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Ferroptosis is a novel form of non-apoptotic cell death that mainly results from

the iron-dependent lethal accumulation of lipid peroxidation products. Here,

we defined differentially expressed genes between control and RSL3-treated

osteosarcoma cells as ferroptosis-associated genes (FAGs). These FAGs were

then subjected to weighted gene correlation network analysis (WGCNA), and

we found that the turquoise module, containing 71 FAGs, was markedly related

to the patient’s vital status. After that, FAGs in the turquoisemodulewere utilized

to construct a prognostic multigene (COL5A2, HOXB4, and UNC5B) signature

for risk stratification in osteosarcoma. Validation in internal and external cohorts

indicated the accuracy and clinical applicability of this signature in predicting

the prognosis of patients with osteosarcoma. Univariate and multivariate Cox

regression analyses suggested that the signature-derived risk score is an

independent indicator of patient prognosis. Immunological analysis indicated

that significant variations in stromal and ESTIMATE scores, as well as tumor

purity, were found when the high- and low-risk groups were compared.

Regarding immune cell infiltration, the proportion of activated CD4 memory

T cells was significantly lower in the high-risk group than that in the low-risk

group. The ssGSEA results suggested that CD8+ T, Tfh, and Th1 cell scores were

consistently lower in the high-risk group than those in the low-risk group. In

terms of immune-related activities, the high-risk group had considerably lower

scores for promoting inflammation, T-cell co-inhibition, and T-cell co-

stimulation than the low-risk group, indicating the differential immunological

state of the high- and low-risk groups. Of the three FAGs included in the

signature, the expression of COL5A2, HOXB4, and UNC5B was higher in the

high-risk groups, and the expression of COL5A2 and UNC5B was negatively

associated with patient prognosis. Additionally, themRNA levels ofCOL5A2 and

HOXB4were lower and those of UNC5Bwere higher in RSL3-treated cells than

in control cells. In all, we systematically analyzed the transcriptional changes of

osteosarcoma cells induced by RSL3 and constructed a novel three-gene

signature with regard to ferroptosis, prognosis prediction, and immune

microenvironment. We also identified COL5A2, HOXB4, and UNC5B as

potential therapeutic targets and important regulators of ferroptosis in

osteosarcoma.
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1 Introduction

Osteosarcoma (OS) is the most common type of malignant

bone tumor that primarily affects the metaphysis of weight-

bearing long bones such as the proximal humerus, distal femur,

and proximal tibia (Ritter and Bielack, 2010). It is a rare illness

with an annual incidence of approximately 1–3 cases per million,

accounting for approximately 20% of all primary malignant bone

tumors (Kansara et al., 2014; Hernandez Tejada et al., 2020).

Osteosarcoma has a characteristic age distribution, with peak

incidences in young adolescents and those over the age of 50

(Cole et al., 2022; Santos et al., 2022). The conventional treatment

plan for osteosarcoma is the surgical removal of visible tumors

combined with neoadjuvant chemotherapy, which has increased

the 5-year survival rate of patients with localized malignancies to

60–70% (Whelan and Davis, 2018; Gill and Gorlick, 2021).

However, for those with recurrent or metastatic osteosarcoma,

the 5-year survival rate dramatically decreases to less than 20%

(Sheng et al., 2021). Furthermore, because of the substantial

genetic variability of osteosarcoma (Rickel et al., 2017; Belayneh

et al., 2021), prognosis differs even when patients have identical

clinical characteristics and are receiving standard therapy. The

development of innovative therapeutic techniques and the

identification of reliable prognostic indicators are critical for

improving patient clinical outcomes.

Ferroptosis, first defined by Dixon in 2012, is a unique form

of iron-dependent non-apoptotic cell death characterized by the

lethal accumulation of lipid peroxidation (Dixon et al., 2012; Li

et al., 2020a). Ferroptosis has unique pathophysiological

characteristics and biological processes that differ from other

forms of programmed cell death, including apoptosis, necrosis,

and autophagy (Mou et al., 2019; Tang et al., 2020a).

Morphologically, cells undergoing ferroptosis exhibit shrinkage

of mitochondria, with a reduced number of mitochondrial cristae

and increased mitochondrial density (Tang et al., 2020b).

Biochemically, lipid peroxides cannot be reduced, owing to

the depletion of intracellular GSH and inactivation of

glutathione peroxidases (GPXs). In contrast, iron

accumulation promotes lipid oxidation in a Fenton-like

manner, resulting in the accumulation of cytotoxic lipid

peroxidation products, further inducing ferroptosis (Conrad

and Pratt, 2019). Genes regulating iron homeostasis, energy

metabolism, and lipid peroxidation metabolism are closely

associated with ferroptosis (Hassannia et al., 2019). Previous

studies have shown that ferroptosis plays a vital role in the

occurrence and development of diseases including tumors

(Conrad et al., 2020; Fu et al., 2020). Ferroptosis is regarded

as a novel method for killing therapy-resistant tumors (Song

et al., 2020). In vitro experiments have suggested that

osteosarcoma cells are sensitive to ferroptosis inducers, and

some molecules could increase chemosensitivity, at least

partly, by inducing ferroptosis (Dixon et al., 2012; Lv et al.,

2020; Lin et al., 2021). However, the regulatory mechanism of

ferroptosis in osteosarcoma and its clinical significance remain

unclear.

In the present study, we defined differentially expressed

genes between control and RSL3-treated osteosarcoma cells as

ferroptosis-associated genes (FAGs) in osteosarcoma. The

expression profiles of these FAGs were retrieved from the

dataset of The Cancer Genome Atlas (TCGA) osteosarcoma

cohort. Next, module genes that were significantly correlated

with vital status were identified through weighted gene

correlation network analysis (WGCNA) and utilized to

construct a prognostic multigene signature in osteosarcoma.

Subsequently, the accuracy and specificity of the signature

were validated in both internal and external cohorts.

Additionally, we explored the association of this signature

with the osteosarcoma immune microenvironment and

immune cell infiltration. Finally, we performed the

Kaplan–Meier survival analysis of the FAGs in the signature

and compared their transcript levels in the control and RSL3-

treated cells and different risk groups.

2 Materials and methods

2.1 Data acquisition and procession

We downloaded osteosarcoma-related RNA-seq (FPKM)

expression profiles and corresponding clinical annotations

from The Cancer Genome Atlas (TCGA) database. The

GSE21257 dataset comprising the RNA array data on

53 osteosarcoma samples and clinical information was

obtained from the Gene Expression Omnibus (GEO) database

and used for external validation. We deleted cases with

incomplete clinical information and ultimately obtained

139 cases, including 86 from TCGA database and 53 from the

GEO database for subsequent analysis.

2.2 Cell culture and death assays

Osteosarcoma cell lines (143B and U2OS) were obtained

from the American Type Culture Collection (ATCC, Manassas,

VA). The 143B and U2OS cells were cultured in α-MEM or

McCoy’s 5a medium (HyClone, United States), respectively. All

the media were supplemented with 10% fetal bovine serum

(Gibco, United States), 100 U/mL penicillin, and 100 mg/ml

streptomycin (Invitrogen, Grand Island, NY, United States).

All the human osteosarcoma cell lines were maintained in a
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humidified incubator at 37°C with a 5% CO2 atmosphere. Cell

death after RSL3 treatment was assessed via propidium iodide

(PI) staining. Briefly, cells treated with DMSO or RSL3 (1 µM) for

24 h were washed three times with ice-cold PBS and were then

stained with 2.5 μg/ml PI (Sigma-Aldrich, St. Louis, MO,

United States) for 30 min at room temperature. The stained

cells were observed with a fluorescence microscope (Olympus,

Tokyo, Japan).

2.3 Transmission electron microscopy

The 143B cells were seeded onto 6-cm plates and were treated

with RSL3 (1 uM) for 24 h. Images were acquired using a

transmission electron microscope (Hitachi; HT7700, Japan);

all fields were evaluated at ×12.0 k magnification.

2.4 RNA isolation, RNA-sequence, and
qRT-PCR

The 143B and U2OS cells were treated with RSL3 (1 μM) for

24 h to induce ferroptosis before being collected for RNA

isolation. TRIzol reagent (Invitrogen, Carlsbad, CA, United

States) was used to extract the total RNA from the control

and RSL3-treated 143B cells, according to the manufacturer’s

instructions. The extracted RNA was quantified and qualified

using the Agilent 2100 system (Agilent Technologies, Santa

Clara, CA, United States). A total of 5 μg RNA in each sample

(n = 3/group) was transferred to BGI (BGI Group, Shenzhen,

China) for RNA sequencing. Thereafter, library preparation was

initiated. Subsequently, 2 × 50 bp pair-end RNA sequencing was

performed on the BGISEQ-500 platform according to the

manufacturer’s protocol. The quality of the sequencing reads

was evaluated and subsequently aligned to the human reference

genome build 37 (hg19), as previously described (Logie et al.,

2021). For subsequent investigation, RNA-seq data in the FPKM

format were used. For quantitative real-time polymerase chain

reaction (qRT-PCR), 1 μg total RNA was used to synthesize

cDNA using the RevertAid First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, Waltham, MA), and SYBR Green Mix

(Vazyme, Nanjing, China) was used to detect the relative

expression levels of target genes. The primer sequences were

as follows: GAPDH, forward 5′-GGAAGCTTGTCATCAATG
GAAATC-3′ and reverse 5′-TGATGACCCTTTTGGCTCCC-3′;
COL5A2, forward 5′-CAGGGTTTACAAGGACAGCAAG-3′
and reverse 5′-AGGGCCTTCAAGACCTTTGTG-3′;
HOXB4, forward 5′-TTCGTGCCCATTCACTGAGG-3′ and

reverse 5′-CCGGGTCTCTGAGTCTCTCT-3′; and UNC5B,

forward 5′-CTGGCACATACCCTAGCGATT-3′ and reverse

5′-CTCAATACTGTCTGGGTCCCTTCT-3′. All the

experiments were repeated with at least three independent

biological replicates.

2.5 Identification of ferroptosis-associated
genes in osteosarcoma and functional
annotation

The edgeR package (Robinson et al., 2010) in R software was

used to identify differentially expressed genes (DEGs) between

the control and RSL3-treated cells, with the selection criteria of

p < 0.05 and | log2FC | >1, and these DEGs were recognized as

ferroptosis-associated genes (FAGs) in osteosarcoma. These

FAGs were subjected to Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses using the clusterProfiler package (Yu

et al., 2012).

2.6 Weighted gene correlation network
analysis

The expression profiles of the FAGs in TCGA cohort were

obtained and used to construct a weighted gene correlation

network, as previously described. Briefly, hierarchical

clustering analysis of the expression profile of osteosarcoma

samples with multiple clinical features (age, sex, OS, and

censor) was performed to exclude outliers. The best soft

threshold power (β) was then filtered out using the WGCNA

package (Langfelder and Horvath, 2008) to ensure the

construction of scale-free networks. The adjacency matrix of

the FAGs’ expression data was calculated based on the soft

threshold power and correlation coefficients of these FAGs

and was then transformed into a topological overlap matrix

(TOM). Subsequently, average linkage hierarchical clustering

was conducted to classify the FAGs with similar expression

modes into the same modules according to the TOM-based

dissimilarity measure, with the mini-size of module gene

numbers set as 10. Finally, Pearson’s correlation analysis was

performed to establish the relationship between the modules and

clinical traits. Modules with p < 0.05 were regarded as

significantly associated with the vital status. In this study, the

FAGs in the turquoise module were selected for subsequent

research (Figure 2E).

2.7 Construction and validation of a FAG-
based signature in osteosarcoma

To create a prognostic signature for osteosarcoma, TCGA

cohort (entire cohort) was randomly divided into training and

testing cohorts in a 1:1 ratio. In the training cohort, FAGs in

the turquoise module were subjected to least absolute

shrinkage and selection operator (LASSO) regression

analysis using the glmnet package (Engebretsen and Bohlin,

2019) in R to exclude overlapping genes. Subsequently,

multivariate Cox regression analysis was used to screen for
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independent prognostic genes from the LASSO analysis’

remaining robust genes and generate regression coefficients

for the corresponding genes. The signature was built using a

linear combination of the gene expression level and regression

coefficient, and the formula for calculating the patients’ risk

score based on the signature was as follows: Risk score =

∑n
i�1(Coef i*Expi). The Coefi value is the regression coefficient

of the selected FAGs, and the Expi value represents the gene

expression level of the selected FAGs. The risk score of each

patient in the training, testing, entire, and GSE21257 cohorts

was then calculated using the “predict” function in R software,

which allowed patients to be classified as high- or low-risk

groups based on the median risk score value in the training

cohort. Kaplan–Meier survival curves were used to assess

overall survival (OS) across different risk categories in the

training, testing, whole, and GSE21257 cohorts. Time-

dependent receiver operating characteristic (ROC) analysis

was performed to assess the accuracy and specificity of the

signature for prognosis prediction.

2.8 Construction and assessment of the
nomogram

We used the rms package (Zhang et al., 2019) in R

software to build a prognostic nomogram that integrated

the signature-derived risk score and multiple clinical

characteristics including sex and age. Calibration curves

were drawn to evaluate the consistency of nomogram-

predicted OS and the actual survival probability of patients

with osteosarcoma.

2.9 Gene set enrichment analysis

GSEA4.0.2 software was used for gene set enrichment

analysis, which was obtained from an online website

(http://www.gsea-msigdb.org/gsea/downloads). In several

studies, gene expression matrices have been separated into

various groups, including control or RSL3-treated groups and

high- or low-risk groups. Pathways were considered

considerably enriched if they met the p-value < 0.05 and |

NES| >1 selection criteria.

2.10 Immune landscape difference
between high- and low-risk groups

The ESTIMATE (Estimation of STromal and Immune

cells in MAlignant Tumor tissues using Expression data)

algorithm (through the estimate package in R) was utilized

to quantify immune, stromal, and estimate scores, as well as

tumor purity, using gene expression matrices (Xu et al., 2021).

The CIBERSORT algorithm was employed to calculate the

proportion of 22 infiltrating immune cell types in each

osteosarcoma sample (Newman et al., 2015). Single-sample

gene set enrichment analysis (ssGSEA) was performed to

explore the scores of immune cells and immune-related

functions using the GSVA package in R (Xiao et al., 2020).

All the aforementioned results were then compared between

the high- and low-risk groups to explore the immune

landscape differences between the two risk groups.

2.11 Statistical analysis

All statistical analyses were conducted by R 4.1.0 and

GraphPad Prism 8. Student’s t-test and Wilcoxon test were

used to compare the differences in the variables between the

two risk groups or the control and RSL3-treated groups. The

Kaplan–Meier method and log-rank test were used to evaluate

the difference in OS between the high- and low-risk groups.

Statistical significance was set at p < 0.05.

3 Results

3.1 Transcriptional changes induced by
RSL3 and functional analyses

RSL3, an inhibitor of glutathione peroxidase 4 (GPX4), was

used to induce ferroptosis in 143B cells, as was confirmed by the

increased number of PI-positive cells and morphological features

(Supplementary Figure S1). To describe the transcriptional

alterations in ferroptotic 143B cells, we performed RNA

sequencing analysis of RSL3-treated and control cells. With

the selection criteria of p-value < 0.05 and | log2FC | >1, a
total of 728 genes that were differentially expressed between the

RLS3-treated cells and control cells were screened out, and these

genes were regarded as ferroptosis-associated genes (FAGs) in

osteosarcoma. Of the 728 FAGs, 450 and 278 genes were

upregulated and downregulated, respectively, in the RSL3-

treated cells (Figure 1A). Figure 1B shows the expression

profiles of these FAGs in the RSL3-treated and control cells.

Subsequently, we conducted GO and KEGG functional

enrichment analyses of 728 FAGs. In terms of biological

processes, FAGs were primarily enriched in extracellular

matrix organization, extracellular structure organization, and

connective tissue development. As for the cellular component,

the collagen-containing extracellular matrix, apical part of the

cell, and apical plasma membrane were the three most enriched

terms. In the molecular function category, FAGs were mainly

enriched in receptor ligand, signaling receptor activator, and

cytokine activities (Figure 1C). The KEGG enrichment analysis

indicated that PI3K-Akt, MAPK, calcium, JAK-STAT, TNF, IL-

17, Hippo, and NF-kappa B signaling pathways and the
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ferroptosis pathway were significantly enriched (Figure 1D). The

gene set enrichment analysis revealed that pathways including

antigen processing and presentation, the cytokine–cytokine

receptor interaction, JAK/STAT signaling pathway, nod-like

receptor signaling pathway, and porphyrin and chlorophyll

metabolism were significantly enriched in the RSL3-treated

group (Figure 1E), whereas pathways including the TCA cycle,

ECM receptor interaction, and focal adhesion were negatively

associated with treatment with the ferroptosis inducer RSL3

(Figure 1F).

3.2 WGCNA identified modules related to
the prognosis of osteosarcoma

To identify genes related to the prognosis of osteosarcoma,

the WGCNA algorithm was employed to construct a co-

expression network using the expression data profile of these

FAGs from TCGA osteosarcoma dataset. First, 86 osteosarcoma

samples with different genders, ages, and OS rates were selected

for FAG expression clustering (Figure 2A). We selected β = 4 as

the soft thresholding parameter to build the scale-free network

FIGURE 1
Transcriptional changes induced by RSL3 and functional analyses. (A) Volcano plot represents genes differentially expressed between RLS3-
treated cells and control cells. (B) Heatmap for the expression profile of ferroptosis-associated genes (FAGs). (C,D) GO and KEGG analyses of FAGs.
(E,F) Gene set enrichment analysis.
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(Figure 2B). Using a merged dynamic tree cut, we identified

12 gene co-expression modules by setting the minimum cluster

size to 10 (Figure 2C). A correlation heatmap was constructed to

analyze the relationships between the 12 modules, and it was

suggested that genes within the module were highly correlated

(Figure 2D). Subsequently, we analyzed the associations between

the gene modules and clinical features such as sex, age, vital status

(censor), and OS time. As shown in Figure 2E, the green–yellow

(R = 0.22 and p = 0.04) and blue modules (R = 0.26 and p = 0.02)

were significantly correlated with the age of the patients with

osteosarcoma. The turquoise module containing 71 FAGs was

markedly associated with the vital status of patients with

osteosarcoma (R = 0.31 and p = 0.003). The scatter plot

also suggested that the module membership of the

turquoise module was positively correlated with gene

significance for the vital status (Figure 2F), further

indicating the relationship between the turquoise module

and the prognosis of osteosarcoma patients.

FIGURE 2
Weighted gene coexpression network analysis of the differentially expressed genes induced by RSL3. (A) Cluster analysis between the FAGs in
TCGA osteosarcoma dataset and clinical traits. (B) Screening and validation of the soft threshold. (C) Cluster dendrogram indicating diverse FAG
modules. (D)Correlation heatmap of genes in differentmodules. (E)Correlation analysis between genemodules and clinical features such as gender,
age, censor, and overall survival (OS) time. (F) Scatter plot shows the module membership between the turquoise module and clinical feature
vital status.
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3.3 Construction of a prognostic signature
based on FAGs in osteosarcoma

We chose 71 FAGs in the turquoise module to develop a

predictive signature for osteosarcoma because the turquoise

module was strongly linked with patient prognosis. First, we

randomly assigned patients in TCGA cohort, also named the

entire cohort, to one of two cohorts: training (n = 44) and

testing (n = 42). The 71 FAGs were employed in the LASSO

regression analysis to determine the most accurate predictive

FAGs in the training cohort (Figure 3A). Following multivariate

Cox regression analysis, three FAGs (COL5A2, HOXB4, and

UNC5B) were selected by further optimization analysis

(Figure 3B), and their corresponding regression coefficients were

calculated (Figure 3C). The prognostic signature was established by

the linear combination of the expression levels of the three FAGs and

their coefficients, and the patients’ risk scorewas computed using the

following formula: risk score =COL5A2× 0.0032 +HOXB4× 0.4108

+UNC5B × 0.0181. Subsequently, the patients in the training cohort

were stratified into high- and low-risk groups, according to the

median risk score (Figure 3D). The vital status and survival time

distribution of patients in the training cohort are shown in Figure 3E,

which suggests thatmost of the deceased patients were distributed in

the high-risk group. The expression levels of the three FAGs in the

high- and low-risk groups are shown in Figure 3F. The

Kaplan–Meier survival analysis indicated a significant difference

between the risk groups, with patients in the high-risk group having

a shorter survival time than those in the low-risk group (Figure 3G).

Time-dependent receiver operating characteristic (ROC) curve

analysis confirmed the favorable predictive and prognostic

FIGURE 3
Construction of a prognostic signature in osteosarcoma based on ferroptosis-associated genes in the turquoisemodule. (A,B) Lasso regression
and multivariable Cox regression analyses were performed. (C) Regression coefficients of the three FAGs. (D–F) Risk score distribution, vital status,
survival time distribution, and expression profiles of the three FAGs in high- and low-risk groups. (G) Kaplan–Meier survival analysis comparing overall
survival between the risk groups. (H) Time-dependent ROC curves for 2-, 3-, and 5-year survival prediction.
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accuracy of the signature, and the area under the curve (AUC) values

were 0.631, 0.834, and 0.838 for 1-, 3-, and 5-year survival,

respectively (Figure 3H).

3.4 Validation of three FAG-based
signatures in internal cohorts

First, we investigated the predictive capacity of the FAG-

based signature by examining the testing and entire cohort

datasets. Using the same formula mentioned previously, we

computed the risk scores of patients in the testing and entire

cohorts and then categorized them into high- and low-risk

groups based on the median risk score value in the training

cohort (Figures 4A,B). Figures 4C,D show the distribution of

the vital status and survival time of patients in the testing and

entire cohorts, and it seemed that patients in the high-risk

group had a higher mortality rate in both cohorts. Figures 4E,F

exhibit the expression profiles of the three FAGs in the

different risk groups of the two cohorts. Kaplan–Meier

FIGURE 4
Validation of the three-gene-based prognostic signature in internal cohorts. (A,B) Risk score distribution in the testing and entire cohorts. (C,D)
Vital status and survival time distribution in the testing and entire cohorts. (E,F) Expression profiles of the three FAGs in diverse risk groups of the
testing and entire cohorts. (G,H) Kaplan–Meier survival analysis comparing overall survival between the risk groups in the testing and entire cohorts.
(I,J) Time-dependent ROC curves for 2-, 3-, and 5-year survival prediction in the testing and entire cohorts.
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survival analysis suggested that patients in the high-risk group

had a worse prognosis than those in the low-risk group, which

was consistent in both the testing and entire cohorts (Figures

4G,H). The AUC values of the ROC curves for 1-, 3-, and 5-

year survival were 0.971, 0.686, and 0.701, respectively, in the

testing cohort (Figure 4I) and 0.734, 0.785, and 0.774,

respectively, in the entire cohort (Figure 4J).

3.5 Validation of three FAG-based
signatures in the external cohort

Subsequently, the GSE21257 cohort was used for external

validation to further assess the accuracy and generalizability

of the signature in predicting the prognosis of osteosarcoma

patients. Patients’ risk scores were generated using the same

formula as in the training cohort, allowing patients to be

classified as high- or low-risk based on the median risk score

value in the training cohort (Figure 5A). The vital status and

survival time distributions of the GSE21257 cohort patients

are shown in Figure 5B, and the majority of the deaths were in

the high-risk categories. Figure 5C depicts the expression

patterns of the three FAGs in the GSE21257 cohort’s

distinct risk categories. The survival study revealed that

patients with lower risk scores fared better in terms of OS

than those with higher risk scores (Figure 5D). The AUC

values of the ROC curves for the 1-, 3-, and 5-year survival in

the GSE21257 cohort were 0.837, 0.759, and 0.757,

respectively (Figure 5E). Furthermore, we divided the

patients in the entire cohort and GSE21257 cohorts into

various subgroups, including females and males

aged ≤14 years and >14 years. As shown in Figures 6A,B,

the survival analysis in different subgroups of the entire

cohort revealed that the OS of patients in the high-risk

group was continuously poorer than that of patients in the

low-risk group. Additionally, the FAG-based signature

performed well in predicting prognosis in subgroups such

as male sex and age >14 years (Figures 6C,D). Taken together,

these findings confirmed that the FAG-based signature has a

potential prognostic value for patients with osteosarcoma.

FIGURE 5
Validation of the three-gene-based prognostic signature in external GSE21257 cohorts. (A) Patients’ risk score distribution in the
GSE21257 cohort. (B) Patients’ vital status and survival time distribution in the GSE21257 cohort. (C) Expression profiles of the three FAGs in diverse
risk groups of the GSE21257 cohort. (D) Kaplan–Meier survival analysis comparing overall survival between risk groups in the GSE21257 cohort. (E)
Time-dependent ROC curves for 2-, 3-, and 5-year survival prediction in the GSE21257 cohort.
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3.6 The prognostic independence of the
FAG-based signature and construction of
a nomogram

We performed univariate and multivariate Cox regression

analyses in TCGA and GSE21257 cohorts, using sex, age, and

signature-derived risk score as explanatory factors to further

examine the clinical value of the FAG-based signature in

predicting the prognosis of osteosarcoma patients. In

TCGA cohort, the risk score was the only factor that was

significantly associated with the OS of osteosarcoma patients

in both univariate and multivariate Cox regression analyses; a

similar result was also seen in the GSE21257 cohort (Table 1

and Table 2). Therefore, we concluded that our signature-

derived risk score had an independent effect on patient

prognosis. Furthermore, we created a nomogram that

combined the signature-derived risk score with several

clinical variables such as sex and age to serve as a

quantitative method for clinicians to anticipate the clinical

outcomes of each case (Figure 7A). The calibration plots

showed that the nomogram-predicted 1-, 3-, and 5-year OS

rates were well-matched with the actual OS rates, and

comparable results were seen in both TCGA and

GSE21257 cohorts (Figures 7B,C). Thus, our nomogram

has excellent predictive performance and clinical

application value.

3.7 Gene set enrichment analysis and
immunological analysis

We used gene set enrichment analysis on datasets from

different risk groups in TCGA and GSE21257 cohorts to

identify pathways linked with the FAG-based signature. As

shown in Figures 8A,B, ribosomes were significantly enriched

in high-risk groups in both cohorts, whereas pathways including

antigen processing and presentation, complement and

coagulation cascades, the cytokine–cytokine receptor

interaction, JAK/STAT signaling pathway, lysosomes,

neuroactive ligand–receptor interaction, nod-like receptor

signaling pathway, and toll-like receptor signaling pathway

were significantly enriched in low-risk groups in both cohorts.

Next, we explored the relationship of the signature with the

immunological microenvironment and immune cell infiltration.

The ESTIMATE method was used to compute stromal, immune,

and ESTIMATE scores, as well as tumor purity. Significant

variations in stromal and ESTIMATE scores, as well as tumor

purity, were found when the high-risk and low-risk groups were

compared (Figure 9A,C,D). Although the immune scores were

lower in the high-risk group than in the low-risk group, the

difference was not statistically significant (Figure 9B).

Subsequently, we analyzed the proportion of infiltrated

immunocytes in osteosarcoma samples from TCGA cohort.

Figure 9E shows the profiles of 22 types of infiltrating

FIGURE 6
Kaplan–Meier survival curves in multiple subgroups stratified by gender (A and C) or age (B and D) in both TCGA and GSE21257 cohorts.
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immune cells in the high- and low-risk groups. Compared to the

low-risk group, the proportion of activated CD4 memory T cells

decreased significantly in the high-risk group (Figure 9F).

Furthermore, we employed the ssGSEA method to calculate

the scores for immune cells and immune-related functions. As

shown in Figure 9G, the scores of CD8+ T, Tfh, and Th1 cells

were different across the high- and low-risk groups and were

consistently lower in the high-risk group than in the low-risk

group. In terms of immune-related activities, the high-risk group

had considerably lower scores for inflammation promotion,

T-cell co-inhibition, and T-cell co-stimulation than the low-

risk group (Figure 9H). When combined, these findings

demonstrate the differential immunological state of the high-

and low-risk groups.

3.8 Expression and Kaplan–Meier survival
analyses of the three FAGs

Finally, in TCGA and GSE21257 cohorts, we analyzed the

expression of the three FAGs in the high- and low-risk groups

and performed Kaplan–Meier survival analysis. The expression

of COL5A2, HOXB4, and UNC5B was greater in the high-risk

group than that in the low-risk group, as shown in Figures

10A–F, and this was consistent in both TCGA and

GSE21257 cohorts. In TCGA cohort, Kaplan–Meier survival

analysis revealed that increased COL5A2 and UNC5B

expression indicated a worse prognosis in patients with

osteosarcoma (Figures 11A,E), but HOXB4 expression was not

linked with patients’ clinical fate (Figure 11C). In the

GSE21257 cohort, the survival analysis revealed no significant

association between the three FAGs and patient outcomes

(Figures 11B,D,F). We also compared the expression levels of

the three FAGs in RSL3-treated osteosarcoma cells and control

cells. Consistent with the RNA-seq data, the mRNA levels of

COL5A2 and HOXB4 were lower and UNC5BmRNA levels were

higher in RSL3-treated cells than in control cells (Figures 12A–F),

indicating the probable roles of the three FAGs in the ferroptotic

processes of osteosarcoma cells.

4 Discussion

Recent research has shown that ferroptosis plays an

important role in neurodegenerative disorders, ischemic

stroke, traumatic brain injury, acute kidney injury, and

tumors (DeGregorio-Rocasolano et al., 2019; Li et al., 2019;

Mou et al., 2019; Reichert et al., 2020; Wang et al., 2021b).

Owing to its novelty and importance, ferroptosis is now the focus

of research to improve the treatment outcomes of certain

diseases, especially tumors. Numerous studies have confirmed

that inducing ferroptosis can effectively inhibit malignant

TABLE 1 Univariate and multivariate analyses of the three FAGs’ prognostic signature and clinical factors in TCGA cohort.

Variable Univariate analysis Multivariate analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Gender (female vs. male) 0.6810850 0.3276198 1.4158997 0.3036702 0.7501854 0.3513603 1.6017125 0.4576490

Age (≤14 vs. > 14) 0.6515076 0.3131828 1.3553175 0.2516082 0.7302900 0.3435631 1.5523307 0.4139532

Risk score 1.2324516 1.1251912 1.3499368 0.0000068 1.2315409 1.1241535 1.3491867 0.0000077

TABLE 2 Univariate and multivariate analyses of the three FAGs’ prognostic signature and clinical factors in the GSE21257 cohort.

Variable Univariate analysis Multivariate analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Gender (female vs. male) 1.4029846 0.5878958 3.3481546 0.4454741 1.2146461 0.4841790 3.0471482 0.6786014

Age (≤14 vs. > 14) 1.0091035 0.9752283 1.0441553 0.6029446 1.0153246 0.9809549 1.0508986 0.3867248

Risk score 1.7095053 1.1183881 2.6130537 0.0132570 1.7173220 1.0995653 2.6821461 0.0174441
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tumors, and many genes associated with ferroptosis might serve

as potential targets for clinical applications. For example,

Badgley et al. (2020) found that cystine is critical for

pancreatic ductal adenocarcinoma (PDAC). Genetic

knockout of Slc7a11, a subunit of the cysteine–-glutamate

antiporter, induces intracellular cysteine depletion, thereby

inducing ferroptosis and inhibiting PDAC. Therefore,

Slc7a11 is a potential target for PDAC treatment. In

osteosarcoma, the induction of ferroptosis with traditional

Chinese medicine and small molecules could enhance

sensitivity to chemotherapy (Liu and Wang, 2019; Lin

et al., 2021; Luo et al., 2021), thus providing a new avenue

for the treatment of chemo-resistant patients. However, little

is known about the regulatory mechanism of ferroptosis in

osteosarcoma and its clinical significance.

Here, we systematically analyzed the transcriptional changes

in osteosarcoma cells induced by RSL3 and found that 728 genes

were differentially expressed between the control and RSL3-

treated cells. Of the 728 genes, 450 and 278 genes were

upregulated or downregulated in RSL3-treated cells,

respectively, and were regarded as ferroptosis-associated genes

(FAGs) in osteosarcoma. Functional enrichment analysis

indicated that FAGs were mainly enriched in PI3K-Akt,

MAPK, calcium, JAK-STAT, TNF, IL-17, Hippo, and NF-κB
signaling pathways and ferroptosis pathways. It is worth noting

that these enriched pathways have been reported to promote or

inhibit the ferroptotic process in multiple tumor types (Chen

et al., 2020; Yi et al., 2020; Schmitt et al., 2021; Yu et al., 2022);

however, their roles in the ferroptosis of osteosarcoma and the

regulatory mechanism remain to be further elucidated.

FIGURE 7
Construction of a prognostic nomogram for survival prediction. (A) Nomogram including gender, age, and signature-derived risk score for 1-,
3-, and 5-year overall survival rate prediction. (B,C) Calibration plot for predicting patients’ survival at 1, 3, and 5 years in TCGA cohort (B) and the
GSE21257 cohort (C).
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Subsequently, WGCNA was performed using the mRNA

expression of FAGs and clinical data on osteosarcoma samples in

TCGA dataset, and we obtained a turquoise module that was

markedly associated with the vital status of osteosarcoma

patients. Subsequently, 71 FAGs in the turquoise module were

subjected to LASSO and multivariate Cox regression analysis for

further optimization and screening. A total of three FAGs,

COL5A2, HOXB4, and UNC5B, were ultimately used to

construct a prognostic signature for osteosarcoma. The risk

score of each patient was then calculated based on the

signature, which allowed the patients to be stratified into

high- and low-risk groups. The survival analysis in all internal

and external cohorts demonstrated that the OS of patients in the

high-risk group was continuously poorer than that of patients in

the low-risk group, validating the accuracy and clinical

applicability of the signature in predicting patient prognosis.

Univariate and multivariate Cox regression analyses suggested

that the signature-derived risk score is an independent indicator

of patient prognosis. Moreover, we built a prognostic nomogram

by combining risk scores and clinical variables, such as sex and

age. The nomogram could serve as a quantitative method for

clinicians to anticipate the clinical outcomes of each case and

might be helpful for clinical decision-making.

The tumor microenvironment (TME) is a component of

cancer that includes the extracellular matrix, stromal cells,

fibroblasts, endothelial cells, and several types of immune cells

(Cassim and Pouyssegur, 2019; Hinshaw and Shevde, 2019).

Recent research has concluded that tumor growth is

influenced not only by the accumulation of genetic or

epigenetic abnormalities in the initial cancer cells but also by

the TME (Duan et al., 2020). Immune cells in the TME were

found to be associated with patient prognosis and possibly

operate as a prognostic factor and influence immunotherapy

response (Hu et al., 2020; Lei et al., 2020). To characterize the

FIGURE 8
Gene set enrichment analysis between high- and low-risk groups in TCGA cohort (A) and the GSE21257 cohort (B).
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immune landscape of osteosarcoma, we used the ESTIMATE

method to evaluate stromal and immune microenvironment

infiltration in osteosarcoma samples from the different risk

groups. Significant variations in stromal and ESTIMATE

scores, as well as tumor purity, were found between the high-

and low-risk groups. As for infiltrating immune cells, the fraction

of activated CD4memory T cells was much lower in the high-risk

group. Activated CD4 memory T cells are transformed from

CD4 memory T cells after antigen stimulation, resulting in a

more effective and rapid immune response. The abundance of

activated CD4 memory T cells has been reported to be associated

with patient prognosis in multiple solid tumors, such as

colorectal cancer, small-cell lung cancer, and hepatocellular

carcinoma (Jiang et al., 2021; Liu et al., 2021; Yu and Zhu,

2021). Consistently, our analysis connected a lower proportion

of infiltrated activated CD4 memory T cells with a worse

prognosis in osteosarcoma. Additionally, the ssGSEA results

suggested that the enrichment scores of CD8+ T, Tfh, and

Th1 cells were lower in the high-risk group than those in the

low-risk group. In terms of immune-related activities, the

high-risk group had considerably lower scores for

inflammation promotion, T-cell co-inhibition, and T-cell

co-stimulation than the low-risk group. Taken together,

these results demonstrate the differential immunological

state of the high- and low-risk groups. Our FAG-based

signature may be useful for distinguishing patients into

FIGURE 9
Estimation of the immune microenvironment and immune cell infiltration in high- and low-risk groups. (A–D) Comparison of the difference in
stromal (A), immune (B), and ESTIMATE (C) scores, as well as tumor purity (D), between high- and low-risk groups. (E) Heatmap showing the
proportion of 22 immune cell types in TCGA osteosarcoma samples. (F) Comparison of the fraction of infiltrated immune cells between high- and
low-risk groups. (G,H) Comparison of the scores of immune cells and immune-related function in high- and low-risk groups.
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different immunological subgroups and predicting the clinical

effects of immunotherapy.

Our signature comprised three genes, COL5A2, HOXB4, and

UNC5B, which were confirmed to be altered in transcript levels,

following treatment with the ferroptosis inducer, RSL3. COL5A2,

also known as collagen type V alpha 2, is located at 2q32.2 in the

human genome and encodes an alpha chain of fibrillar collagen type

V. COL5A2 functions as an oncogene in multiple tumor types, and

higher COL5A2 expression indicates poor prognosis in patients with

colorectal cancer (Wang et al., 2021a), gastric cancer (Ding et al.,

2021), and bladder cancer (Zeng et al., 2018). COL5A2 was reported

to be highly expressed in metastatic osteosarcoma, and silencing

COL5A2 impaired cell invasion and metastasis by inhibiting the

TGF-β and Wnt/β-catenin signaling pathways (Han et al., 2022).

Here, our analyses showed that COL5A2 expression was higher in

the high-risk group, and increased COL5A2 expression indicated a

worse prognosis in osteosarcoma patients, suggesting a potential

oncogenic role in osteosarcoma. Additionally, we found that

COL5A2 was decreased in RSL3-treated cells. Thus, we speculated

that COL5A2 might participate in the regulation of the ferroptotic

process in osteosarcoma. Further experiments should be designed to

explore the effects of COL5A2 knockdown or overexpression on

FIGURE 10
Comparison of the expression of COL5A2 (A,B), HOXB4 (C,D), and UNC5B (E,F) in different risk groups in TCGA and GSE21257 cohorts.
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RLS3-induced ferroptosis in osteosarcoma cells. HOXB4, a member

of the homeobox gene family, is a transcription factor involved in

stem cell self-renewal and cancer (Shah and Sukumar, 2010; Feng

et al., 2021). In several forms of solid tumors,HOXB4 acts as both an

oncogene and a tumor suppressor. For example, in ovarian cancer,

increasedHOXB4 expression was associated with a worse prognosis,

and HOXB4 overexpression enhanced the malignant evolution of

ovarian cancer through the transcriptional regulation of the

dehydrodolichyl diphosphate synthase subunit (DHDDS) (Li

et al., 2020b), whereas increased HOXB4 expression in cervical

cancer obviously inhibited cell proliferation and reduced

tumorigenic potential (Lei et al., 2021). The HOXB4 protein was

found in more than 90% of neoplastically transformed cells in

osteosarcoma (Bodey et al., 2000); however, its significance is still

unknown and requires further research. UNC5B, also known as

UNC-5 homolog B, is a member of the UNC5 receptor family.

UNC5B is located on chromosome 10q22.1, which encodes a single-

pass transmembrane receptor protein that is noted for its unusual

capacity to produce two opposing intracellular signals in the presence

or absence of ligands (Bhat et al., 2019). UNC5B has the potential to

FIGURE 11
Kaplan–Meier survival analysis of COL5A2 (A,B), HOXB4 (C,D), and UNC5B (E,F) in TCGA and GSE21257 cohorts.
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either promote or prevent tumor growth in certain tumor types

(Okazaki et al., 2012; Wu et al., 2020; Huang et al., 2021). In

osteosarcoma U2OS cells, doxycycline-induced expression

of polyomavirus small T antigen (PyST) resulted in mitotic

arrest and extensive cell death, accomplished by increased

mRNA levels of UNC5B, showing the apoptotic activity of

UNC5B in osteosarcoma (Bhat et al., 2020). Our findings

revealed that UNC5B expression was associated with patient

prognosis and that UNC5B mRNA levels were elevated in

ferroptotic osteosarcoma cells. Given UNC5B’s dual

involvement in malignancies, it is worth investigating its

role in osteosarcoma, particularly its influence on the

ferroptotic process.

Despite the aforementioned findings, our study had some

limitations. First, some important regulators of ferroptosis

function at the protein level, whereas their mRNA expression

might be stable during RSL3-induced ferroptosis, and these genes

were excluded from further analysis in the present study. Second,

prospective cohorts are needed to assess the clinical utility of our

signature. In addition, we only detected the mRNA levels of the

three FAGs in RSL3-treated cells; it would be better to explore

their protein levels after the treatment of RSL3, and the role of

these three FAGs in the ferroptotic process of osteosarcoma cells

should be investigated in vitro and in vivo.

In summary, we systematically analyzed transcriptional

changes in osteosarcoma cells induced by RSL3 and

FIGURE 12
Relative expression of COL5A2 (A,B), HOXB4 (C,D), and UNC5B (E,F) in control and RSL3-treated osteosarcoma cells.
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constructed a novel three-gene signature with regard to

ferroptosis, prognosis prediction, and the immune

microenvironment. We identified three FAGs (COL5A2,

HOXB4, and UNC5B) as potential therapeutic targets and

important regulators of ferroptosis in osteosarcoma.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials; further

inquiries can be directed to the corresponding author.

Author contributions

WG designed the study. DZ conducted bioinformatics

analysis. DZ and KX wrote the manuscript and were

responsible for language revisions. ZhW and ZiW conducted

the experiments. All authors have reviewed the manuscript.

Funding

This study was supported by funds from the Hubei Province

Science and Technology Major Project (2020BCB058) of the

National Natural Science Foundation of China (81341078).

Acknowledgments

The authors acknowledge TCGA Project for using these data.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.944978/full#supplementary-material

References

Badgley, M. A., Kremer, D. M., Maurer, H. C., Delgiorno, K. E., Lee, H. J., Purohit,
V., et al. (2020). Cysteine depletion induces pancreatic tumor ferroptosis in mice.
Science 368, 85–89. doi:10.1126/science.aaw9872

Belayneh, R., Fourman, M. S., Bhogal, S., and Weiss, K. R. (2021). Update on
osteosarcoma. Curr. Oncol. Rep. 23, 71. doi:10.1007/s11912-021-01053-7

Bhat, S. A., Gurtoo, S., Deolankar, S. C., Fazili, K. M., Advani, J., Shetty, R.,
et al. (2019). A network map of netrin receptor UNC5B-mediated signaling.
J. Cell Commun. Signal. 13, 121–127. doi:10.1007/s12079-018-0485-z

Bhat, S. A., Sarwar, Z., Gillani, S. Q., Un Nisa, M., Reshi, I., Nabi, N., et al. (2020).
Polyomavirus small T antigen induces apoptosis in mammalian cells through the UNC5B
pathway in a PP2A-dependent manner. J. Virol. 94, e02187. doi:10.1128/jvi.02187-19

Bodey, B., Bodey, B., Jr., Siegel, S. E., Luck, J. V., and Kaiser, H. E. (2000).
Homeobox B3, B4, and C6 gene product expression in osteosarcomas as
detected by immunocytochemistry. Anticancer Res. 20, 2717–2721.

Cassim, S., and Pouyssegur, J. (2019). Tumor microenvironment: A metabolic
player that shapes the immune response. Int. J. Mol. Sci. 21, E157. doi:10.3390/
ijms21010157

Chen, P., Wu, Q., Feng, J., Yan, L., Sun, Y., Liu, S., et al. (2020). Erianin, a novel
dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and
migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct. Target.
Ther. 5, 51. doi:10.1038/s41392-020-0149-3

Cole, S., Gianferante, D. M., Zhu, B., and Mirabello, L. (2022). Osteosarcoma:
A surveillance, epidemiology, and end results program-based analysis from
1975 to 2017. Cancer 128, 2107–2118. doi:10.1002/cncr.34163

Conrad, M., Lorenz, S. M., and Proneth, B. (2020). Targeting ferroptosis: New
hope for as-yet-incurable diseases. Trends Mol. Med. 27, 113–122. doi:10.1016/j.
molmed.2020.08.010

Conrad, M., and Pratt, D. A. (2019). The chemical basis of ferroptosis.Nat. Chem.
Biol. 15, 1137–1147. doi:10.1038/s41589-019-0408-1

Degregorio-Rocasolano, N., Marti-Sistac, O., and Gasull, T. (2019).
Deciphering the iron side of stroke: Neurodegeneration at the crossroads
between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front.
Neurosci. 13, 85. doi:10.3389/fnins.2019.00085

Ding, Y. L., Sun, S. F., and Zhao, G. L. (2021). COL5A2 as a potential clinical
biomarker for gastric cancer and renal metastasis.Med. Baltim. 100, e24561. doi:10.
1097/md.0000000000024561

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death.
Cell 149, 1060–1072. doi:10.1016/j.cell.2012.03.042

Duan, Q., Zhang, H., Zheng, J., and Zhang, L. (2020). Turning cold into hot:
Firing up the tumor microenvironment. Trends Cancer 6, 605–618. doi:10.1016/j.
trecan.2020.02.022

Engebretsen, S., and Bohlin, J. (2019). Statistical predictions with glmnet. Clin.
Epigenetics 11, 123. doi:10.1186/s13148-019-0730-1

Feng, Y., Zhang, T., Wang, Y., Xie, M., Ji, X., Luo, X., et al. (2021). Homeobox
genes in cancers: From carcinogenesis to recent therapeutic intervention. Front.
Oncol. 11, 770428. doi:10.3389/fonc.2021.770428

Fu, J., Li, T., Yang, Y., Jiang, L., Wang, W., Fu, L., et al. (2020). Activatable
nanomedicine for overcoming hypoxia-induced resistance to chemotherapy
and inhibiting tumor growth by inducing collaborative apoptosis and
ferroptosis in solid tumors. Biomaterials 268, 120537. doi:10.1016/j.
biomaterials.2020.120537

Gill, J., and Gorlick, R. (2021). Advancing therapy for osteosarcoma. Nat. Rev.
Clin. Oncol. 18, 609–624. doi:10.1038/s41571-021-00519-8

Han, Y. L., Luo, D., Habaxi, K., Tayierjiang, J., Zhao, W., Wang, W., et al. (2022).
COL5A2 inhibits the TGF-β and wnt/β-catenin signaling pathways to inhibit the
invasion and metastasis of osteosarcoma. Front. Oncol. 12, 813809. doi:10.3389/
fonc.2022.813809

Frontiers in Genetics frontiersin.org18

Zheng et al. 10.3389/fgene.2022.944978

https://www.frontiersin.org/articles/10.3389/fgene.2022.944978/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.944978/full#supplementary-material
https://doi.org/10.1126/science.aaw9872
https://doi.org/10.1007/s11912-021-01053-7
https://doi.org/10.1007/s12079-018-0485-z
https://doi.org/10.1128/jvi.02187-19
https://doi.org/10.3390/ijms21010157
https://doi.org/10.3390/ijms21010157
https://doi.org/10.1038/s41392-020-0149-3
https://doi.org/10.1002/cncr.34163
https://doi.org/10.1016/j.molmed.2020.08.010
https://doi.org/10.1016/j.molmed.2020.08.010
https://doi.org/10.1038/s41589-019-0408-1
https://doi.org/10.3389/fnins.2019.00085
https://doi.org/10.1097/md.0000000000024561
https://doi.org/10.1097/md.0000000000024561
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.3389/fonc.2021.770428
https://doi.org/10.1016/j.biomaterials.2020.120537
https://doi.org/10.1016/j.biomaterials.2020.120537
https://doi.org/10.1038/s41571-021-00519-8
https://doi.org/10.3389/fonc.2022.813809
https://doi.org/10.3389/fonc.2022.813809
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.944978


Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting
ferroptosis to iron out cancer. Cancer Cell 35, 830–849. doi:10.1016/j.ccell.2019.
04.002

Hernandez Tejada, F. N., Zamudio, A., Marques-Piubelli, M. L., Cuglievan, B.,
and Harrison, D. (2020). Advances in the management of pediatric sarcomas. Curr.
Oncol. Rep. 23, 3. doi:10.1007/s11912-020-00995-8

Hinshaw, D. C., and Shevde, L. A. (2019). The tumor microenvironment innately
modulates cancer progression. Cancer Res. 79, 4557–4566. doi:10.1158/0008-5472.
Can-18-3962

Hu, C., Liu, C., Tian, S., Wang, Y., Shen, R., Rao, H., et al. (2020). Comprehensive
analysis of prognostic tumor microenvironment-related genes in osteosarcoma
patients. BMC Cancer 20, 814. doi:10.1186/s12885-020-07216-2

Huang, Y., Zhang, Z., Miao, M., and Kong, C. (2021). The intracellular domain of
UNC5B facilities proliferation and metastasis of bladder cancer cells. J. Cell. Mol.
Med. 25, 2121–2135. doi:10.1111/jcmm.16172

Jiang, M.,Wu, C., Zhang, L., Sun, C., Wang, H., Xu, Y., et al. (2021). FOXP3-based
immune risk model for recurrence prediction in small-cell lung cancer at stages
I-III. J. Immunother. Cancer 9, e002339. doi:10.1136/jitc-2021-002339

Kansara, M., Teng, M. W., Smyth, M. J., and Thomas, D. M. (2014).
Translational biology of osteosarcoma. Nat. Rev. Cancer 14, 722–735.
doi:10.1038/nrc3838

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-
9-559

Lei, D., Yang, W. T., and Zheng, P. S. (2021). HOXB4 inhibits the proliferation
and tumorigenesis of cervical cancer cells by downregulating the activity of Wnt/β-
catenin signaling pathway. Cell Death Dis. 12, 105. doi:10.1038/s41419-021-03411-6

Lei, X., Lei, Y., Li, J. K., Du, W. X., Li, R. G., Yang, J., et al. (2020). Immune cells
within the tumor microenvironment: Biological functions and roles in cancer
immunotherapy. Cancer Lett. 470, 126–133. doi:10.1016/j.canlet.2019.11.009

Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., et al. (2020a).
Ferroptosis: Past, present and future. Cell Death Dis. 11, 88. doi:10.1038/s41419-
020-2298-2

Li, N., Gou, J. H., Xiong, J., You, J. J., and Li, Z. Y. (2020b). HOXB4 promotes the
malignant progression of ovarian cancer via DHDDS. BMC Cancer 20, 222. doi:10.
1186/s12885-020-06725-4

Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., et al. (2019). Ischemia-
induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in
intestinal ischemia/reperfusion. Cell Death Differ. 26, 2284–2299. doi:10.1038/
s41418-019-0299-4

Lin, H., Chen, X., Zhang, C., Yang, T., Deng, Z., Song, Y., et al. (2021).
EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomed.
Pharmacother. 136, 111202. doi:10.1016/j.biopha.2020.111202

Liu, J., Huang, X., Liu, H., Wei, C., Ru, H., Qin, H., et al. (2021). Immune
landscape and prognostic immune-related genes in KRAS-mutant colorectal
cancer patients. J. Transl. Med. 19, 27. doi:10.1186/s12967-020-02638-9

Liu, Q., and Wang, K. (2019). The induction of ferroptosis by impairing STAT3/
Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell
Biol. Int. 43, 1245–1256. doi:10.1002/cbin.11121

Logie, E., Van Puyvelde, B., Cuypers, B., Schepers, A., Berghmans, H., Verdonck,
J., et al. (2021). Ferroptosis induction in multiple myeloma cells triggers DNA
methylation and histone modification changes associated with cellular senescence.
Int. J. Mol. Sci. 22, 12234. doi:10.3390/ijms222212234

Luo, Y., Gao, X., Zou, L., Lei, M., Feng, J., and Hu, Z. (2021). Bavachin induces
ferroptosis through the STAT3/P53/slc7a11 Axis in osteosarcoma cells. Oxid. Med.
Cell. Longev. 2021, 1783485. doi:10.1155/2021/1783485

Lv, H., Zhen, C., Liu, J., and Shang, P. (2020). β-Phenethyl isothiocyanate induces
cell death in human osteosarcoma through altering iron metabolism, disturbing the
redox balance, and activating the MAPK signaling pathway. Oxid. Med. Cell.
Longev. 2020, 5021983. doi:10.1155/2020/5021983

Mou, Y., Wang, J., Wu, J., He, D., Zhang, C., Duan, C., et al. (2019). Ferroptosis, a
new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol.
12, 34. doi:10.1186/s13045-019-0720-y

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457. doi:10.1038/nmeth.3337

Okazaki, S., Ishikawa, T., Iida, S., Ishiguro, M., Kobayashi, H., Higuchi, T., et al.
(2012). Clinical significance of UNC5B expression in colorectal cancer. Int. J. Oncol.
40, 209–216. doi:10.3892/ijo.2011.1201

Reichert, C. O., De Freitas, F. A., Sampaio-Silva, J., Rokita-Rosa, L., Barros, P. L.,
Levy, D., et al. (2020). Ferroptosis mechanisms involved in neurodegenerative
diseases. Int. J. Mol. Sci. 21, E8765. doi:10.3390/ijms21228765

Rickel, K., Fang, F., and Tao, J. (2017). Molecular genetics of osteosarcoma. Bone
102, 69–79. doi:10.1016/j.bone.2016.10.017

Ritter, J., and Bielack, S. S. (2010). Osteosarcoma. Ann. Oncol. 21 (7), vii320–325.
doi:10.1093/annonc/mdq276

Robinson, M. D., Mccarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140. doi:10.1093/bioinformatics/btp616

Santos, A., Domingues, C., Jarak, I., Veiga, F., and Figueiras, A. (2022).
Osteosarcoma from the unknown to the use of exosomes as a versatile and
dynamic therapeutic approach. Eur. J. Pharm. Biopharm. 170, 91–111. doi:10.
1016/j.ejpb.2021.12.003

Schmitt, A., Xu, W., Bucher, P., Grimm, M., Konantz, M., Horn, H., et al. (2021).
Dimethyl fumarate induces ferroptosis and impairs NF-κB/STAT3 signaling in
DLBCL. Blood 138, 871–884. doi:10.1182/blood.2020009404

Shah, N., and Sukumar, S. (2010). The Hox genes and their roles in oncogenesis.
Nat. Rev. Cancer 10, 361–371. doi:10.1038/nrc2826

Sheng, G., Gao, Y., Yang, Y., and Wu, H. (2021). Osteosarcoma and metastasis.
Front. Oncol. 11, 780264. doi:10.3389/fonc.2021.780264

Song, X., Wang, X., Liu, Z., and Yu, Z. (2020). Role of GPX4-mediated ferroptosis
in the sensitivity of triple negative breast cancer cells to gefitinib. Front. Oncol. 10,
597434. doi:10.3389/fonc.2020.597434

Tang, D., Chen, X., Kang, R., and Kroemer, G. (2020a). Ferroptosis: Molecular
mechanisms and health implications. Cell Res. 31, 107–125. doi:10.1038/s41422-
020-00441-1

Tang, R., Xu, J., Zhang, B., Liu, J., Liang, C., Hua, J., et al. (2020b). Ferroptosis,
necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 13, 110.
doi:10.1186/s13045-020-00946-7

Wang, J., Jiang, Y. H., Yang, P. Y., and Liu, F. (2021a). Increased collagen type V
α2 (COL5A2) in colorectal cancer is associated with poor prognosis and tumor
progression. Onco. Targets. Ther. 14, 2991–3002. doi:10.2147/ott.S288422

Wang, Y., Quan, F., Cao, Q., Lin, Y., Yue, C., Bi, R., et al. (2021b). Quercetin
alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 28, 231–243.
doi:10.1016/j.jare.2020.07.007

Whelan, J. S., and Davis, L. E. (2018). Osteosarcoma, chondrosarcoma, and
chordoma. J. Clin. Oncol. 36, 188–193. doi:10.1200/jco.2017.75.1743

Wu, S., Guo, X., Zhou, J., Zhu, X., Chen, H., Zhang, K., et al. (2020). High
expression of UNC5B enhances tumor proliferation, increases metastasis, and
worsens prognosis in breast cancer. Aging (Albany NY) 12, 17079–17098.
doi:10.18632/aging.103639

Xiao, B., Liu, L., Li, A., Xiang, C., Wang, P., Li, H., et al. (2020). Identification and
verification of immune-related gene prognostic signature based on ssGSEA for
osteosarcoma. Front. Oncol. 10, 607622. doi:10.3389/fonc.2020.607622

Xu, Q., Chen, S., Hu, Y., and Huang, W. (2021). Landscape of immune
microenvironment under immune cell infiltration pattern in breast cancer.
Front. Immunol. 12, 711433. doi:10.3389/fimmu.2021.711433

Yi, J., Zhu, J., Wu, J., Thompson, C. B., and Jiang, X. (2020). Oncogenic activation
of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated
lipogenesis. Proc. Natl. Acad. Sci. U. S. A. 117, 31189–31197. doi:10.1073/pnas.
2017152117

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. Omics 16, 284–287. doi:10.
1089/omi.2011.0118

Yu, X., Zhu, D., Luo, B., Kou, W., Cheng, Y., and Zhu, Y. (2022). IFNγ enhances
ferroptosis by increasing JAK-STATpathway activation to suppress SLCA711 expression
in adrenocortical carcinoma. Oncol. Rep. 47, 97. doi:10.3892/or.2022.8308

Yu, Z. L., and Zhu, Z. M. (2021). Comprehensive analysis of N6-methyladenosine
-related long non-coding RNAs and immune cell infiltration in hepatocellular
carcinoma. Bioengineered 12, 1708–1724. doi:10.1080/21655979.2021.1923381

Zeng, X. T., Liu, X. P., Liu, T. Z., andWang, X. H. (2018). The clinical significance
of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder
cancer gene expression data. Med. Baltim. 97, e0091. doi:10.1097/md.
0000000000010091

Zhang, S., Tong, Y. X., Zhang, X. H., Zhang, Y. J., Xu, X. S., Xiao, A. T., et al.
(2019). A novel and validated nomogram to predict overall survival for gastric
neuroendocrine neoplasms. J. Cancer 10, 5944–5954. doi:10.7150/jca.35785

Frontiers in Genetics frontiersin.org19

Zheng et al. 10.3389/fgene.2022.944978

https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1007/s11912-020-00995-8
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1186/s12885-020-07216-2
https://doi.org/10.1111/jcmm.16172
https://doi.org/10.1136/jitc-2021-002339
https://doi.org/10.1038/nrc3838
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/s41419-021-03411-6
https://doi.org/10.1016/j.canlet.2019.11.009
https://doi.org/10.1038/s41419-020-2298-2
https://doi.org/10.1038/s41419-020-2298-2
https://doi.org/10.1186/s12885-020-06725-4
https://doi.org/10.1186/s12885-020-06725-4
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1038/s41418-019-0299-4
https://doi.org/10.1016/j.biopha.2020.111202
https://doi.org/10.1186/s12967-020-02638-9
https://doi.org/10.1002/cbin.11121
https://doi.org/10.3390/ijms222212234
https://doi.org/10.1155/2021/1783485
https://doi.org/10.1155/2020/5021983
https://doi.org/10.1186/s13045-019-0720-y
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3892/ijo.2011.1201
https://doi.org/10.3390/ijms21228765
https://doi.org/10.1016/j.bone.2016.10.017
https://doi.org/10.1093/annonc/mdq276
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.ejpb.2021.12.003
https://doi.org/10.1016/j.ejpb.2021.12.003
https://doi.org/10.1182/blood.2020009404
https://doi.org/10.1038/nrc2826
https://doi.org/10.3389/fonc.2021.780264
https://doi.org/10.3389/fonc.2020.597434
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1186/s13045-020-00946-7
https://doi.org/10.2147/ott.S288422
https://doi.org/10.1016/j.jare.2020.07.007
https://doi.org/10.1200/jco.2017.75.1743
https://doi.org/10.18632/aging.103639
https://doi.org/10.3389/fonc.2020.607622
https://doi.org/10.3389/fimmu.2021.711433
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3892/or.2022.8308
https://doi.org/10.1080/21655979.2021.1923381
https://doi.org/10.1097/md.0000000000010091
https://doi.org/10.1097/md.0000000000010091
https://doi.org/10.7150/jca.35785
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.944978

	Identification of a novel gene signature with regard to ferroptosis, prognosis prediction, and immune microenvironment in o ...
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and procession
	2.2 Cell culture and death assays
	2.3 Transmission electron microscopy
	2.4 RNA isolation, RNA-sequence, and qRT-PCR
	2.5 Identification of ferroptosis-associated genes in osteosarcoma and functional annotation
	2.6 Weighted gene correlation network analysis
	2.7 Construction and validation of a FAG-based signature in osteosarcoma
	2.8 Construction and assessment of the nomogram
	2.9 Gene set enrichment analysis
	2.10 Immune landscape difference between high- and low-risk groups
	2.11 Statistical analysis

	3 Results
	3.1 Transcriptional changes induced by RSL3 and functional analyses
	3.2 WGCNA identified modules related to the prognosis of osteosarcoma
	3.3 Construction of a prognostic signature based on FAGs in osteosarcoma
	3.4 Validation of three FAG-based signatures in internal cohorts
	3.5 Validation of three FAG-based signatures in the external cohort
	3.6 The prognostic independence of the FAG-based signature and construction of a nomogram
	3.7 Gene set enrichment analysis and immunological analysis
	3.8 Expression and Kaplan–Meier survival analyses of the three FAGs

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


