolated from Livingstone’s fruit bats. The type strains 
and closed genomes of examples of each species plus S. kloosii 
isolated from bats have been made publicly available.

DESCRIPTION OF STAPHYLOCOCCUS LLOYDII 
SP. NOV.
Staphylococcus lloydii (lloy’di.i. N.L. gen. n. lloydii after the 
eminent veterinary dermatologist and microbiologist David 
H. Lloyd).

Based on the characterization of three isolates originating 
from Livingstone’s fruit bats the cells are Gram- positive 
cocci occurring singly, in pairs and clusters. After 24 h 
aerobic growth at 37 °C on Columbia agar with 5 % sheep 
blood the colonies are smooth, shiny, circular, domed, 
white or yellow/cream and 1–2 mm in diameter, displaying 
no haemolysis. All isolates are catalase- positive, clumping- 
factor negative, coagulase- negative, oxidase- negative, DNase 
negative, resistant to novobiocin, sensitive to polymyxin B 
and grow in 10 % NaCl tryptone soy broth. They are posi-
tive for acetoin production by the Vokes−Proskauer reaction 
and pyrrolidonyl arylamidase. They are negative for urease 
production, arginine dihydrolase, ornithine decarboxylase, 
aesculin hydrolysis, nitrate reduction, β-galactosidase and 
β-glucuronidase. Variable reactions were seen for arginine 
arylamidase, alkaline phosphatase and N- acetyl- glucosamine 
fermentation. Acid production is positive from d- glucose, 
d- fructose and maltose; negative from d- mannose, lactose, 
raffinose, d- ribose, sucrose, turanose, l- arabinose and cello-
biose; variable from trehalose and d- mannitol.

The type strain is strain 23_2_7_LYT (NCTC 14453T=DSM 
111639T), isolated in 2015 from the skin of a captive 

Table 3. Colony size and colour of seven isolates from bats after 24 h aerobic growth at 37 °C on Columbia agar with 5 % sheep blood

ID Species Host species Colony size Colony colour

2_7_1_Y (17942E) S. kloosii Serotine bat 1–2 mm White/cream

14_7_6_SW S. kloosii Livingstone’s bat 2–3 mm White

14_4_1_W S. kloosii Whiskered bat 1–2 mm White

23_2_7_LYT S. lloydii Livingstone’s bat 1–2 mm Yellow/cream

23_2_20_HW S. lloydii Livingstone’s bat 1–2 mm White

18_1_E_LY S. lloydii Livingstone’s bat 2–3 mm Cream

27_4_7_LYT S. durrellii Livingstone’s bat 1 mm Yellow

Fig. 3. S. durrellii sp. nov. (27_4_7_LYT) showing yellow pigment and 
mucoid growth after 24 hours aerobic growth at 37 °C on Columbia 
agar with 5% sheep blood.
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Table 4. Phenotypic characteristics of the S. kloosii type strain (NCTC 12415) [21], three confirmed S. kloosii isolates from bats, three S. lloydii sp. nov. 
isolates from fruit bats and one S. durrellii sp. nov. isolate from a fruit bat

+, All isolates positive; −, all isolates negative; v, variable (33–66 % of strains positive); nd, not done.

Characteristic S. kloosii type strain (NCTC 
12415)

S. kloosii (n=3) S. lloydii sp. nov. (n=3) S. durrellii sp. nov. (n=1)

DNase − − − −

Beta- haemolysis − − − −

Oxidase − − − −

Acetoin (Vokes–Proskauer) − − + −

Urease + + − −

Arginine dihydrolase − − − −

Ornithine decarboxylase − − − −

Aesculin hydrolysis − − − −

d- Glucose + + + +

d- Fructose + + + +

d- Mannose − − − −

Maltose +/− + + −

Lactose +/− v − −

Trehalose +/− + v +

d- Mannitol +/− + v +

Raffinose − − − −

d- Ribose + − − −

Cellobiose − − − −

Nitrate reduction − − − −

Beta- galactosidase + + − −

Arginine arylamidase − v v −

Alkaline phosphatase + + v +

Pyrrolidonyl arylamidase + + + +

Novobiocin resistance + + + +

Polymyxin B resistance nd − − −

Sucrose fermentation − − − −

N- Acetyl- glucosamine fermentation − − v −

Turanose fermentation − − − −

l- Arabinose fermentation +/− v − −

Beta- glucuronidase + v − +
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Livingstone’s fruit bat in Jersey Zoo. The genome size is 
2 568 697 bp and the DNA G+C content of the type strain is 
33.24 mol%.

DESCRIPTION OF STAPHYLOCOCCUS 
DURRELLII SP. NOV.
Staphylococcus durrellii ( dur. rell’i.i N.L. gen. n. durrellii after 
the innovative naturalist and conservationist Gerald Durrell 
who founded Jersey Zoo and played a vital role in the estab-
lishment of the captive breeding colony of Livingstone’s bats 
from which the strain was isolated).

Based on the characterization of one isolate originating from 
a Livingstone’s fruit bat the cells are Gram- positive cocci 
occurring singly, in pairs and clusters. After 24 h aerobic 
growth at 37 ℃ on Columbia agar with 5 % sheep blood 
the colonies are smooth, shiny, circular, domed, yellow and 
1–2 mm in diameter, displaying mucoidy but no haemolysis. 
The isolate is catalase- positive, clumping- factor negative, 
coagulase- negative, oxidase- negative, DNase negative, 
resistant to novobiocin, sensitive to polymyxin B and grew 
in 10 % NaCl tryptone soy broth. It is positive for pyrrolidonyl 
arylamidase, β-glucuronidase and alkaline phosphatase reac-
tions. It is negative for urease production, acetoin produc-
tion by the Vokes–Proskauer reaction, arginine dihydrolase, 
ornithine decarboxylase, aesculin hydrolysis, nitrate reduc-
tion, β-galactosidase, arginine arylamidase and N- acetyl- 
glucosamine fermentation. Acid production is positive from 
d- glucose, d- fructose, trehalose and d- mannitol, and nega-
tive from maltose, d- mannose, lactose, raffinose, d- ribose, 
sucrose, turanose, l- arabinose and cellobiose.

The type strain is strain 27_4_6_LYT (NCTC 14454T=DSM 
111640T) isolated in 2016 from the oropharynx of a captive 
Livingstone’s fruit bat in Jersey Zoo. The genome size is 
2 633 060 bp and the DNA G+C content of the type strain is 
32.51 mol%.
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