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Abstract: Calcium (Ca2+) is a universal and vital intracellular messenger involved in a diverse range
of cellular and biological processes. Changes in the concentration of extracellular Ca2+ can disrupt
the normal cellular activities and the physiological function of these systems. The calcium sensing
receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and
by other physiological cations, aminoacids, and polyamines. CaSR is the main controller of the
extracellular Ca2+ homeostatic system by regulating parathyroid hormone (PTH) secretion and, in
turn, Ca2+ absorption and resorption. Recent advances highlight novel signaling pathways activated
by CaSR signaling involving the regulation of microRNAs (miRNAs). miRNAs are naturally-occurring
small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several
diseases. We previously described that high luminal Ca2+ in the renal collecting duct attenuates
short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through CaSR activation. Moreover,
we demonstrated that CaSR signaling reduces AQP2 abundance via AQP2-targeting miRNA-137.
This review summarizes the recent data related to CaSR-regulated miRNAs signaling pathways in
the kidney.

Keywords: calcium sensing receptor (CaSR); calcium; microRNAs; aquaporin-2; kidney; renal
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1. Introduction

Calcium (Ca2+) is an universal and vital intracellular messenger involved in a diverse range
of cellular and biological processes [1] extending from bone formation and neurotransmission to
hormone secretion [2] and muscle contraction [3], and from gene expression [4] to cell proliferation [3,5].
The ability of a simple ion such as Ca2+ to play a pivotal role in cell biology results from the facility
that cells have to shape Ca2+ signals in the dimensions of space, time, and amplitude. To generate the
variety of observed Ca2+ signals, different cell types employ components selected from a Ca2+ signaling
equipment, including an array of signaling, homeostatic, and sensory mechanisms. Changes in the
concentration of (extracellular and intracellular) Ca2+ can disrupt the normal cellular activities and
disrupt physiological function of these systems [6].

The extracellular calcium sensing receptor (CaSR) plays a critical role in regulating extracellular
Ca2+ concentrations and cellular responses to these variations [7]. CaSR is a G-protein-coupled receptor
discovered in 1993 by Brown and coworkers [7]. It comprises 612 amino acids and is followed by a
250 amino acid domain of seven transmembrane helices (TMD) and, finally, by a carboxy terminal (C)
tail of approximately 200 amino acids [8,9] (Figure 1).

Int. J. Mol. Sci. 2019, 20, 5341; doi:10.3390/ijms20215341 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-3118-5813
http://www.mdpi.com/1422-0067/20/21/5341?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20215341
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 5341 2 of 15

 
Figure 1. Schematic representation of the dimeric CaSR. Schematic representation of the CaSR 
homodimer structure at the plasma membrane, showing intracellular, transmembrane and 
extracellular domains, and Ca2+ binding site. 

It is highly expressed in the parathyroid glands, where it regulates the production and secretion 
of parathyroid hormone (PTH) in a negative feedback manner. It is also expressed in numerous other 
tissues, where it has different but less well-defined functions. A key role of CaSR is to maintain 
extracellular Ca2+ levels by its ability to regulate PTH biosynthesis and release [10]. Moreover, CaSR 
also plays a central role in the control of the responsiveness of other target cells to Ca2+. This last 
function of CaSR assumes a considerable importance for renal reabsorption of Ca2+ and other essential 
ions [11,12], which will be better discussed in the following paragraphs. 

The primary ligand for the CaSR is represented by extracellular Ca2+ [13]. Changes of this ion in 
the tissue spaces cause the activation of the receptor, even though CaSR is a promiscuous receptor 
activated by orthosteric agonists and allosteric modulators. One of the most curious features of CaSR 
is its pleiotropicity; in fact, different endogenous ligands are able to activate the receptor, which, in 
turn, initiates multiple intracellular pathways, also in the same cell type or the same signaling in the 
different body districts. 

CaSR was found to be expressed in all of the key tissues that participate in extracellular Ca2+ 
homeostasis, including parathyroid cells, the thyroidal calcitonin-secreting C-cells [14], kidney [15], 
bone [16], and intestine [17]. Several studies have shown that the CaSR is also expressed in many 
other tissues in the body not playing obvious role in extracellular Ca2+ homeostasis, such as the breast, 
blood vessels, liver, airways, and various regions of the brain, where physiological roles of CaSR are 
not well understood. 

Given the critical role of the CaSR in the regulation of the entire extracellular Ca2+ homeostatic 
system, few alterations in CaSR functionality, in its molecular partners and in signaling pathways, 
are expected to significantly imbalance mineral metabolism. In fact, CaSR deletion in mice, CaSR 
mutations in humans, and the use of negative and positive allosteric modulators have enabled the 
identification of activating or inactivating CaSR mutations or polymorphisms that cause significant 
alterations in calcium metabolism. The most important ones are those that cause familial 
hypocalciuric hypercalcemia (FHH), neonatal severe hyperparathyroidism, or autosomal dominant 
hypocalcemia (ADH), in which loss-of-function mutations in CaSR (for instance, CaSR-R392X) 
promote disruption of the downregulation mechanisms of PTH secretion [18]. 

On the other hand, the gain-of-function mutations result in the hypersensitivity of the CaSR 
causing hypocalcaemia due to a premature inhibition of PTH secretion. In particular, gain-of-function 
CaSR mutations result in autosomal dominant hypocalcemia (ADH) or type 5 Bartter syndrome and 
eight of them are clustered in loop 2 close to the two cysteines responsible for receptor 
homodimerization, i.e., cys129 and cys131 [19]. Recently, we characterized two different gain-of-

Figure 1. Schematic representation of the dimeric CaSR. Schematic representation of the CaSR
homodimer structure at the plasma membrane, showing intracellular, transmembrane and extracellular
domains, and Ca2+ binding site.

It is highly expressed in the parathyroid glands, where it regulates the production and secretion
of parathyroid hormone (PTH) in a negative feedback manner. It is also expressed in numerous
other tissues, where it has different but less well-defined functions. A key role of CaSR is to maintain
extracellular Ca2+ levels by its ability to regulate PTH biosynthesis and release [10]. Moreover, CaSR
also plays a central role in the control of the responsiveness of other target cells to Ca2+. This last
function of CaSR assumes a considerable importance for renal reabsorption of Ca2+ and other essential
ions [11,12], which will be better discussed in the following paragraphs.

The primary ligand for the CaSR is represented by extracellular Ca2+ [13]. Changes of this ion in
the tissue spaces cause the activation of the receptor, even though CaSR is a promiscuous receptor
activated by orthosteric agonists and allosteric modulators. One of the most curious features of CaSR
is its pleiotropicity; in fact, different endogenous ligands are able to activate the receptor, which, in
turn, initiates multiple intracellular pathways, also in the same cell type or the same signaling in the
different body districts.

CaSR was found to be expressed in all of the key tissues that participate in extracellular Ca2+

homeostasis, including parathyroid cells, the thyroidal calcitonin-secreting C-cells [14], kidney [15],
bone [16], and intestine [17]. Several studies have shown that the CaSR is also expressed in many
other tissues in the body not playing obvious role in extracellular Ca2+ homeostasis, such as the breast,
blood vessels, liver, airways, and various regions of the brain, where physiological roles of CaSR are
not well understood.

Given the critical role of the CaSR in the regulation of the entire extracellular Ca2+ homeostatic
system, few alterations in CaSR functionality, in its molecular partners and in signaling pathways, are
expected to significantly imbalance mineral metabolism. In fact, CaSR deletion in mice, CaSR mutations
in humans, and the use of negative and positive allosteric modulators have enabled the identification
of activating or inactivating CaSR mutations or polymorphisms that cause significant alterations in
calcium metabolism. The most important ones are those that cause familial hypocalciuric hypercalcemia
(FHH), neonatal severe hyperparathyroidism, or autosomal dominant hypocalcemia (ADH), in
which loss-of-function mutations in CaSR (for instance, CaSR-R392X) promote disruption of the
downregulation mechanisms of PTH secretion [18].

On the other hand, the gain-of-function mutations result in the hypersensitivity of the CaSR causing
hypocalcaemia due to a premature inhibition of PTH secretion. In particular, gain-of-function CaSR
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mutations result in autosomal dominant hypocalcemia (ADH) or type 5 Bartter syndrome and eight
of them are clustered in loop 2 close to the two cysteines responsible for receptor homodimerization,
i.e., cys129 and cys131 [19]. Recently, we characterized two different gain-of-function mutations of
CaSR [20], N124K and R990G. While the N124K CaSR mutations causing ADH in humans are located in
the extracellular domain, the intracellular tail of the receptor has one non-conservative polymorphism,
R990G, which also confers a gain-of-function to the receptor (lower external calcium EC50) and in
humans is associated with primary hypercalciuria in patients [21–23]. Although the two gain-of-function
CaSR variants examined regard modifications at opposite locations within the CaSR protein sequence,
their functional analysis revealed comparable biological regulatory effects within cells (significantly
higher calcium accumulation in the Endoplasmic Reticulum (ER) and Sarco-Endoplasmic Reticulum
Calcium ATPase (SERCA) expression and activity and reduced expression of the Plasma-Membrane
Calcium ATPase (PMCA), which is perfectly in line with the comparable (low) basal cytosolic Ca2+

concentration found in cells expressing hCaSR-Wt) [20].
CaSR activation has also been proven to play a positive role in correcting some alterations found

in cell models of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Specifically, we recently
demonstrated that in human conditionally immortalized proximal tubular epithelial cells silenced for
PKD1 (ciPTEC-PC1KD) or generated from a patient with ADPKD1 (ciPTEC-PC1Pt), selective activation
of the CaSR increases cytosolic Ca2+, reduces intracellular cAMP and mTOR activity [24], and rescues
defective ATP mitochondrial production [25], reversing the principal ADPKD dysregulations.

Additionally, it has been shown that CaSR is expressed in several cell types in the cardiovascular
system, including endothelium, vascular smooth muscle cells (VSMC), and even in the perivascular
nerve [26]. In this system it has been demonstrated that CaSR activation in endothelial cells had a
hypotensive effect [27]. Additionally, Schepelmann et al. recently showed that a mouse model of
targeted CaSR deletion from VSMC displayed reduced endothelium contractility in the aorta and
mesenteric artery compared to wild-type animals in response to different stimuli [28,29]. Finally, in 2009
Romani et al. provided evidence that cardiac microvascular endothelial cells (CMEC) express CaSR,
which is able to respond to physiological agonists by mobilizing Ca2+ from intracellular InsP3- sensitive
stores [30].

CaSR may also be involved in another dangerous pathology affecting the cardiovascular system:
the vascular calcification, a common complication of chronic kidney disease (CKD). In 2015, Molostvov
et al. showed that in vitro treatment with calcimimetics reduces calcification of VSMC, supporting a
role for CaSR in vascular calcification [31].

More recently, the CaSR has emerged as a potential therapeutic target for asthma [32]. The effects
of calcilytics on the release of amyloid β peptides in cells treated with amyloid β surrogates have
suggested the involvement of CaSR in Alzheimer’s Disease (AD) [33–35]. In addition, new and recent
data highlighted the role of CaSR in cancer [36–38].

The central topic of this review is mainly focused on renal Ca2+ handling and on renal CaSR
activation and signaling.

2. Ca2+ Handling and CaSR in the Kidney

The kidney is the major regulator organ of calcium and water homeostasis in the body. To carry
out this important function, the kidney must be able to sense, detect, and respond to changes in
its environment. Toka, Pollak, and Houillier define the kidney as a “calcium-sensing organ” because
changes in extracellular fluid calcium concentration can affect the renal handling of various ions and
water, independently of changes in PTH level [39].

Calcium handling through the small intestine wherein calcium absorption occurs, the bone
wherein calcium is stored, and the kidney wherein absorbed calcium is eliminated, are fine controlled
and regulated by a large number of transport mechanisms, hormones, and complex feedback systems.
These control mechanisms are extremely important to prevent biomineralization processes in tissues
where calcification is not a physiological event.
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In plasma, a concentration of ~2.5 mmol/L for calcium and 1 mmol/L for phosphate may cause
spontaneous phenomena of crystallization, if inhibitors of calcification, such as magnesium, fetuin A,
osteoprotegerin, or matrix gla protein are not present. Likewise, in urine, calcium has a concentration
of ~3 mmol/L and phosphate 10 mmol/L; in this contest, calciuria appears to be a major promoter of
urine crystallization and stone formation. Hypercalciuria contributes to Randall’s plaque formation
and to kidney stone formation [40–43].

As revised by Moor and Bonny in 2016 [44], in the proximal tubule, calcium is mainly reabsorbed
paracellularly, partially driven by the activity of the sodium/proton exchanger (NHE3). In the thick
ascending limb, calcium is reabsorbed by specialized and finely-controlled paracellular pathways
involving claudins (16, 19, and 14) and the driving force is provided by sodium reabsorption through
the sodium/potassium/chloride cotransporter (NKCC2). Increased interstitial calcium concentrations
activate the basolateral CaSR, which reduces NKCC2 activity and directly modulates paracellular
calcium permeability. In the distal convoluted and connecting tubules, calcium enters in cells through
the apical transient receptor potential cation channel subfamily V member 5 (TRPV5 channel), binds
intracellular calbindin, and exits through the basolateral sodium/calcium exchange (NCX1) and calcium
ATPase (PMCA4). At the collecting duct level calcium is not reabsorbed. However, urine calcium
variations are sensed by apical CaSR, resulting in the inhibition of water reabsorption [45] and in the
stimulation of urine acidification [46,47]. Both of these mechanisms reduce calcium salt precipitation
and, consequently, the risk of stone formation [48]. In line, calcilytics are indicated as a novel, promising
avenue for the treatment of hypercalciuria, nephrolithiasis, and nephrocalcinosis [12].

As already mentioned, the kidney is a key organ for calcium homeostasis, and its ability to sense
extracellular calcium levels in the urinary filtrate and interstitial fluid is due to the CaSR, which is
expressed in several sites along the nephron [12,13,49,50]. Moreover, changes in extracellular calcium
concentration affect several functions of the renal tubule, for instance, the water homeostasis. While
CaSR expression in the thick ascending limb is commonly accepted, in other tubular and glomerular
cells of the kidney it remains a subject of debate [51].

Riccardi and Valenti recently (2016) revised the localization and function of CaSR in the renal
district [12]. CaSR is expressed across the entire length of the nephron, with the highest expression
on the basolateral membrane of thick ascending limb epithelial cells where it plays a crucial role in
the regulation of divalent mineral cation transport by inhibiting calcium reabsorption in response
to a stimulation by an increase in plasma calcium levels [13,50,52–54]. In the proximal tubule, the
CaSR is expressed apically and, here, rapidly and directly blunts the phosphaturic action on PTH,
modulating the inhibitory action of PTH on Pi absorption [55]. In the collecting duct principal cells,
CaSR is co-expressed with aquaporin-2 (AQP2) on the apical membrane [45,49,56], where it senses
extracellular (urinary) Ca2+ and regulates the water reabsorption in order to control hypercalciuria
and prevent Ca2+ crystal formation.

In the intercalated cells of the collecting duct, CaSR is co-expressed with vacuolar type H+-ATPase
at the apical membrane. When the luminal Ca2+ concentration becomes critically high, it activates
the apical CaSR which, in principal cells, blunts vasopressin-mediated apical insertion of the AQP2
water channel and the rate of water reabsorption. In intercalated cells, CaSR activation leads to luminal
acidification by activation of the H+-ATPase (Figure 2). These two effects together result in the
production of a dilute, acidified urine, which reduces the risk of nephrolithiasis [12,57].
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Figure 2. Localization and function of CaSR in the collecting duct. In the presence of an antidiuretic 
stimulus, Ca2+ concentrations in the pre-urine can become super-saturating, potentially leading to Ca2+ 
stone formation. When the luminal Ca2+ concentration becomes critically high it activates the apical 
CaSR which, in principal cells, blunts vasopressin-mediated apical insertion of the aquaporin-2 
(AQP2) water channel and the rate of water reabsorption. In intercalated cells, CaSR activation leads 
to luminal acidification. Overall, these two effects result in the production of a dilute, acidified urine, 
which reduces the risk of nephrolithiasis. 

3. CaSR and AQP2 Interplay 

A postulated mechanism for the process occurring in the collecting duct is that, during the 
vasopressin antidiuretic action promoting water reabsorption from the lumen, urinary Ca2+ 
concentration increases secondary to urine concentration. Increased Ca2+ levels, in turn, activate the 
CaSR located on the apical membrane of the principal cells. CaSR activation reduces the vasopressin-
stimulated insertion of AQP2 into the plasma membrane and the rate of water reabsorption, 
consequently reducing the risk of Ca2+ supersaturation [58–61]. Maintenance and regulation of water 
balance is essential for all physiological processes and is critically dependent on water intake and 
water output in the kidney under the control of the antidiuretic hormone vasopressin. Dysregulation 
associated with water balance is responsible of several disorders, such as congenital nephrogenic 
diabetes insipidus (NDI), idiopathic syndrome of inappropriate antidiuretic hormone secretion 
(SIADH), nephrogenic syndrome of inappropriate antidiuresis (NSIAD), and autosomal dominant 
polycystic kidney disease (ADPKD) (revised in Ranieri et al., 2019) [62]. 

Already in the 1997, Sands and coworkers reported evidence of the presence of an apical 
“Calcium/polycation receptor proteins (CaRs)” in rat kidney terminal inner medullary collecting duct 
(tIMCD) that specifically reduces vasopressin-elicited osmotic water permeability when luminal 
calcium rises. This evidence provides support for a unique and new tIMCD apical membrane 
signaling mechanism linking calcium and water metabolism [45]. 

However, clinical evidence for an effect of luminal calcium on AQP2-mediated water 
reabsorption was provided for the first time, in humans (enuretic children), in a study of Valenti and 
collaborators, demonstrating that urinary AQP2 and calciuria correlate with the severity of enuresis 
[63]. Interestingly, hypercalciuric enuretic children receiving a low calcium diet to reduce 
hypercalciuria, had decreased overnight urine output (reduced nocturnal enuresis) paralleled by an 
increase in nighttime AQP2 excretion and osmolality [63]. Further evidence has been provided, more 
recently, in a bed rest study. Immobilization results in alterations of renal function, fluid 
redistribution, and bone loss, which couples to a rise of urinary calcium excretion. Under these 
conditions it was observed that bed rest induced an increase in blood hematocrit (reflecting water 
loss) which coincided with a reduction of urinary AQP2 likely paralleled by an increase in urinary 
calcium due to bone demineralization [64]. 

Figure 2. Localization and function of CaSR in the collecting duct. In the presence of an antidiuretic
stimulus, Ca2+ concentrations in the pre-urine can become super-saturating, potentially leading to
Ca2+ stone formation. When the luminal Ca2+ concentration becomes critically high it activates the
apical CaSR which, in principal cells, blunts vasopressin-mediated apical insertion of the aquaporin-2
(AQP2) water channel and the rate of water reabsorption. In intercalated cells, CaSR activation leads to
luminal acidification. Overall, these two effects result in the production of a dilute, acidified urine,
which reduces the risk of nephrolithiasis.

3. CaSR and AQP2 Interplay

A postulated mechanism for the process occurring in the collecting duct is that, during
the vasopressin antidiuretic action promoting water reabsorption from the lumen, urinary Ca2+

concentration increases secondary to urine concentration. Increased Ca2+ levels, in turn, activate
the CaSR located on the apical membrane of the principal cells. CaSR activation reduces the
vasopressin-stimulated insertion of AQP2 into the plasma membrane and the rate of water reabsorption,
consequently reducing the risk of Ca2+ supersaturation [58–61]. Maintenance and regulation of
water balance is essential for all physiological processes and is critically dependent on water
intake and water output in the kidney under the control of the antidiuretic hormone vasopressin.
Dysregulation associated with water balance is responsible of several disorders, such as congenital
nephrogenic diabetes insipidus (NDI), idiopathic syndrome of inappropriate antidiuretic hormone
secretion (SIADH), nephrogenic syndrome of inappropriate antidiuresis (NSIAD), and autosomal
dominant polycystic kidney disease (ADPKD) (revised in Ranieri et al., 2019) [62].

Already in the 1997, Sands and coworkers reported evidence of the presence of an apical
“Calcium/polycation receptor proteins (CaRs)” in rat kidney terminal inner medullary collecting duct
(tIMCD) that specifically reduces vasopressin-elicited osmotic water permeability when luminal
calcium rises. This evidence provides support for a unique and new tIMCD apical membrane signaling
mechanism linking calcium and water metabolism [45].

However, clinical evidence for an effect of luminal calcium on AQP2-mediated water reabsorption
was provided for the first time, in humans (enuretic children), in a study of Valenti and collaborators,
demonstrating that urinary AQP2 and calciuria correlate with the severity of enuresis [63]. Interestingly,
hypercalciuric enuretic children receiving a low calcium diet to reduce hypercalciuria, had decreased
overnight urine output (reduced nocturnal enuresis) paralleled by an increase in nighttime AQP2
excretion and osmolality [63]. Further evidence has been provided, more recently, in a bed rest study.
Immobilization results in alterations of renal function, fluid redistribution, and bone loss, which
couples to a rise of urinary calcium excretion. Under these conditions it was observed that bed rest
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induced an increase in blood hematocrit (reflecting water loss) which coincided with a reduction of
urinary AQP2 likely paralleled by an increase in urinary calcium due to bone demineralization [64].

All these results strongly support the indication that urinary calcium can modulate the
vasopressin-dependent urine concentration through a down-regulation of AQP2 trafficking.

In a previous study, we demonstrated that in cultured renal cells and microdissected collecting
ducts, the inhibitory effect of CaSR signaling on AQP2 trafficking to the plasma membrane is associated
with a significant decrease in cAMP-induced AQP2 phosphorylation at serine 256 (pS256) and AQP2
trafficking, resulting in a reduced osmotic water permeability response [65]. Specifically, calcimimetics
activation of CaSR reduced AQP2 translocation to the plasma membrane in response to the cAMP
elevation forskolin-induced. These data were also confirmed in HEK-293 cells transfected with two
gain-of-function variants of CaSR, the CaSR-N124K mutation and the CaSR-R990G polymorphism,
exploited to mimic “tonic” activation of CaSR [20]. The physiological consequence of the negative
feedback on cAMP-induced AQP2-pS256 phosphorylation and trafficking stimulated by CaSR signaling
is lowering the osmotic water permeability response both in cells and in isolated mouse collecting
duct [65].

This theory that elevated concentration of calcium in urine counteract vasopressin action via the
activation of CaSR expressed at luminal membrane of principal cells has been further validated in
a mouse model double-knockout (dKO) for Pendrin/NaCl Cotransporter (NCC) [66], which display
significant calcium wasting and severe volume depletion, despite high circulating vasopressin
levels [67].

Due to severe hypercalciuria, a tonic activation of the luminal CaSR in the collecting duct is expected
in this dKO mice model and, quite interestingly, those mice had a strong reduction in total AQP2
expression associated with a significantly higher expression of AQP2-pS261 and ubiquitinated AQP2. In
addition, in dKO mice, exposure of inner medulla kidney slices to the proteasome inhibitor MG132
increased total AQP2 by 50%, indicating that the rate of AQP2 degradation via proteasome is significantly
higher. It has been recently suggested that CaSR expressed at the apical membrane of collecting duct
principal cells could mediate the effects of hypercalciuria in reducing vasopressin-elicited osmotic
water permeability and urinary concentrating ability by the activation of autophagic degradation
of AQP2. Indeed, proteomic analysis of inner medullary collecting ducts isolated from parathyroid
hormone-treated rats revealed increased autophagic degradation of a specific set of proteins including
AQP2 [68].

Interestingly, the functional link between CaSR and AQP2 degradation was supported by the
observation that the reduced total AQP2 and higher levels of AQP2-pS261 found in dKO mice are
paralleled by higher levels of p38 mitogen-activated protein kinase (p38-MAPK), an enzyme activated
by CaSR signaling and known to phosphorylate AQP2 at Ser261 [69,70]. Of note, CaSR inhibition
with the calcilytic NPS2143 reduced AQP2-pS261 levels in dKO mice, demonstrating that CaSR acts
upstream of p38-MAPK and mediates the upregulation of AQP2-pS261. Moreover, inhibition of
p38-MAPK caused a drastic decrease in AQP2-pS261, along with a nearly five-fold increase in total
AQP2. Furthermore, in dKO mice, p38-MAPK inhibition results in a drastic reduction in ubiquitinated
AQP2 that is paralleled by a strong increase in total AQP2 [66].

In addition to the effect on AQP2 trafficking, previous findings demonstrated that high external
calcium reduces AQP2 expression both in the collecting duct cell line mpkCCD and in hypercalciuric
rats [71,72]. Moreover, vitamin D-elicited hypercalcemia/hypercalciuria is associated with polyuria in
humans. At the end, dihydrotachysterol (DHT) induces AQP2 water channel downregulation despite
unaltered AQP2 mRNA expression in rats, suggesting a higher rate of AQP2 degradation attributed to
activation of the calcium-sensitive protease calpain [73].

Ultimately, these data support a direct effect of luminal calcium on AQP2 expression in collecting
duct principal cells and point to a role of calcium in regulating both AQP2 trafficking and expression.

Of note, regulation events of post-transcriptional gene expression can occur and be involved in
several diseases, under the direct control of the small non-coding RNAs, the microRNAs (miRNAs) [74].
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4. CaSR-Regulated miRNAs

MiRNAs are ubiquitous endogenous, short non-coding, most frequently of 19–25 nucleotides in
length, single-stranded (ss)RNA transcripts that act as post-transcriptional regulators of gene expression
by blocking protein translation and/or inducing messenger RNA (mRNA) degradation. miRNAs may
act as transcriptional or splicing regulators within the nucleus [74], and be involved in genetic exchange
with adjacent cells, through exosomes [75]. Many miRNAs display tissue-specific expression patterns
and are involved in the development and maintenance of organ function. Approximately 60% of
protein-coding genes are influenced by miRNAs [76] that play crucial roles in several biological
processes, including control of cell cycle and differentiation, proliferation, and metabolism. As such,
miRNA deregulation is being increasingly associated with several human pathologies [77]. Since their
discovery in 1993 [78], numerous miRNAs have been identified in humans and other eukaryotic
organisms, and their role as key regulators of gene expression is still being elucidated.

Only since 2012 have the miRNA activated by CaSR been indicated as key regulators of diverse
proteins involved in different pathophysiological circumstances. Indeed, Hou and co-workers described
the physiological function of claudins in the paracellular transport mechanisms with a focus on renal
Ca2+ handling [79] (revised also in 2016 in [80]). In the thick ascending limb of Henle, paracellular
Ca2+ reabsorption involves the functional interplay of three important claudin genes: claudin-14,
-16, and -19, associated with human kidney diseases with hypercalciuria, nephrolithiasis, and bone
mineral loss. A novel microRNA-based signaling pathway downstream of CaSR that directly regulates
claudin-14 gene expression has been described indicating that claudin-14 is a key regulator for renal
Ca2+ homeostasis. Through physical interaction, claudin-14 blocks the paracellular cation channel
made of claudin-16 and -19, critical for Ca2+ reabsorption in the tick ascending limb. The molecular
cascade of CaSR-microRNAs-claudins forms a regulatory loop to maintain proper Ca2+ homeostasis
in the kidney [79,81]. Under normal dietary condition, claudin-14 proteins are suppressed by two
microRNA molecules, miR-9 and miR-374. Both microRNAs directly target the 3′-UTR of claudin-14
mRNA; induce its mRNA decay and translational repression in a synergistic manner, causing claudin-14
to decline, leading to decreases in cation permeation [81–84]. These data indicate that the regulation of
miRNA by CaSR signaling may occur on several layers within the kidney.

Moreover, the silencing of the CaSR has been demonstrated to induce tumors in colorectal
cancer, associated with increased expression of miR135b and miR-146b, which are considered to be
oncogenic [85]. In colon cancer cell lines other miRNAs—miR21, miR-145, and miR-135a—are inversely
correlated with CaSR expression [86,87].

Furthermore, altered expression of miRNAs have been implicated in parathyroid function and
may have an important role in the development of parathyroid tumors [88,89].

Our recent studies suggest that CaSR may regulate AQP2 expression also via miRNA [66] (Table 1).

Table 1. MicroRNA expression downstream CaSR signaling.

miRNA Target mRNA Target Protein Target Organ References

miR-9
miR-374

MiRNAs are ubiquitous endogenous, short non-coding, most frequently of 19–25 nucleotides in 
length, single-stranded (ss)RNA transcripts that act as post-transcriptional regulators of gene 
expression by blocking protein translation and/or inducing messenger RNA (mRNA) degradation. 
miRNAs may act as transcriptional or splicing regulators within the nucleus [74], and be involved in 
genetic exchange with adjacent cells, through exosomes [75]. Many miRNAs display tissue-specific 
expression patterns and are involved in the development and maintenance of organ function. 
Approximately 60% of protein-coding genes are influenced by miRNAs [76] that play crucial roles in 
several biological processes, including control of cell cycle and differentiation, proliferation, and 
metabolism. As such, miRNA deregulation is being increasingly associated with several human 
pathologies [77]. Since their discovery in 1993 [78], numerous miRNAs have been identified in 
humans and other eukaryotic organisms, and their role as key regulators of gene expression is still 
being elucidated. 

Only since 2012 have the miRNA activated by CaSR been indicated as key regulators of diverse 
proteins involved in different pathophysiological circumstances. Indeed, Hou and co-workers 
described the physiological function of claudins in the paracellular transport mechanisms with a 
focus on renal Ca2+ handling [79] (revised also in 2016 in [80]). In the thick ascending limb of Henle, 
paracellular Ca2+ reabsorption involves the functional interplay of three important claudin genes: 
claudin-14, -16, and -19, associated with human kidney diseases with hypercalciuria, nephrolithiasis, 
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However, despite several studies having demonstrated that transcriptional and post-transcriptional
regulation of AQP2 play crucial roles in AQP2 expression levels within the cell, along with a profound
impact on water homeostasis [90,91], little is known about the role of miRNA in the regulation of
AQP2 expression.

Several studies highlight an emerging role of miRNAs in AQP regulation (reviewed in [92]).
Specifically, miRNAs have been identified as endogenous modulators of the expression of several
AQPs [93–103]. Two AQP2-targeting miRNAs, miR-32 and miR-137, were reported to decrease AQP2
expression in kidney collecting duct cells independently of vasopressin regulation [96]. The authors
demonstrated a significant decrease of AQP2 translation in mpkCCDc14 cells transfected with miR-32
or miR-137 providing novel insights into the regulation of AQP2 by RNA interference.

Of interest, we have recently correlated the AQP2-targeting miR-137 with the reduced expression
of AQP2 in a Pendrin/NaCl cotransporter dKO mouse model, a mechanism found to be mediated
by CaSR signaling [66]. Specifically, in dKO mice, miR-137 was found to be about 1.7-fold higher
compared to WT mice, which was in line with the reduced translation of AQP2 mRNA. Noteworthy,
miR-137 transcript levels were increased by the calcimimetic NPS-R-568 in WT mice; furthermore,
in dKO mice, miR-137 transcript levels were drastically reduced in response to CaSR or p38-MAPK
inhibition with the calcilytic NPS2143 or SB203580, respectively, providing the first evidence that CaSR
signaling directly acts upstream of the miR-137-AQP2 axis [66].

These findings represent the first demonstration that CaSR can regulate AQP2 expression via
AQP2-targeting miRNA.

The discovery of miRNAs as endogenous modulators of AQPs offers a potential therapeutic
approach for the regulation of AQP-related disorders [92].

5. Regulation of miRNA Expression and Therapeutic Perspectives

MiRNAs participate in numerous cellular regulatory pathways.
Emerging miRNA studies show promise for these transcripts as both biomarkers and as therapies

in cancer, and cardiovascular and renal pathologies [104].
Quantitative and qualitative assessment of miRNA expression have clearly shown consistent

changes in miRNA expression profiles in various diseases. Thus, profiling of miRNA expression can
be an important tool for diagnostics and treatment of disease.

Distinct mechanisms of regulation of miRNA expression can occur in cell: transcriptional (changes
in gene expression and promoter hypermethylation) and post-transcriptional (changes in miRNA
processing), as well as effects of endogenous (hormones, cytokines) and exogenous (xenobiotics)
compounds on the miRNA expression (reviewed in [105,106]).

The great interest for miRNAs as a novel class of functional regulators of tissue maintenance
and stress responses requires appropriate and reliable identification tools and suitable techniques for
measuring and modulating microRNAs in different model systems.

Recently, several strategies for gain- and loss-of-function studies for specific miRNAs both
in vitro and in vivo have been developed. For instance, in vitro miRNA manipulation consists in
transient transfections of miRNA mimics or miRNA antagonists [107]. Another refined way to study
the functional relevance of a miRNA is by genetic deletion. In fact, numerous examples of miRNA
knockout animals have been published and have revealed specific functions for the deleted miRNAs,
particularly under illness conditions [108–110]. For in vivo studies, there are several tools available
to selectively target miRNA pathways. The most used approach is by using antimiRs. AntimiRs are
modified antisense oligonucleotides that can reduce the endogenous levels of a miRNA, resulting in an
increase of expression of target genes.

In addition to the antimiRs, there is also the opportunity to mimic or re-express miRNAs
by using synthetic RNA duplexes designed to mimic the endogenous functions of the miRNA of
interest [107,111].
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The relative fluency by which miRNAs can be manipulated pharmacologically provides interesting
therapeutic opportunities.

In the kidney, the possibility of using miRNA alone or in combination with other drugs to
specifically modulate the vasopressin–AQP2 pathway, provides new cues for therapies that target
AQP2 [7]. In this respect, the recent identification by Bijkerk and co-workers of miR-132 as a first miRNA
target which post-transcriptionally blocks vasopressin gene expression regulating the osmo-balance
has opened new avenues for drug development [112].

6. Conclusions

Although for cellular and molecular physiology the prominence of miRNAs results clear and
explicit, however the signaling pathways that activate them still remain to be understood. In the
kidney, CaSR-regulated miRNAs and the effect on gene expression of proteins playing key roles in the
Ca2+ handling are still largely unexplored.

In this context, the identification of a novel physiological mechanism that, in the inner medulla,
links the activation of the CaSR by high urine Ca2+ levels to the regulation of the AQP2 expression
and trafficking open new avenues for understanding AQP2 regulation and, consequently, how water
balance is influenced by hypercalciuria (see schematic model in Figure 3).
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arrows) via the activation of p38-MAPK, which results in reduced AQP2 mRNA translation 
(described in Ranieri et al., 2018 [66]). As reported by Kim et al. 2015 [96], also miRNA-32 (yellow 
arrow) is able to reduce AQP2 mRNA levels and consequently AQP2 abundance, however, the precise 
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arrows) via the activation of p38-MAPK, which results in reduced AQP2 mRNA translation (described
in Ranieri et al., 2018 [66]). As reported by Kim et al. 2015 [96], also miRNA-32 (yellow arrow) is able
to reduce AQP2 mRNA levels and consequently AQP2 abundance, however, the precise signaling
pathway through which these events occur are still unknown.
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