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Given a set of physiological signals and a selection of clinical history, what is the probability 

that a patient in the intensive care unit (ICU) will die either at the hospital or within a 

few months of discharge? As a predictive challenge, this question is broached countless 

times per year. The forecast probability of ICU mortality has various uses: it can inform 

clinical decision making and conversations with families regarding goals of care, serve as 

a way to adjust for case-mix or severity in inferential models, and allow departments to 

benchmark performance. In The Lancet Digital Health, Hans-Christian Thorsen-Meyer and 

colleagues apply deep learning to this task.1 More specifically, they train a long short-term 

memory (LSTM) neural network on physiological, laboratory, and clinical data to provide 

hourly predictions of 90-day mortality on an ICU cohort derived from large electronic health 

record databases in Denmark. They achieve discriminative performance that improves over 

the course of the patient’s ICU stay, and show the utility of an approach to make model 

predictions more interpretable.

Recently, Fritz and colleagues developed convolutional neural networks and LSTM-based 

models for a similar task: the prediction of 30-day post-operative mortality.2 In that case, 

as in the work by Thorsen-Meyer and colleagues, the main difference between traditional 

modelling approaches and deep learning is automatic feature extraction; for instance, instead 

of providing the model with patients’ median heart rate over 24 h, these models can take 

as input 24 hours’ worth of heart rate recordings at an arbitrary sampling frequency—or 

perhaps even a weeks’ worth—and learn complex relationships between these data and the 

outcome.3 Whether the dynamics of various physiological signals and laboratory data over 

time suggest an underlying model of chronic illness or response to treatment, these neural 

networks nevertheless learn complex relationships directly from data without the need for a 

human to engineer them.
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As would be expected, the predictive performance of Thorsen-Meyer and colleagues’ model 

improves as it receives increasing amounts of data over the ICU stay. Considering that 

health-care systems and professionals collect a myriad of data on a patient each day, the 

authors’ choice to continually update their predictions as daily data accrues shows an clear 

way in which the data we collect could be put to better use. Thorsen-Meyer and colleagues 

go on to show that the relative importance of various input features in predicting survival 

or non-survival changes over the course of the ICU stay; their visual representation of these 

fluctuations is perhaps their most interesting contribution.

This work adds to the growing literature on the creative ways in which deep learning 

approaches can use the large swathes of health data collected daily to inform clinical 

decision making in a way that prospective randomised clinical trials cannot. However, this 

work struggles with many of the same shortcomings of the broader machine learning studies 

in health-care literature. Foremost, what is the clinical utility? Predicted probability of 

mortality presents two options. The first is to alter the treatment plan when the probability 

of death continues to rise: perhaps the team needs to consider another source of infection 

or broaden antibiotic coverage. The second is to discuss with the patient or their family 

whether continued aggressive interventions in the face of increasing futility are within 

the patient’s goals of care. In both cases, the prediction of mortality at 90 days seems 

irrelevant at or near the time of ICU discharge. Knowing this probability is interesting from 

a technical, machine learning perspective, but perhaps less so in the aforementioned clinical 

decision making. Of note, the authors accrued data for their model with a setup similar to 

the SAPS III model for mortality prediction, but their comparison with SAPS III is limited 

because the latter predicts in-hospital mortality.

The authors also make a clear effort to show the generalisability of their system. They 

choose hyperparameters by cross validation, examine their model on a holdout test set, and 

then externally validate their final model on data from a separate centre in Denmark, in 

keeping with the TRIPOD guidelines.4 However, models that stand up to further scrutiny 

are the exception as opposed to the rule in clinical predictive modelling. With the known 

issues of algorithmic bias and the ongoing reproducibility crisis, the optimal way forwards 

is for all data and code to be released publicly for broader validation by the community. 

As the health-related data deluge continues and as the interest in data science grows, the 

reproducibility crisis is expected to worsen5 unless a more collaborative research ecosystem 

is created, as exemplified by initiatives such as the Medical Information Mart for Intensive 

Care6 and the Global Alliance for Genomics & Health.

But progress in machine learning, which has led to the emergence of new domains such as 

algorithmic bias, artificial intelligence explainability and ethics, and adversarial generative 

networks, has outpaced its adoption in health care. Despite thousands of publications and 

conference proceedings on medical algorithms, only a handful have been prospectively 

evaluated with clinical endpoints (rather than model performance) as outcomes.7–10 The 

few trials that have been published have not shown measurable improvement in population 

health. The machine learning community flocks to specialties where datasets exist—

radiology, ophthalmology, critical care medicine—rather than in specialties where there is 

a dearth of randomised controlled trials, such as paediatrics, obstetrics and gynaecology, 
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surgery, or primary care and mental health, where machine learning can have the biggest 

impact. With little input from providers at the frontlines of care, data scientists are 

sometimes working with a superficial understanding of health, attempting to predict disease 

trajectories and resource use that are clearly more heavily influenced by social determinants 

of health rather than the vital sign measurements, laboratory test results, and radiological 

images included in their models. Furthermore, the majority of models are being trained 

and validated on data from a handful of countries, further reinforcing a tradition that has 

historically skewed the generation of medical knowledge, uncovering medical truths that 

cannot be generalised to under-represented populations. A better roadmap is needed to 

leverage the value of machine learning and derive knowledge from the zettabytes of health 

data we collect in the process of care.
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