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A B S T R A C T

Estimating patterns of occurrence of cases and deaths related to the COVID-19 pandemic is a complex
problem. The incidence of cases presents a great spatial and temporal heterogeneity, and the mechanisms of
accounting for occurrences adopted by health departments induce a process of measurement error that alters
the dependence structure of the process. In this work we propose methods to estimate the trend in the cases
of COVID-19, controlling for the presence of measurement error. This decomposition is presented in Bayesian
time series and spatio-temporal models for counting processes with latent components, and compared to the
empirical analysis based on moving averages. We applied time series decompositions for the total number of
deaths in Brazil and for the states of São Paulo and Amazonas, and a spatio-temporal analysis for all occurrences
of deaths at the state level in Brazil, using two alternative specifications with global and regional components.
1. Introduction

On March 11th, 2020, the World Health Organization (WHO) de-
clared the international public health emergency caused by the novel
coronavirus (SARS-CoV-2) as a global pandemic. By December 11th,
2020, there were 69,664,639 infected people and 1,583,242 deaths in
216 countries, according to Center for Systems Science and Engineer-
ing (CSSE) at Johns Hopkins University. As the disease propagates,
healthcare systems are on the verge of collapse, and despite the un-
precedented global research effort, to the present date there is no
effective pharmaceutical treatments available to deal with the coron-
avirus disease-19 (COVID-19) (Dong et al., 2020; Sanders et al., 2020).
In order to reduce the transmission, non-pharmaceutical interventions
have been proposed by many countries, e.g., social distancing, self-
quarantine and lockdown. However, preventing the transmission and
management decisions depends on how well we can assess the real
number of infected people. World Health Organization has recom-
mended massively testing of the population (World Healh Organization,
2020) and thus, has caused a great demand for diagnostic test all over
the world, but the limited availability and low number of applica-
tions has increasing the number of underreporting cases (Pedersen and
Meneghini, 2020; Vaid et al., 2020; Lau et al., 2020; do Prado et al.,
2020; Russell et al., 2020).

In addition to the underreporting number of COVID-19 cases and
deaths, it is worth noting that there are other problems related to
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COVID-19 data. First, a delay between the onset of symptoms and
accurate diagnosis is commonly observed, which varies from country to
country, depending on the local government’s strategy (Contreras et al.,
2020). Plus, there are also days of delay in the report of new deaths
which are counted on the day that are included in the system, instead of
the actual day of the death (Russell et al., 2020). This creates a relevant
measurement error problem, changing the series’ dependency structure.
The delays are also related to the lack of personnel available to report
cases on weekends, which creates a seasonality structure in the cases
and death reports, generating an additional aggregation problem on
the time series (Skiera et al., 2020). Plus, the delays are related to
problems in the system of accounting for confirmed cases and deaths,
which suffers from some instability issues. In some days the system is
not available, so deaths and cases are included late.

Given the aforementioned discussion, it is possible to note that
estimating the trend in COVID-19 cases and deaths it is not a trivial
problem. The estimation of long-term movements is of vital importance
to draw effective strategies to reduce the transmission of COVID-19.
There are several different methods for trend estimation, which differ
in their complexity and interpretability, where the most prevalent trend
estimation methods are model-based trend extraction, nonparametric
filtering, singular spectrum analysis and wavelets (Alexandrov et al.,
2012).

Although there are many studies in the literature to estimate the
trend of COVID-19 for different countries (e.g., Li et al., 2020; Gupta
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and Pal, 2020; Ceylan, 2020; Perone, 2020), there are little understand-
ing about the long-term movements of COVID-19 in Brazil. Nowadays
the country draws a lot of attention since it has the world’s second-most
cases and deaths of COVID-19 (behind just the United States), and with
probably substantial underestimates since the number of tested people
are relatively low. For instance, up to August 12th, about 62 thousand
tests per million inhabitants have been applied in Brazil, while the
United States and United Kingdom has applied more than 200 thousand
tests per million inhabitants. The difficulties in estimating the amount
of infected people in Brazil are related to the absence of adequate
laboratory infrastructure and qualified people, difficulty in buying tests
due to the high international demand, and logistical distribution of
tests in a country of continental dimensions such as Brazil (Ribeiro and
ao Bernardes, 2020).

Notwithstanding the supposed underreporting of COVID-19 cases,
the country also faces problems caused by contradictory and inaccu-
rate data presented by official public portals. This occurs due to the
polarized opposition between the federal government, and the state and
municipal governments. While Brazilian government and, especially
the President Jair Bolsonaro, are continually disqualify publicly both
risks and the adoption of scientifically based prevention measures,
most state and municipal governments have imposed social distancing
along with other public health measures to control the spread of the
virus (Ortega and Orsini, 2020). Several Brazilian official control bodies
(municipal, state and federal) have created official internet portals to
report the number of cases. However, there are many discrepancies
in these sources, presenting contradictory data on the impact of the
disease (Silva et al., 2020).

In a response to conflicting numbers provided by Brazilian Health
Ministry, some data collection initiatives have collected the data by
each municipality, providing more accurate information to COVID-
19 research, in a parallel work to the federal government. The most
notable work is provided by competing Brazilian mainstream media
outlets, which have established a work in a collaborative way to gather
and upload necessary COVID-19 information in the 26 states and the
Federal District. In addition to the daily data, the consortium also
provides the so-called moving average, in order to give a better view
of the evolution of confirmed cases and deaths of COVID-19 in Brazil
since this is an understandable and easy to execute method to compute
trend values. The moving average filter is an example of low-pass filter
because it eliminates the lower or slower frequencies from the time
series by means of moving average. However, this is a limited tool for
some reasons. First, it cannot be used to forecasting since the trend
path does not belong to any mathematical function. Second, the extent
of moving average is determined ad-hoc and may carry the effect of
human judgment. Also, the method assumes that the trend is always
linear.

An alternative way to estimate the long-term movements is through
structural decomposition (e.g., Harvey, 1990). In this sense, we propose
to decompose the temporal variability observed in the time series into
trend, seasonal and cycle components, which allows us to identify long-
term movements, and cyclical and seasonal effects, in the presence
of measurement errors. Since we are dealing with point process, we
introduce a method that allows decomposition of time series in a
count data framework, based on the Poisson distribution. In particular,
we propose to use a Poisson process where the intensity function is
decomposed into trend, seasonal and cycle components. The inference
is performed following a Bayesian approach, which is able to capture
the uncertainty associated with the latent factors via Bayesian credi-
bility interval. We also present a spatio-temporal generalization of this
methodology, using a formulation of Conditional Autoregressive (CAR)
models with time varying spatial random effects. In particular, the
resulting Bayesian hierarchical model fits within the integrated nested
Laplace approximations (INLA) framework, providing an estimation in
2

a computationally effective way (Rue et al., 2009).
Regarding this context, our main goal is to estimate the patterns of
the deaths by COVID-19 in Brazil through the trend-cycle decomposi-
tion. The contribution of this paper is to explore a Bayesian version of
the structural decomposition in combination with count distributions,
in the task of estimating the trend of deaths of COVID-19 in Brazil,
and compare it with averages approach, which are not robust to the
most common problems related to COVID-19 data. In particular, we
performed inference procedures for deaths reported in Brazil, and also
for the states of São Paulo and Amazonas. We choose to analyze these
two states in different regions (São Paulo in Southeast and Amazonas
in North) since Brazil is a country with continental dimensions and is
characterized by a great heterogeneity in socioeconomic and cultural
context among regions. For instance, in the Southeast region, the
social distance and hygiene measures to reduce the transmission of
COVID-19 are not feasible in subnormal agglomerates (also known
as ‘‘favelas’’) and peripheries, where the problem is intensified by
issues in sanitation and access to water. However, it is important to
highlight the difference of this problem among Brazilian regions: while
about 92% of the population in Southeast are supplied with treated
water, in the North, this number is just 57%. Furthermore, the North
region faces a lack of heath infrastructure. As an example, the state
of Amazonas concentrates all the hospital structures able to deal with
COVID-19 in a single municipality, Manaus. It represents the lack of
health infrastructure for the other 61 municipalities within a state
whose territorial extension is larger than those of United Kingdom, Italy
and France combined (Freitas et al., 2020).

Additionally, we also extend our proposed model by including
spatial information in the estimation process. The use of spatial in-
formation is important in estimating the trend and cycle components,
due to the nature of transmission in an epidemic process, with spatial
spread dynamics. Thus, the number of cases in a region has an im-
portant impact on neighboring regions, and the incorporation of this
information as a prior information for the number of cases allows a
more precise recovery of the trend of occurrences. We formulate two
spatio-temporal models through a conditional autoregressive structure
with time-varying spatial effects. Allowing spatial effects to change over
time is essential in modeling an epidemic process, as this structure
allows to identify the spatial pattern of spread of the infection. The
spatio-temporal models differ in terms of the components of trend,
seasonality and cycle. The first model assumes components common
to all regions of the country, while in the second model we introduce
specific trends, seasonality and cycles for each region of the country,
allowing an identification of the regional patterns of the COVID-19
epidemic.

This article is organized as follow. Section 2 contains a description
of the temporal and spatio-temporal models and presents the data.
Section 3 shows the results with discussion. Section 4 concludes.

2. Data and methods

2.1. Data

To perform inference procedures in all analysis we use a data set
provided by BRASIL.IO (https://brasil.io/dataset/covid19/caso_full/),
where the data collection is done by the reports of the number of
cases and deaths from the official epidemiological bulletins of each
municipality, by a task force of 40 volunteers. This daily data is
available at municipal level, containing the temporal evolution for the
number of reported deaths for each municipality and state. In this work,
we analyze the sample of deaths from 02/25/2020 to 12/06/2020 for

Brazil and the states of São Paulo and Amazonas.

https://brasil.io/dataset/covid19/caso_full/
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2.2. Univariate time series models

The model used in this work is based on a structural decomposition
suitable for modeling counting series, using a Poisson distribution
structure. In this distribution, the log intensity varies over time, and
is given by the sum of components of trend, seasonality and cycle. As
we are using a structure of Poisson processes with stochastic intensity,
the characterization of the process is given by a Cox process. In the
spatio-temporal analyzes, we use a structure of a dynamic version of
Besag–York–Mollié model (Besag et al., 1991), where the log of the
intensity function is given by a Gaussian Markov Random Field (Rue
and Held, 2005; Illian et al., 2012).

The trend component is formulated using a second order random
walk structure (Rue and Held, 2005), while the seasonal component is
composed of stochastic effects in the order of periodicity of the series,
in this case since we use daily data. The cyclic component is based
on a structure of a second-order autoregressive process, which aims to
capture the sum of stationary effects with mean reversion, including
the effects induced by measurement errors in the series of deaths.
This component is essential for the correct identification of trend and
seasonality patterns, as we will discuss below. The time series model
can be written as:

𝑌𝑡 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑥𝑝(𝜆𝑡)),

𝜆𝑡 = 𝜇𝑡 + 𝑠𝑡 + 𝑐𝑡
𝛥2𝜇𝑡 = 𝜂𝜇

𝑠𝑡 = 𝑠𝑡−1 + 𝑠𝑡−2 +⋯ + 𝑠𝑡−𝑚 + 𝜂𝑠

𝑐𝑡 = 𝜃1𝑐𝑡−1 + 𝜃2𝑐𝑡−2 + 𝜂𝑐 (1)

here 𝑌𝑡 is the number of occurrences in time 𝑡, 𝜇𝑡 is the long term
rend, which can be seen as the accumulation of all shocks that occurred
n the past with non-transitory effects, and is modeled as a second-order
andom walk (RW2). The 𝑠𝑡 represents the seasonal components, 𝑐𝑡 is a
ycle component represented by a second-order autoregressive process
ith possibly complex roots, 𝜂𝜇 , 𝜂𝑐 , and 𝜂𝑠 are nonspatial independent

innovations with 𝜂𝜇 ∼ 𝑁(0, 𝜎2𝜂𝜇 ), 𝜂𝑐 ∼ 𝑁(0, 𝜎2𝜂𝑐 ), and 𝜂𝑠 ∼ 𝑁(0, 𝜎2𝜂𝑠 ). The
esulting Bayesian hierarchical structure allows us to perform inference
rocedure within the INLA framework, which provides accurate and
fficient approximations on Bayesian hierarchical models that can be
epresented as latent Gaussian models. For reasons of space, we do not
etail the INLA method here, but we show the fundamental aspects of
he method in Appendix A.4.

The use of an RW2 structure for the modeling of COVID cases,
eplacing traditional local level processes, can be justified in several
spects. The first one is the nature of extremely fast case growth in
n epidemic process, which generates a dependency structure that
s best approximated by an integrated second order process (I(2)).
n the stages of accelerated growth of cases, we have the presence
f a trend component with a non-stationary growth rate, inducing a
rocess that needs at least two differences to induce stationarity. The
W2 process is a parsimonious way of capturing processes with this
ependency structure. A second characteristic of this process is that in
hese situations it also imposes a smoothness structure in the process
rend, since this process can be related to formulations of smoothing
plines models, as discussed for example in Green and Silverman (1994)
nd Lindgren and Rue (2008). A similar discussion in econometrics is
n the relationship between the so-called Hodrick–Prescott filter and
ts formulation in state space, which corresponds to a spline model
ith an estimated parameter of ratio between the variances of the
bservation and state equations. Discussions between these properties
nd problems using the HP filter can be found at Harvey and Trimbur
3

2008) and Hamilton (2018).
.3. Spatio-temporal analysis

The analyzes carried out so far used only local information to
arry out the inference procedures on the trend and the other com-
onents. A possible extension is the use of information on cases or
eaths that occurred in some definition of neighborhood in the region.
his information is important since the number of occurrences in the
eighborhood can be used as prior information for the estimation in
he Bayesian inference procedure, which is particularly important in
he estimation of a high speed epidemic process and whose specific
haracteristics of transmission, latency and mortality are unknown.

In order to perform a spatio-temporal analysis of the patterns of
ccurrence of deaths related to COVID-19, we formulated a generaliza-
ion of the decomposition of trend, seasonality and cycle components
ncorporating a time-varying spatial component, using a version of

model of random spatial effects with a Conditional Autoregressive
CAR) (Besag, 1974; Besag et al., 1991) structure with time depen-
ence. This model allows to incorporate the existing information in the
umber of cases of the neighbor as prior information for the number
f cases in the region of interest.

In relation to the model proposed in Eq. (1), the spatio-temporal
ersion adds two modifications. The first is the use of an offset 𝐸𝑖 to
ontrol the Exposure, which in this case is the number of inhabitants
f region 𝑖. This component allows to use common components of
rend, seasonality and cycle for regions with different population sizes.
he second modification is the 𝜉(𝑖,𝑡) spatial component, which adds
n additional random effect for each region 𝑖, allowing to incorporate
patial variability in the occurrence rate. The CAR structure used takes
s prior for the spatial effect in the region 𝑖 a Normal distribution with
ean given by the average of the values of the spatial effects for regions
that are neighborhood to region 𝑖, and variance controlled by a 𝜏

recision parameter multiplied by number of neighbors. We assume
hat this pattern varies over time, reflecting the dynamics in the spatial
istribution of the number of occurrences of COVID-19. The dynamic
ormulation is built through an autoregressive structure in time for this
omponent, an additional parameter 𝛷 controlling the time dependence
or this process. The model structure can be represented as:

𝑌(𝑖,𝑡) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑥𝑝(𝜆(𝑖,𝑡)𝐸)),

𝜆(𝑖,𝑡) = 𝜇𝑡 + 𝑠𝑡 + 𝑐𝑡 + 𝜉(𝑖,𝑡)
2𝜇𝑡 = 𝜂𝜇
𝑠𝑡 = 𝑠𝑡−1 + 𝑠𝑡−2 +⋯ + 𝑠𝑡−𝑚 + 𝜂𝑠
𝑐𝑡 = 𝜃1𝑐𝑡−1 + 𝜃2𝑐𝑡−2 + 𝜂𝑐

𝜉(𝑖,𝑡) ∣ 𝜉(𝑗,𝑡),𝑖≠𝑗,𝜏 ∼ 

(

1
𝑛𝑖

∑

𝑖∼𝑗
𝜉(𝑗,𝑡),

1
𝜏𝑛𝑖

)

𝜉(𝑗,𝑡) = 𝛷𝜉(𝑗,𝑡−1) (2)

To estimate the above spatio-temporal model, we used COVID-
19 data at the state level as a spatial unit definition. Although it is
possible to work with data at the municipal level, we note that there are
important problems with the detailing of cases at this level. The data
are only reported in detail for the largest municipalities in each state,
with data for small municipalities being aggregated in terms of regions
or else as a residue in the total sum of cases within each state. Thus,
the state aggregation offers greater reliability in the analysis of spatial
data patterns. We used the neighborhood definition as a neighborhood
structure based on queen-type contiguity using the territorial division
of Brazilian states. As in the first model, the spatio-temporal model is
also estimated using Integrated Nested Laplace Approximations, where
the prior structure for the time series components is the same used to
estimate univariate models, and we also adopted a prior log-gamma
with values (1.5e−5) for the precision of this component. The prior for
the coefficient 𝛷 is a penalized complexity prior (Simpson et al., 2017)

for the correlation parameter, with values (3, 0.01).
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Fig. 1. Simulated ACF and PACF functions of new daily deaths under the reporting contamination mechanism. Mean values from 10,000 replications of the SEIR model with

easurement error.
Fig. 2. Trend extraction using Moving Average and Hamilton Filters - COVID-19 related
deaths for São Paulo State — 02/25/2020 to 12/06/2020.

2.4. Monte Carlo Study for SEIR model

The seasonality and cycle components are introduced in order to
control the effects related to the case accounting mechanism, which,
as discussed in the introduction, introduces a structure of periodicity
in the data, generating a seasonal pattern. It is also important to note
that the dependency pattern generated by the epidemic process and
this form of measurement error generates a complex contamination
structure in the series of new cases or deaths, which reduces the
effectiveness of simple methods of eliminating seasonality or estimating
trends, in particular the use of simple methods such as a 7-day moving
average in cases, which is the form used to summarize the trend of
4

COVID-19 cases in Brazil, provided by the Brazilian mainstream media
outlets.

To show the complexity of this contamination pattern and the limi-
tation of simple trend extraction methods, we will resort to simulations
of an epidemic process with a contamination structure similar to that
existing for COVID-19 data, as well as some applications of simple
methods of trend extraction. We performed a Monte Carlo experi-
ment with 10,000 replications, simulating a deterministic Susceptible–
Exposed–Infectious–Recovered (SEIR) epidemic process, with a stochas-
tic structure for the number of new deaths resulting from this model.
The general details of this model are presented in Appendix A.3.

The key idea is to obtain the solution of a SEIR process, which
generates trajectories of the number of Susceptible, Exposed, Infectious,
Recovered and Deaths over time. In our simulation, we replicated a
mechanism for reporting new death cases similar to that used by health
departments in Brazil. In particular, we define that each observation
corresponds to a daily data in a seven-day week, and if deaths occur
on Saturday or Sunday, there is a proportion of deaths that will not
be counted on the same day, but only on the following Monday and
Tuesday. Also, we consider that all deaths are effectively accounted
for, and set that the proportion of deaths with delayed disclosure is
given by a uniform distribution, with parameters (.5, .8). Indeed, this
structure is a very simplified and unrealistic version of the reality due
to underreporting of deaths, but it is useful to exemplify the effects of
measurement error on the dynamic structure of the time series of new
deaths.

As a summary of the contamination effect, we show in Fig. 1
the average values of the autocorrelation and partial autocorrelation
functions for the time series of new daily deaths. We can see that
the contamination mechanism induces a complex structure of temporal
dependence in the series of new deaths in the SEIR process. Although
there is a seasonal pattern induced by contamination, the dependency
structure is more complex than a pure seasonal pattern, even in this
simple contamination experiment.

The structure used in our model uses a seasonal component to
control for the periodic pattern induced in the series, but also a second-
order autoregressive component, to capture the remaining dynamic ef-
fects of the measurement error structure in the series. The second-order
component is a parsimonious way of capturing dependency patterns
and cycles with reversion to the mean, and in our analyzes it has been
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Fig. 3. Posterior mean and 95% credibility intervals of Trend, Seasonal and Cycle decomposition of deaths in Brazil — 02/25/2020 to 12/06/2020.
shown to be effective in allowing the recovery of the trend component
in the presence of seasonality and other dynamics in the series.

Note that in the presence of these contamination mechanisms,
simple seasonal filtering methods, such as the use of 7-day moving
averages, will not be sufficient to extract the trend component in the
series. To illustrate this problem, we will use an example with real data,
in particular, the same dataset provided by BRASIL.IO, which will be
also used in this work for the temporal and spatio-temporal analyzes.

We used as an example the extraction of a trend measure for COVID-
related deaths for the state of São Paulo. In this example, we compare
the trend obtained by a simple 7-day moving average, a moving av-
erage with the number of days determined using the modified Akaike
criterion with correction for small samples (AICc) (see Svetunkov and
Petropoulos, 2018 for details in this procedure), and also the trend ex-
traction using the trend filter proposed by Hamilton (2018), assuming
a periodicity of 7 days. We also used a version of the Hamilton filter
based on a generalized linear model assuming that the data follow a
Poisson process.

Fig. 2 shows the time series of COVID-related deaths and the trends
extracted by aforementioned methods. First, an important result is that
5

the optimal criterion for the number of lags in the moving averages
procedure selected by the AICc criterion points out to 8 lags, confirming
that the dependence induced by the death accounting process generates
a more complex dependency structure than a seasonality of 7 days.
Additionally, another interesting result is that the Hamilton filter, a
trend extraction tool based on regressions against past lags and with
optimally properties in general contexts, cannot effectively separate
the trend component from the seasonal pattern, probably due to the
stochastic and non-stationary component of the seasonality component
induced by the measurement error process.

These results show that simple trend extraction methods, such as the
use of simple moving averages, may not be adequate in the presence of
measurement error structures such as the COVID-19 data present here.
In the following sections we show the results obtained with the compo-
nent extraction methods proposed in this work, using a formulation of
time series applied to univariate data (Section 3.1), and also a spatio-
temporal version for data at the state level in Brazil (Section 3.3). In this
work we focus on the analysis of data on deaths related to COVID-19 in
Brazil, since these data are less affected by the underreporting problem.
Data from confirmed cases are difficult to analyze and especially to
compare among regions, since testing procedures and recommendations
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Fig. 4. Number of reported deaths and the estimated growth rate of the Trend in Brazil — 02/25/2020 to 12/06/2020.
are quite heterogeneous, reducing the reliability of the data and the
resulting analyzes.

3. Results

In this section we report and discuss, first, the results based on
the univariate analysis, and the comparison between the estimated
trend component and moving averages approach. After, we present
the results based on the spatio-temporal model. Our objective is to
show what are the advantages and limitations of each model used
in the work, and how it can be useful to understand the dynamics
of evolution of deaths by COVID-19. The pure time series model has
the advantage of only depending on the data from the region itself,
but it does not capture the spatial dependence of the process. The
two versions of the spatio-temporal models, with global and regional
components, illustrate the gains and limitations of the use of global
and regional components in spatio-temporal modeling.

3.1. Univariate time series models

We performed inference procedures based on the model described
in Section 2, thus, in this case, the estimated parameters for each
location are the precision of the trend component (1∕𝜂𝜇), seasonal com-
ponent (1∕𝜂𝑠), and cycle component (1∕𝜂𝑐), and the parameters of the
second-order autoregressive process of the cycle, parameterized as first
and second order partial correlation coefficients (PACF1 and PACF2).
The precision parameters represent the variability associated with the
trend, seasonal and cycle components, where high values indicate
low variability, and the parameters of the second-order autoregressive
process of the cycle are related to the autoregressive parameters in the
AR(2) representation of the cycle.

We use a structure of log-gamma priors for the precision compo-
nents, with values (1, 5e−05) for the trend and seasonal components.
For the AR(2) component we use a penalized complexity prior for the
precision, with values (3, 0.01), and for the first and second order
autocorrelations parameters penalized complexity priors with values
(0.5, 0.5) and (0.5, 0.4). The motivations for the use of penalized
complexity priors is discussed in Simpson et al. (2017). These priors
are invariant to reparameterizations and have excellent robustness
properties, and in the assumed values they are not informative, which
is adequate for a situation of a new epidemic with unknown previous
behavior. The tables with the estimated parameters for Brasil, São Paulo
6

and Amazonas states are presented in the Appendix of the article
(respectively, Tables A.1–A.3).

The dissemination of the COVID-19 among Brazilian states vary
due to the heterogeneity in socioeconomic and cultural context among
regions. In order to assess the strong regional differences in the spread
of infections, we performed inference procedures for the states of São
Paulo, localized in the Southeast region of Brazil, and for the state of
Amazonas, in the North region. The Southeast region includes the three
largest metropolitan areas in Brazil, São Paulo, Rio de Janeiro, and Belo
Horizonte. Also, it is the main industrialized area and concentrates the
biggest population of the five Brazilian regions, with a high population
density. It is not surprising that the Southeast region presents the
highest number of cases and deaths by COVID-19 in Brazil, and were
the first region to diagnoses COVID-19 cases and to step up social dis-
tancing policies to slow down the spread of coronavirus. On the other
hand, the North region is the largest region of Brazil, and concentrates
a large number of indigenous people and their descendants, who are
part of the COVID-19 risk group, which makes the region particularly
sensitive to coronavirus disease (Ferrante and Fearnside, 2020).

A primary motivation for the present study was to estimate the
long-term movements for COVID-19 data in Brazil. Thus, to better
understanding and discuss the results, we plotted the estimated trend,
seasonal and cycle components for death cases registered in Brazil
(posterior mean and 95% Bayesian credibility interval; see Fig. 3).
The first case of COVID-19 in Brazil was diagnosed on February 26th,
in the state of São Paulo. On March 17th, the first death in Brazil
was registered in the state of Rio de Janeiro, and on March 20th the
community transmission of the disease was announced by the Brazilian
government. Thus, the most important result is related to the trend
component, where it can be seen that since registering the first case of
death by COVID-19 in Brazil, it took a steep movement upwards until
the first week of April, where the death trend slowly reveals a turning
point, i.e., the pace of the trend has slowed down, reaching the peak
in the last week of April.

Despite the evidence of the effectiveness of the measures imple-
mented by many countries to slow down the transmission of the COVID-
19 (Kraemer et al., 2020; Gatto et al., 2020; Saez et al., 2020), the
persistence in a peak plateau stage varies across countries, depending
on how quickly the policies were implemented and another factors such
as population density, and health systems structure (Hsiang et al., 2020;
Deb et al., 2020). In particular, the persistence in the high plateau stage
can be explained by the containment measures introduced late, during
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Fig. 5. Posterior mean and 95% credibility intervals of Trend, Seasonal and Cycle decomposition of deaths in the state of São Paulo — 02/25/2020 to 12/06/2020.
the evolution of the new cases and deaths, which requires a long time
to revert the death trend into a decreasing one.

In the case of Brazil, the trend component remained relatively stable
in a high peak plateau from May to August, with a slight decrease just
around mid-August. In particular, the sustained high plateau observed
in the estimated trend component of deaths by COVID-19 in Brazil may
be related to the absence of political actions at federal level and the
early relaxation of the isolation measures (Canabarro et al., 2020). In
addition, Fig. 4 shows the observed number of death cases by COVID-19
and the growth rate for Brazil, where it is possible to see that the days
with the highest rates occurred until mid-May.

A more accelerated downward trend is observed from the end of
August, with a significant reduction in the trend until the beginning of
November. From this point on, we observed a further acceleration of
the trend, going to the end of the analyzed sample. This acceleration
was interpreted as a reflection of the accelerated reduction in social
distance measures taken in various locations, and may also be related
to agglomerations caused by the electoral campaign for the election
of mayors and councilors in this period. This acceleration is being
called a ‘‘second wave’’, although there was in fact no control over
the pandemic in the period before this acceleration in the number of
7

deaths. The estimated parameters for Brazil are shown in Table A.1 in
Appendix, where it is possible to note a high precision associated with

the trend, seasonality and cycle components.
Fig. 5 presents the posterior mean of the estimated trend, seasonal-

ity and cycle components, and the associated 95% Bayesian credibility
interval for deaths by COVID-19 in the state of São Paulo, and Ta-
ble A.2, in the Appendix, reports the estimated parameters. The first
case of COVID-19 in the state of São Paulo was on February 26th and
the first death was registered on March 18th. The state government
imposed the first isolation measures between March 17th and March
22th (Decree 64.881), which established the mandatory closure of non-
emergency services, as well as educational institutions. The estimated
trend of death (see Fig. 5) presents a rapidly increase from the begin-
ning of the sample until the end of March, where a turning point is
slowly revealed. This change in the rising trend can be attributed to the
first isolation measures adopted by the state of São Paulo authorities, as
previously discussed in the literature (e.g., Cruz, 2020). However, the
abrupt change in the evolution of the death trend observed in the mid-
April suggests that the level of adherence of the citizens to isolation
measures dropped down over time, or the measures taken by state
government were not enough to cope with the outbreak. After reaching
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Fig. 6. Number of reported deaths and the estimated growth rate of the Trend in the state of São Paulo — 02/25/2020 to 12/06/2020.
the peak on mid-May, the death trend remained in a long persistence
peak plateau stage. Also, Fig. 6 shows that the highest growth rate of
deaths occurred around mid-April, whereas the lowest growth rate was
registered around mid-August, suggesting a decreasing trend from mid-
August. Similar to the pattern observed in the data from Brazil, in the
state of São Paulo we observed a significant drop in the trend from June
onwards, and a strong acceleration in the cases from November.

The estimated trend, seasonality and cycle components, and the
associated 95% Bayesian credibility interval for the state of Amazonas
are presented in Fig. 7, and Table A.3, in the Appendix, reports the
estimated parameters. In the state of Amazonas, the first death by
COVID-19 was recorded on March 24th, on same day that isolation
measures were imposed by local authorities. Despite the North region
being the last Brazilian region to register the first case of COVID-
19, the state of Amazonas was one of the first to collapse the health
system. Indeed, through Fig. 7 it is possible to see that the death
trend in the state of Amazonas reached the peak faster than the state
of São Paulo, where the social measures were able at least in part
to flatten the epidemic curve and postpone the peak of death cases.
This result may be explained by some reasons. First, the state capital,
Manaus, concentrates all the intensive care units able to deal with the
coronavirus disease in the state. With few roads and transport mainly
by rivers, many patients were not able to access proper health care,
especially indigenous people, who are particularly sensitive to COVID-
19 and usually live in isolated areas, far from doctors and access to
medicines. In addition, the state of Amazonas presents a high social
vulnerability index, and one of the worst rates of hospital beds per
population over country (Guerra-Shinohara et al., 2020). Since the
beginning of June, the state capital, and most populous city in the state,
established some relaxation strategies in the containment measures,
including reopening schools, which could have led to the observed
increasing pattern in the estimated trend component in the end of
July (Ferrante et al., 2020). A second local peak is observed in August,
followed by a reduction in the trend until mid-October, and thereafter a
further acceleration that persists until the end of October, and after that
period a further reduction in the trend, showing a behavior different
from the pattern observed for Brazil.

The state of Amazonas is particularly interesting as it shows the
difficulty in controlling the COVID epidemic. According to the estimates
presented in Buss et al. (2020), about 76% of the population of Manaus,
the capital of Amazonas, had already been infected until October 2020,
and even so the epidemic had not been fully controlled, showing that
8

the proportion number of infected people required the existence of a
herd immunity is quite high. The general trend of declines observed
since November may indicate the start of herd immunity, since the
trend contrasts with the acceleration pattern in the rest of Brazil. In
addition, in Fig. 8, it is possible to observe the great heterogeneity in
the rates of infection growth in this state, showing the complexity in
the transmission patterns of COVID-19.

In order to show the model’s ability to fit the death cases, we plotted
the observed number of deaths by COVID-19 and the predicted value
of death count in each day given by the sum of the estimated trend,
seasonal, and cycle components, along with the 95% credibility interval
of this sum (see Fig. 9), for Brazil and the states of São Paulo and
Amazonas. The results visually suggest that the model has a good fit.

3.2. Comparison between moving averages approach and the proposed
model

We compared the performance of our proposed model in monitoring
the long-term movements of mortality of COVID-19 with the so-called
moving average filter. The importance of the results interpretation is
evident, and this is why we need to properly highlight an important
point about the estimated values for the trend component. It is worth
noting that the moving average filter is a way to extract a trend from
time series count data. On the other hand, in our model the trend
component can be interpreted as the mean of the log-transformed count
data or the mean of the log intensity. Due to the non-linearity of
our model, the anti-log (exponential) transformation is not suitable
to obtain the original data. Therefore, in order to provide compa-
rable results, we plotted (see Fig. 10) the moving average of the
log-transformed data (green line) along with the estimated trend com-
ponent (red line; posterior mean and 95% Bayesian credibility interval)
and the observed log-transformed count data (blue line).

As discussed above, one of the most advantages of our proposed
model is the ability to extract a smoother trend component with
reduced residual autocorrelations due to the inclusion of the seasonal
and cycle components. Based on the comparison between the moving
average filter and the estimated trend component from our proposed
model, it is possible to see why is important to add the seasonality
and cycle components in estimating a trend that really reflects the
permanent patterns in COVID-related deaths. The cycle component,
which corresponds to a second-order autoregressive structure, is a
parsimonious way of incorporating the transient effects induced by the
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Fig. 7. osterior mean and 95% credibility intervals of Trend, Seasonal and Cycle decomposition of deaths in the state of Amazonas — 02/25/2020 to 12/06/2020.
contamination mechanism generated by the case accounting structure.
Also, it is useful to capture local, non-persistent patterns in the data,
isolating long-term effects. These two components allow a more robust
estimation of the trend component, avoiding the greatest fluctuation
observed in the trend estimation given by the moving average.

Additionally, it is important to note that the cycle and seasonal
components play important roles by adding additional robustness to
days with large atypical patterns in the reported data, which normally
correspond to the date when adjustments are made for unreported
deaths in past periods. For example, looking at Fig. 8 containing deaths
for the state of Amazonas, we can see two dates with aberrant numbers
of deaths (09/02/2020 with 158 deaths and 01/10/2020 with 117
deaths). These dates correspond to adjustments where all unreported
deaths in the previous months were added, and thus are observations
from much earlier periods that do not correspond to current death
patterns. The model captures these atypical days through the cycle
component, without changing the trend estimation, as opposed to what
happens with the moving average estimator, which is quite sensitive
to this form of contamination, as seen in subfigure (c) of Fig. 10. This
highlights the robustness properties of the model proposed in this work
to recover the trend in death patterns related to COVID-19.
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3.3. Spatio-temporal analysis

For the spatio-temporal analysis we used the same data source and
the same sample period as Section 3.1, using a state level aggregation
of the death data related to COVID-19. The results of the estimation of
this model are shown in Table A.4 in the Appendix, and the estimated
trend, seasonality and cycle components are shown in Fig. 11. Note that
the components are now estimated with an adjustment for the size of
the population in each region, which corresponds to exposure in the
Poisson process. To recover the specific effect of the component for
each state, it is necessary to multiply by the size of the population.
We can observe that the spatio-temporal model allows to recover a
smoother trend component compared to those obtained in univariate
models, indicating that the spatial component captures part of the
irregularity observed in the data on death by COVID-19. The trend
estimated by this model indicate a general peak about the end of July,
and also indicates the existence of a new acceleration (the ‘‘second
wave’’) from the second week of November. The seasonality and cycle
components are consistent with the patterns observed in the aggregated
data for the whole country.
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Fig. 8. Number of reported deaths and the estimated growth rate of the Trend in the state of Amazonas — 02/25/2020 to 12/06/2020.
Table 1
Estimated parameters of deaths reported in Brazil - Spatio-temporal model with region specific trend, seasonal and cycle components.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for trend southeast 1.68e4 1257.446 1.46e4 1.67e4 1.95e4 1.65e4
Precision for trend south 4.94e3 336.875 4.29e3 4.94e3 5.61e3 4.95e3
Precision for trend north 1.65e4 1186.588 1.41e4 1.65e4 1.88e4 1.66e4
Precision for trend northeast 4.80e4 4829.782 4.10e4 4.72e4 5.95e4 4.46e4
Precision for trend center-west 3.05e4 3986.805 2.45e4 2.98e4 3.99e4 2.80e4
Precision for seas southeast 2.43e2 18.723 2.09e2 2.42e2 2.82e2 2.39e2
Precision for seas south 2.28e3 163.394 1.96e3 2.28e3 2.60e3 2.29e3
Precision for seas north 1.11e4 1284.404 8.37e3 1.12e4 1.32e4 1.18e4
Precision for seas northeast 1.27e5 9207.029 1.12e5 1.26e5 1.48e5 1.24e5
Precision for seas center-west 5.62e3 421.451 4.92e3 5.58e3 6.56e3 5.45e3
Precision for cycle southeast 3.21e1 2.927 2.65e1 3.20e1 3.80e1 3.20e1
PACF1 for cycle southeast 1.47e−1 0.037 7.30e−2 1.47e−1 2.20e−1 1.47e−1
PACF2 for cycle southeast −1.24e−1 0.034 −1.92e−1 −1.23e−1 −6.00e−2 −1.20e−1
Precision for cycle south 3.45e1 2.481 3.02e1 3.43e1 3.99e1 3.36e1
PACF1 for cycle south 1.16e−1 0.034 5.10e−2 1.16e−1 1.84e−1 1.13e−1
PACF2 for cycle south 4.50e−2 0.036 −2.00e−2 4.30e−2 1.19e−1 3.60e−2
Precision for cycle north 1.54e1 1.449 1.31e1 1.52e1 1.88e1 1.47e1
PACF1 for cycle north 4.83e−1 0.034 4.23e−1 4.80e−1 5.55e−1 4.69e−1
PACF2 for cycle north −3.30e−1 0.030 −3.91e−1 −3.29e−1 −2.72e−1 −3.25e−1
Precision for cycle northeast 4.07e2 28.659 3.57e2 4.05e2 4.69e2 3.99e2
PACF1 for cycle northeast 7.49e−1 0.027 7.06e−1 7.45e−1 8.07e−1 7.31e−1
PACF2 for cycle northeast −2.70e−2 0.098 −2.32e−1 −2.00e−2 1.51e−1 5.00e−3
Precision for cycle center-west 2.37e1 2.481 1.99e1 2.33e1 2.95e1 2.22e1
PACF1 for cycle center-west 6.10e−2 0.042 −2.90e−2 6.40e−2 1.34e−1 7.60e−2
PACF2 for cycle center-west −2.41e−1 0.035 −3.04e−1 −2.43e−1 −1.69e−1 −2.50e−1
Precision for CAR 4.81e−1 0.013 4.57e−1 4.81e−1 5.08e−1 4.79e−1
Group 𝛷 8.00e−1 0.006 7.88e−1 8.00e−1 8.12e−1 8.00e−1
Deviance Information Criterion (DIC) 40003.80
Watanabe–Akaike information criterion (WAIC) 40265.38
Although the spatio-temporal model presented above allows a useful
recovery of the general patterns in the dynamics of deaths related to
COVID-19 in Brazil, the assumption of common components for all
Brazilian states is a very restricted assumption. The Brazilian regions
have different dates of onset of contagion, and also very different
dynamics over time. To avoid these restrictions, and still maintain
a relatively parsimonious model, we performed a new estimation of
the spatial model allowing individual components of trend, seasonality
and cycle for each region of the country, that is, components for the
North, Northeast, Midwest regions, Southeast and South, using the
regional division of the country used by Instituto Brasileiro de Geografia
e Estatística (IBGE).

The parameters estimated in this version with individual compo-
nents for the Brazilian regions are shown in Table 1. Figs. 12, 14 and
10
15 show the components of trend, seasonality and estimated cycles for
each region of Brazil in this model. In Fig. A.1 in the Appendix we
also show the posterior mean of the spatial effects for two different
dates in the sample, illustrating the evolution of the spatial dynamics
in deaths related to COVID. Again, the spatio-temporal model makes
it possible to recover trend components with greater smoothness than
univariate models, indicating the importance of the process of spatial
dependence in the dynamics of COVID-19. The regional components
of trend also seem to confirm the patterns observed for the number of
deaths in Brazil. There seems to be a reduction in the trend of deaths
for the Southeast, South and Northeast regions from the end of July,
and also a new acceleration from November.

As the latent components in this formulation are formulated in
terms of exposure, that is, the number of inhabitants in each region,
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Fig. 9. Predicted values and observed deaths - Brazil, São Paulo and Amazonas — 02/25/2020 to 12/06/2020.
it is not so easy to directly interpret the estimated trend value. For
a more direct interpretation, we carried out a transformation of the
trend towards the number of daily deaths per million inhabitants, that
is, assuming an exposure of 1,000,000 for each trend. The trend in daily
deaths per million inhabitants per region is shown in Fig. 13. We can
observe the rapid peak that was reached in the North, which reflects
the high number of deaths observed in Amazonas in May, and then
the rapid reduction and the new acceleration observed at the end of
the analyzed sample. Another notable pattern is the high rate of deaths
in the Center-West region, which reflects the number and acceleration
of cases and deaths in the Federal District, a region with a higher
population density. For the Southeast, South and Northeast regions, the
pattern is more similar, indicating a acceleration in the death rate at the
end of the analyzed sample.

The seasonal components (Fig. 14) are quite different across regions,
which is probably reflecting different patterns of occurrence and also
methods of accounting for cases and deaths. The cycle (Fig. 15) compo-
nents show a little present cycle at the beginning of the sample, which
11
is expected due to a limited number of cases, but a greater relative
importance at the end of the sample, after the acceleration in the cases.
We can also analyze these components by the estimated autoregressive
coefficients. In Table 1 we have the first and second order partial
correlation coefficients for each region, and we can observe a variety
of patterns in these estimated coefficients. The second-order autore-
gressive component seems to have a clear interpretation of the cyclical
component for the Southeast, North and Northeast regions, while in
terms of magnitude it seems less important for the South and Midwest
regions.

We can compare the models with common components and regional
components using information criteria. In Tables A.4 and 1 we report
two common information criteria for Bayesian estimates. Deviance In-
formation Criterion (DIC) and Widely Applicable Information Criterion
(WAIC), which is a generalized version of AIC. By the two criteria
the model with regional components is selected as the most suitable
model. This result indicates the existence of a relevant heterogeneity
in COVID-19 standards in Brazil.
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Fig. 10. Predicted Values - Estimated trend and moving average filter for the log-transformed count data — 02/25/2020 to 12/06/2020.
We compared some model fit measures for all models analyzed in
this work, which allows to analyze especially the importance of the
spatial component in the parameterization of the models, as well as the
effects in the adoption of specific components of trend, seasonality and
cycle for each region. Table 2 shows the mean error (ME), root mean
squared error (RMSE) and the mean absolute error (MAE) of univariate
models and space–time models, using the posterior median as the point
measure of model fit. We also built the specific adjustment measures
for the states of São Paulo and Amazonas, obtained by the models with
spatial components, for comparison with the adjustment of the time
series models.

An important first result is that the fit of spatio-temporal models
is clearly superior to that of univariate models of time series in all
metrics. Note that this gain reflects the importance of inter-state trans-
mission patterns in the COVID-19 dynamics. Regarding the inclusion
of specific components for regions, we can see that in general these
specific components lead to a general reduction in the mean error term,
but are slightly worse in terms of RMSE and MAE for some regions,
12
which indicates a possible overparameterization of the model and the
presence of possible common trends.

4. Conclusions

The methods proposed in this work are based on hierarchical for-
mulations using Bayesian inference methods for time series and spatio-
temporal processes. In particular, we proposed methods to estimate the
trend in the deaths by COVID-19, through trend-cycle decomposition
for counting processes with latent components, which were applied for
the total number of deaths in Brazil and for the states of São Paulo and
Amazonas. In addition, the estimated trend component was compared
to the empirical analysis based on moving averages. In order to achieve
the main goal, we used the BRASIL.IO daily data series on deaths by
COVID-19 in Brazil and in the states of São Paulo and Amazonas, from
02/25/2020 to 12/06/2020.

The use of Bayesian inference methods is especially useful in situa-
tions such as the spreading a new epidemic with transmission, latency
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Fig. 11. Posterior mean and 95% credibility interval of Trend, Seasonal and Cycle decomposition - Spatio-Temporal model with common trends, seasonal and cycle components
— 02/25/2020 to 12/06/2020. Note: Components estimated with the adjustment for the size of the population in each region (exposure).
and mortality characteristics that are not well known. The hierarchical
formulation reflects the process of information accumulation in time
and space, where the posterior distribution in a period 𝑡 serves as a prior
for the next period, and also the use of information from neighbors as
a prior structure to make inference about the parameters in a certain
region. In a situation where there is little prior information on essential
aspects of the problem, the incorporation of learning in time and
space through a Bayesian mechanism allows for the efficient use of
the new information available, which is essential for the emergency
formulation of health and prevention policies, in a general environment
of information of dubious quality or propagation of false information or
without a scientific basis. Bayesian learning is essential in this context
as a basis for evidence and data-based policies.

The results for Brazil showed that our proposed models were able
to capture the long-term movements in death cases, showing an ac-
celerated growth pattern until early April, where the pace of the
trend has slowed down, reaching the peak in July, suggesting that
the isolation measures taken by authorities might have been partly
effective to change the growth of the death trend and postpone the
peak. However, the observed sustainable high peak between May and
13
August provided evidence that the social distancing measures might
have not been enough to slow down the spread of the COVID-19, which
can be related to the absence of political actions at federal level. The
model also captured a negative trend in the number of new deaths
until the beginning of November 2020, and a possible ‘‘second wave’’
after this period, with a new accelerated growth in the trend, which
may be related to the electoral period and an excessive relaxation
of social distance measures by local authorities. The results of the
estimated trend component for the states of São Paulo are similar to
those observed for Brazil. For the state of Amazonas, the estimated
trend reached the peak faster than the previous analyzed states, which
may be due to the lack of health care infrastructure and the difficult
of some patients to access proper heath care, concentrated in the state
capital, Manaus.

Additionally, the results obtained indicate that the trend component
estimated by the univariate and spatio-temporal models is a more
robust indication of the general patterns in the occurrence of deaths
related to COVID-19, overcoming the existing limitations in simple
smoothing measures such as the use of moving averages, which are not
robust to the measurement errors introduced by the case accounting
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Fig. 12. Posterior mean and 95% credibility interval of Trend - Spatio-temporal model with region specific trends, seasonal and cycle components — 02/25/2020 to 12/06/2020.
Note: Components estimated with the adjustment for the size of the population in each region (exposure).
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Fig. 13. Region-specific Trends in Deaths by day by Million inhabitants — 02/25/2020 to 12/06/2020.
𝑑

p
i
T

Table 2
Model fit statistics.

ME RMSE MAE

Univariate Models
Brazil −0.5236 5.7872 4.0368
SP −0.6094 1.9461 1.4112
AM −0.2586 1.7920 1.2175

Spatio-temporal Model Common Components
Brazil −1.18e−6 2.3204 1.4613
Southeast −0.0004 3.5379 2.3078
South 0.0124 1.5199 1.0590
Northeast 0.0008 2.0400 1.3224
North 0.0026 1.8968 1.2172
Center-West −0.0152 2.4802 1.6213
SP 0.0040 2.2366 1.4146
AM 0.0044 2.2926 1.4384

Spatio-temporal Region-Specific Components
Brazil −9.79e−7 2.4051 1.5297
Southeast 1.48e−7 3.5985 2.4151
South −2.03e−6 1.5589 1.1067
Northeast −1.41e−6 2.2406 1.4285
North −6.09e−7 2.0050 1.2895
Center-West −1.00e−6 2.3820 1.5754
SP 0.0036 2.3341 1.4881
AM 0.0047 2.3669 1.5019

mechanisms. The models also obtained a very precise adjustment for
the number of occurrences, especially in spatio-temporal models with
the incorporation of spatial propagation patterns. These models also
provided a smoother component of trend, when compared to univariate
models, which can be explained by the greater information available in
the estimation process, using all the information available to Brazilian
states, which helps to mitigate the measurement error problem.

We believe that our work contributes to the enormous effort of
studying and analyzing the impacts of COVID-19 in Brazil, complement-
ing several other initiatives of epidemiological, statistical and compu-
tational modeling, such as projects Brasil.IO (https://brasil.io/dataset/
covid19/caso_full/), Covid 19 Analytics (https://covid19analytics.com.
br/), COVID-19 Brasil (https://ciis.fmrp.usp.br/covid19/),
MonitoraCovid-19 (https://bigdata-covid19.icict.fiocruz.br/) and sev-
eral other initiatives of great value for Brazilian society.
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Appendix

A.1. Estimated posterior distribution of parameters

See Tables A.1–A.4.

A.2. Spatial random effects

As an illustration of the dynamics of spatial random effects, we show
in Fig. A.1 the effects estimated by the model with the regions specific
components for the days 04/26/2020 and 08/14/2020. The variation
observed in the two dates shows the importance of using a dynamic
structure for the spatial effects in the modeling of epidemic processes.

A.3. SEIR model with measurement error

We use a (Susceptible–Exposed-Infective–Resistant) SEIR model to
generate realizations of an epidemic model calibrated to reproduce
some essential aspects of the COVID-19 epidemic. We use the following
structure, based on Liu et al. (2020), to generate a solution for the SEIR
model:

𝑑𝑆(𝑡)∕𝑑𝑡 = −𝛽𝐼(𝑡)𝑆(𝑡)∕𝑁

𝐸(𝑡)∕𝑑𝑡 = 𝛽𝑆(𝑡)𝐼(𝑡)∕𝑁 − 𝛿(𝑡)𝐸(𝑡 − 7)

𝑑𝐼(𝑡)∕𝑑𝑡 = 𝛿(𝑡)𝐸(𝑡 − 7) − 𝛾(𝑡)𝐼(𝑡 − 10) − 𝜂(𝑡)𝐼(𝑡 − 10)

𝑑𝑅(𝑡)∕𝑑𝑡 = 𝛾(𝑡)𝐼(𝑡 − 10)

𝑑𝐹 (𝑡)∕𝑑𝑡 = 𝜂(𝑡)𝐼(𝑡 − 10) (3)

𝑆(𝑡) is the number of susceptible individuals in the population in
eriod 𝑡, 𝐸(𝑡) is the number of exposed individuals, 𝐼(𝑡) the number of
nfected, 𝑅(𝑡) the resistant individuals and 𝐹 (𝑡) the number of fatalities.
he total number of individuals is 𝑁 , given by the sum of the individu-
ls in all states. 𝛽 is a parameter which controls the average number of

https://brasil.io/dataset/covid19/caso_full/
https://brasil.io/dataset/covid19/caso_full/
https://brasil.io/dataset/covid19/caso_full/
https://covid19analytics.com.br/
https://covid19analytics.com.br/
https://covid19analytics.com.br/
https://ciis.fmrp.usp.br/covid19/
https://bigdata-covid19.icict.fiocruz.br/
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Fig. 14. Posterior mean and 95% credibility interval of Seasonal - Spatio-temporal model with region specific trends, seasonal and cycle components — 02/25/2020 to 12/06/2020.
Note: Components estimated with the adjustment for the size of the population in each region (exposure).
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Fig. 15. Posterior mean and 95% credibility interval of Cycle - Spatio-temporal model with region specific trends, seasonal and cycle components — 02/25/2020 to 12/06/2020.
Note: Components estimated with the adjustment for the size of the population in each region (exposure).
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Table A.1
Estimated parameters of deaths reported in Brazil.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for trend 10147.060 3996.089 4447.125 9454.153 19872.796 8201.470
Precision for seasonality 2017.824 803.563 881.916 1874.032 3987.542 1618.580
Precision for cycle 38.444 4.970 29.407 38.212 48.877 37.840
PACF1 for cycle 0.290 0.067 0.156 0.291 0.421 0.290
PACF2 for cycle −0.204 0.078 −0.351 −0.206 −0.047 −0.210
Table A.2
Estimated parameters of deaths reported in the state of São Paulo.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for trend 10959.712 4710.471 4245.146 10164.461 2.24e4 8622.798
Precision for seasonality 6.625 30.858 15.651 37.878 1.28e2 27.062
Precision for cycle 5.058 1.085 3.119 5.007 7.350 4.933
PACF1 for cycle −0.002 0.086 −0.170 −0.003 1.67e−1 −0.004
PACF2 for cycle −0.126 0.085 −0.292 −0.127 4.20e−2 −0.126
Table A.3
Estimated parameters of deaths reported in the state of Amazonas.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for trend 18777.970 2.28e4 3222.621 11039.803 8.43e4 5523.388
Precision for seasonality 590.342 5.47e2 150.322 421.364 2.04e3 259.600
Precision for cycle 4.812 6.52e−1 3.655 4.771 6.210 4.692
PACF1 for cycle −0.069 1.05e−1 −0.269 −0.071 1.41e−1 −0.076
PACF2 for cycle 0.020 8.70e−2 −0.146 0.018 1.94e−1 0.010
Table A.4
Estimated parameters of deaths reported in Brazil - spatio-temporal model with common trend, seasonal and cycle components.

Mean SD 0.025quant 0.5quant 0.975quant Mode

Precision for trend 30562.848 8148.802 16735.991 29929.161 48350.874 28689.914
Precision for seasonality 12034.725 3292.864 7366.350 11413.624 20093.088 10209.154
Precision for cycle 67.156 9.515 51.093 66.207 88.328 64.095
PACF1 for cycle 0.4308 0.052 0.334 0.439 0.537 0.440
PACF2 for cycle −0.559 0.057 −0.657 −0.563 −0.436 −0.575
Precision for CAR 0.439 0.019 0.405 0.437 0.481 0.431
Group 𝛷 0.785 0.010 0.763 0.785 0.803 0.787
Deviance Information Criterion (DIC) 40015.16
Watanabe–Akaike information criterion (WAIC) 40188.55
Fig. A.1. Posterior mean of Spatial Random Effects - Spatio-temporal model with region specific trends, seasonal and cycle components — 26/04/2020 and 26/04/2020.
xposed cases that are generated by one infected person. The parameter
is the probability of an exposed individual migrate to the infected

tate. 𝛾 is the parameter for the probability of transition of a infected
ndividual to the recovered state, and 𝜂 the probability of the infected
ndividual to migrate to fatality state. We assume the values 1.3629,
18

.0262, 0.01, 0.004 for 𝛽, 𝛾, 𝛿, 𝜂, and a total population size of 10
million of inhabitants. The model assumes a period of 7 days between
exposure and infection, and 10 days between recovery or fatality after
infection. The model is simulated for 180 periods, and we focus on the
number of fatalities generated by the model. As commented in the main
text, we generated a measurement error process assuming that fatalities

on Saturday and Monday has a proportion, drawn from a uniform
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distribution with parameters (.5, .8), of data with delayed disclosure, on
the following Monday and Tuesday. We generated 10,000 replications
of the measurement error process, and calculated the ACF and PACF
functions for the difference between the true number of fatalities and
the reported daily number of fatalities, which is the seasonal effect
induced by the measurement error process. For the simulations of the
SEIR model we use the deSolve package from the r-project.org software.
In particular, we use the dede function, which is a solver for differential
equations with delay.

A.4. Integrated nested Laplace approximations

The INLA method proposed by Rue et al. (2009) is a methodology
based on deterministic Laplace approximations to perform accurate and
efficient approximations on the class of Bayesian hierarchical models
that can be represented as Gaussian Markov random fields (GMRF).
See Rue and Held (2005) for a detailed discussion on this class of
models.

A latent GMRF model is a hierarchical model with the first
stage/level defining a conditional distribution for the observed variable
𝑦, usually assumed to be conditionally independent given the latent
factors 𝑥 and some additional (hyper)-parameter 𝜃, in the form:

(𝑦|𝑥, 𝜃) =
∏

𝑗
𝜋(𝑦𝑗 |𝑥𝑗 , 𝜃), 𝑗 ∈ 𝐽 (4)

ith 𝑦𝑗 for 𝑗 ∈ 𝐽 observed values and 𝐽 a subset of the latent
actors; and 𝜋(𝑦|𝑥, 𝜃) defining the likelihood function of observed vari-
bles. The latent (hyper)-parameters constitutes the second stage in the
ierarchical formulation:

𝑖 = Offset𝑖 +
𝜂𝑓−1
∑

𝑘=0
𝜔𝑘𝑖𝑓𝑘(𝑐𝑘𝑖) + 𝑧𝑇𝑖 𝛽 + 𝜖𝑖, 𝑖 = 0,… , 𝜂𝑥 − 1 (5)

The offset term is a prior known component to be included in the
inear prediction; for example, in the Poisson likelihoods the offset is
he exposure effect. 𝜔𝑘 are known weights for each observed data point
n the sample, and 𝑓𝑘(𝑐𝑘𝑖) represents the effect of covariates with value
𝑘𝑖 for each observation 𝑖; 𝛽 are the regression parameters of linear
ovariates 𝑧𝑖. Finally, the third and last stage of the model consists of
he prior distribution for the hyperparameters 𝜃.

The INLA approach obtains accurate approximations using sequen-
ial Laplace approximations in the mode of the posterior distributions
f the latent factors, written as:

(𝑥𝑖|𝑌 ) = ∫ 𝜋(𝑥𝑖|𝜃, 𝑌 )𝜋(𝛩, 𝑌 )𝑑𝜃 (6)

nd for the marginal posterior distribution of (hyper)parameters:

(𝜃𝑗 |𝑌 ) = ∫ 𝜋(𝜃|𝑌 )𝑑𝜃_𝑗 (7)

The element 𝜃_𝑗 denotes the vector 𝜃 with its 𝑗th element omitted.
he INLA method is realized in three main steps. The first is an
pproximation to the full posterior distribution 𝜋(𝜃|𝑦) by a Laplace
pproximation in the mode of the distribution, where the mode is
ound using a numerical optimization algorithm. The second step is an
pproximation to the full conditional distributions 𝜋(𝑥𝑖|𝜃, 𝑦) for specific
alues of 𝜃. The last step of the approximation gets an approximation
or the marginal posterior distributions in (6) and (7) by combining
he two approximations in the previous steps and integrating out the
rrelevant factors. This method was introduced in Rue et al. (2009),
nd extended to several classes of models. Surveys of recent develop-
ents in this methodology for spatial modeling can be found at Bakka

t al. (2018), a discussion on the use on log Gaussian Cox processes
or discrete domains in Illian et al. (2012), and textbook references
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