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As a dynamic regulator for short-lived protein degradation and turnover, the

ubiquitin-proteasome system (UPS) plays important roles in various biological processes,

including response to cellular stress, regulation of cell cycle progression, and

carcinogenesis. Over the past decade, research on targeting the cullin-RING (really

interesting new gene) E3 ligases (CRLs) in the UPS has gained great momentum with

the entry of late-phase clinical trials of its novel inhibitors MLN4924 (pevonedistat) and

TAS4464. Several preclinical studies have demonstrated the efficacy of MLN4924 as

a radiosensitizer, mainly due to its unique cytotoxic properties, including induction of

DNA damage response, cell cycle checkpoints dysregulation, and inhibition of NF-κB and

mTOR pathways. Recently, the PROteolysis TArgeting Chimeras (PROTACs) technology

was developed to recruit the target proteins for CRL-mediated polyubiquitination,

overcoming the resistance that develops inevitably with traditional targeted therapies.

First-in-class cell-permeable PROTACs against critical radioresistance conferring

proteins, including the epidermal growth factor receptor (EGFR), androgen receptor (AR)

and estrogen receptor (ER), cyclin-dependent kinases (CDKs), MAP kinase kinase 1

(MEK1), and MEK2, have emerged in the past 5 years. In this review article, we will

summarize the most important research findings of targeting CRLs for radiosensitization.

Keywords: NEDDylation, EGFR, PROTAC, cullin-RING E3 ligase, MLN4924

INTRODUCTION

Over 60% of cancer patients undergo radiotherapy (RT) during their course of illness, with an
estimated 40% contribution toward curative cancer treatment (1, 2). While RT is an essential
element for curative, adjuvant, and palliative treatment of a range of human malignancies, a key
challenge in RT is to maximize radiation doses to the tumor mass while sparing the surrounding
healthy tissue (1). To that end, various approaches combining RT with chemotherapies as
radiosensitizers have been explored, which led to improvements in tumor response and higher
overall survival (OS) rates (3). Despite a clear success, the favorable clinical outcome of
chemoradiotherapy still comes at the sacrifice of increased toxicity in many clinical contexts,
mainly due to the limited specificity of conventional chemotherapies (4). In the past two decades,
several clinical trials have been conducted to test combining RT with targeted therapies against
radioresistance conferring proteins such as epidermal growth factor receptor (EGFR), histone
deacetylase (HDAC) and the B-rapidly accelerated fibrosarcoma (BRAF), aiming to develop
combined-modality treatment regimens with fewer side effects (5–7). Clinical studies consistently
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suggested increased efficacy and improved survival rates of these
new strategies, highlighting the clinical importance of using
targeted agents as radiosensitizers (4). However, cancer cells will
inevitably develop resistance toward these targeted therapies,
leading to disease progression and relapse (8). Therefore, there
is an urgent need to develop new strategies for radiosensitization.

In the past decade, targeting the activities of cullin-RING
(really interesting new gene) E3 ligases (CRLs) in the ubiquitin-
proteasome system (UPS) has gained considerable momentum
for cancer treatment with the entry of several late-phase clinical
trials of its first-in-class inhibitor MLN4924 (pevonedistat)
(9). As early as the 1990s, the implication of targeting CRL
for radiosensitization was suggested when its key component
RING box protein 2 (Rbx2, a.k.a., SAG, ROC2) was identified
as a redox inducible antioxidant protein (10). In recent
years, studies showed that CRLs carry out the turnover of
vital proteins involved in DNA damage response (DDR), as
well as those in cell signaling pathways that are critical for
radiosensitization (9, 11). Furthermore, in the past 5 years, the
development of cell-permeable PROteolysis TArgeting Chimeras
(PROTACs), which can selectively recruit radioresistance
conferring proteins for CRL-mediated polyubiquitination,
paved new methods in developing radiosensitizers that are less
likely to develop chemoresistance (12). As such, it is crucial
to systematically overview the mechanism of actions of CRL
inhibitors for radiosensitization.

In this review article, we will summarize major strategies
targeting CRLs and evaluate their potential as radiosensitizers
based on the revised framework of the Steel hypothesis, originally
described by George Steel in the 1970s (4). The revised hypothesis
describes the scenario whereby combined-modality of targeted
therapies and RT can improve the therapeutic outcomes by five
mechanisms: (1) spatial cooperation, (2) temporal modulation,
(3) biological cooperation, (4) cytotoxic enhancement, and (5)
normal tissue protection (4).

A GLIMPSE OF TRADITIONAL
RADIOSENSITIZERS

Typical RT involves ionizing radiation (IR), which uses high-
energy photon radiation, such as X-rays and gamma (γ) rays, and
particle radiation, such as electron (e), carbon ion and proton
(13, 14). The IR exerts cytotoxic effects via direct DNA damage,
or indirectly via generation of free radicals, particularly reactive
oxygen species (ROS) (15–17). Therefore, the radiosensitivity of
cancer cells can be influenced by biological factors that regulate
DNA damage repair, oxygen perfusion levels, and cell cycle
stage (16). Traditional radiosensitizers target these underlying
parameters for radiosensitization.

Platinum analogs, 5-fluorouracil (5-FU), and taxanes are
the most common clinically used radiosensitizers. Platinum
analogs, such as cisplatin and oxaliplatin, can bind to DNA
and produce DNA-DNA crosslinking, which will lead to cell
cycle arrest and exacerbating the radiation-inducedDNAdamage
(18). Meanwhile, 5-FU, capecitabine (a 5-FU oral prodrug), and
gemcitabine act as pseudo-substrates, incorporation of these

nucleoside analogs can dysregulate cell cycle checkpoint in the S
phase, disabling DNA damage repair machinery in cancer cells
upon IR administration (19, 20). On the other hand, taxanes,
such as paclitaxel and docetaxel, synchronize tumor cells at
cell cycle G2-M phase and trigger chromosomal missegregation
(21, 22). Meanwhile, tumors in the hypoxic microenvironment
(low pO2) are more radioresistant than those well-oxygenated
(13). At the presence of oxygen, RT-induced DNA damages
will be “fixed” via the formation of peroxyl radicals in DNA
that had been insulted by free radicals (23). The oxygen
mimics such as nitroimidazole derivatives (i.e., pimonidazole
and nimorazole), and hypoxia-specific toxins were investigated
in clinical trials as radiosensitizers (24, 25). Wang et al. (16)
provided a comprehensive review on the recent development of
radiosensitizers based on these principles.

The therapeutic potential of radiosensitizer is largely
determined by the enhanced efficacy and selectivity against
cancer cells but not normal tissue. However, traditional
radiosensitizers are also chemotherapeutic drugs, which can
cause prominent side effects. For example, cisplatin can cause
intolerable nausea, vomiting, hearing loss, and kidney damage
(26). Targeted therapies, such as MLN4924 and PROTACs
are highly selective and would have fewer side effects. In fact,
clinical trials of MLN4924 showed that this compound is
well-tolerated (27).

TARGETING THE
UBIQUITIN-PROTEASOME SYSTEM (UPS)

Cellular protein levels are tightly controlled by both protein
synthesis and degradation. The ubiquitin-proteasome system
(UPS), first characterized in the mid-20th century, is a
dynamically regulated multi-enzyme process that earmarks
substrate proteins for proteasomal-mediated degradation via
polyubiquitination (28). Targeted inhibition of the UPS via
direct eradication of the proteasome activities using bortezomib,
carfilzomib, or ixazomib has been proven clinically effective
for treating multiple myeloma (MM) (29). Several clinical
trials also investigated the UPS inhibitors for their potential
as radiosensitizers in the treatment of metastatic melanoma
(Phase I), head and neck cancer (Phase I), and glioblastoma
multiforme (GBM; Phase II) (30–32). However, unexpected
earlier tumor progression as a result of EGFR stabilization has
been reported with the combined administration of bortezomib
and conventional radiochemotherapy in head and neck cancer
(32, 33). Such suboptimal response is conceivable as proteasome
inhibition indiscriminately stabilizes the substrates, including
EGFR and other oncogenic proteins, limiting the clinical
applications in targeting proteasome as a radiosensitizing
strategy (32). Instead of directly inhibiting the proteasome,
recent studies have employed alternative strategies such as
targeting the UPS via inhibition of the upstream ubiquitin
(Ub) conjugation events or directly recruiting specific substrate
protein for polyubiquitination using PROteolysis TArgeting
Chimeras (PROTACs) (Figures 1, 2).
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FIGURE 1 | A schematic overview of cullin-RING E3 ligase (CRL) and NEDD8 conjugation. Conjugation of NEDD8 to the scaffold cullin protein in the CRL is carried

out in three enzymatic steps involving NEDD8-activating enzyme (NAE, E1N), UBC12, and UBE2F (E2N). The substrate receptor protein, docked in the CRL complex

by binding to the adaptor protein, recruits substrates for ubiquitin conjugation. MLN4924 and TAS4464 are specific NAE inhibitors, prohibiting NEDD8 conjugation

and thus inhibit CRL activity. The 2-D structure of MLN4924 and TAS4464 was derived from Yu et al. (34). N, NEDD8; U, ubiquitin; Rbx, RING box protein.

NEDDYLATION INHIBITION

NEDD8 Conjugation Pathway
The cullin-RING E3 ligases (CRLs) are responsible for

polyubiquitination of about 20% of cellular proteins degraded
via the UPS, most of which are critically involved in cell cycle

progression, DDR, and oncogenic signaling cascades (9). The

CRL complex’s core structure is formed with a scaffold protein
cullin bound with the RING-finger containing proteins (Rbx1

or Rbx2) at the C-terminus of cullin (35). This core complex
will be joined by the adaptor protein, which binds the cullin’s

N-terminus domain to form a complete CRL complex (Figure 1)
(35). Fully activation of CRLs requires conjugation of an Ub-like
protein called neural precursor cell-expressed developmentally
downregulated 8 (NEDD8) to near the C-terminus of the cullin
in the CRL complex (11). Conjugation of NEDD8 to cullins is
carried out in three enzymatic steps involving NEDD8-activating
enzyme (NAE; E1), UBC12 andUBE2F (E2s), and E3s (Figure 1).
NAE adenylates NEDD8 on its C-terminal glycine, forming a
NEDD8-NAE complex via a covalent thiol-ester bond, and
then transfers NEDD8 to the E2s via another thiol-ester bond
(36, 37). NEDD8 E3 ligases execute the final step in conjugating

Frontiers in Oncology | www.frontiersin.org 3 August 2020 | Volume 10 | Article 1517

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zheng and Tao Targeting CRL for Radiosensitization

FIGURE 2 | Overview of the major cytotoxic mechanism of NEDDylation inhibition. All the characters in “Red” color are CRL substrates. Accumulation of Cdt1 can

trigger DNA rereplication, resulting in DNA damages. Stabilization of CDC25A can potentially cause dysregulation of both early (G1 phase to S phase) and late (G2

phase to M phase) cell cycle checkpoints (dash arrow). Meanwhile, the accumulation of Wee1, p21, and p27 will trigger cell cycle arrest at the G1 or G2 phase.

Stabilization of IκBα will lead to sequestration NF-κB p65 and p50 heterodimer in the cytosol, leading to inhibition of its transcriptional activities. Stabilization of

DEPTOR can directly inhibit mTOR. Ionizing radiation also triggers cell death via induction of DNA damages. p, phosphor group.

NEDD8 to cullins, forming an isopeptide bond with the ε-amino
group of a substrate lysyl residue (38, 39). NEDD8 conjugation
facilitates the CRL structural remodeling that will juxtapose the
substrate toward the catalytically active ubiquitylation site of
CRL (40–42). The substrate receptor protein, docked in the CRL
complex by binding to the adaptor protein, recruits substrates
for Ub conjugation once CRL is fully functional (43) (Figure 1).
So far, seven different types of human cullin proteins (CUL1,

2, 3, 4A, 4B, 5, 7) have been identified, and new members of
the receptor and adaptor proteins are emerging (44). A more
detailed overview of NEDD8 conjugation in CRLs has been
summarized by Petroski and Deshaies in their review paper (45).

MLN4924 is an adenosine sulfamate analog that inhibits
NEDDylation via the formation of anMLN4924-NEDD8 adduct,
blocking the downstream NEDD8 conjugation cascade within
a few hours after administration (46) (Figure 1). TAS4464 is
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another NAE inhibitor recently developed with more potent
inhibitory effects and prolonged duration of target-binding
compared with MLN4924 (47, 48). NAE inhibitors MLN4924
and TAS4464 targeting the process of NEDD8 conjugation
have shown particularly promising results in several clinical
trials (phase I/II/III) for cancer treatment (46). NEDDylation
inhibition appears to have a unique profile of sensitivity
toward various types of malignancies. So far, the primary
identified cytotoxic mechanisms of MLN4924 include induction
of DNA rereplication, senescence, dysregulation of cell cycle
checkpoints control, as well as inhibition of mTOR and NF-
κB pathways (Figure 2) (46, 49–55). Substrates of CRLs, such
as Wee1, checkpoint kinase 1 (CHK1), p21, and cell division
cycle 25A (CDC25A), are key components of double-strand
breaks (DSBs) repair proteins (56–60) (Figure 2). Mainly, the
degradation of cell cycle proteins Cdt1, p21, and Set8 is
mediated by CRL4Cdt2, in which Cdt2 plays as a substrate
recognition protein (61–63). Genotoxic insults trigger binding
of Cdt2 on to the DNA sliding clamp—proliferating cell
nuclear antigen (PCNA)—loading CRL4Cdt2 on to DNA for
the substrate degradation (61–63). Set8 stabilization leads to
lysine 20 of histone H4 (H4K20) hypermethylation, triggering
transcriptional downregulation of histone with the resultant
chromatin decompaction and DNA damage activation, as
depicted elegantly by Abbas et al. (61). Driven by the fact that the
development of radioresistance is largely determined by factors
such as DNA damage response DDR activation after ionizing
radiation (IR), cell cycle checkpoints controls, and anti-apoptotic
pathways dysregulation, it is essential to investigate the potential
of using NEDDylation inhibitors as radiosensitizers (64).

NEDDylation Inhibitors as
Radiosensitizers—DNA Damage Response
One of the major cytotoxic effects of MLN4924 is achieved
through the stabilization of its substrate Cdt1, a so-called “DNA
replication licensing factor,” which tightly regulates the cell cycle
progression by facilitating the formation of the pre-replicative
complexes (pre-RC) at the G1 phase of cell cycle (46, 65). To
prevent relicensing, which will lead to multiple rounds of DNA
replication initiation per cell cycle, Cdt1 is rapidly degraded
by the CRL Skp1-cullin1-F-box protein (SCF) right after G1
phase (66) (Figure 2). MLN4924-mediated inhibition of SCF
will lead to the accumulation of Cdt1, causing firing of several
rounds of DNA replication initiations without cell division, as
evidenced by the accumulation of cells with > 4N DNA in flow
cytometry (46) (Figure 2). This process will lead to the collision
of replication forks and the induction of overwhelming both
single- and double-strand DNA damage (67).

The majority of IR-mediated cell killing is mediated by the
massive induction of DNA DSBs (64). Radiosensitivity of tumor
cells is largely decided by their ability to trigger the DDR, via
activation of cell cycle checkpoints and DNA damage repair
(64). MLN4924 functions as a radiosensitizer in several types
of cancer by potentiating DNA damage and interfering with
DDR activation. In the orthotopic xenograft mouse models
of human pancreatic cancer and head and neck squamous

cell carcinoma (HNSCC), MLN4924 overcame radioresistance
via induction of DNA rereplication, leading to prominent
induction of DSBs (68, 69). In pancreatic cancer cells, the
maximal radiosensitizing effects of MLN4924 was achieved when
MLN4924 was administered 24 h prior to receiving RT (69).
MLN4924 pretreatment before RT administration will allow time
for CRL substrates’ accumulation. The radiosensitizing effect
of MLN4924 was partially reversed in pancreatic cancer cells
with Cdt1 knockdown (69). However, the exact involvement of
Cdt1 stabilization in MLN4924-induced radiosensitization needs
further investigation.

Expression levels of CRL components were significantly
elevated in HNSCC cells compared with those in adjacent normal
squamous mucosa of the oral cavity and nasopharynx (68). As a
result, DNA rereplication was not observed in the cells of normal
tissue (68). Besides HNSCC, hyperactivation of CRLs was also
observed in GBM, breast cancer, and liver cancer (70). Therefore,
the unique cytotoxic mechanism highlights the potential of
NEDDylation inhibitors as radiosensitizers from the perspectives
of “spatial cooperation,” “biological cooperation,” “normal tissue
protection,” and “cytotoxic enhancement” based on the revised
Steel framework.

MLN4924 as a Radiosensitizer—Cell Cycle
Arrest
Due to the lethality of unrepaired DNA DSBs, developing
new agents to prevent activation of cell cycle checkpoints
in response to IR is critical to overcoming radioresistance
(71). DDR is initiated by activation of ataxia-telangiectasia
mutated (ATM) and ataxia-telangiectasia and RAD3-related
(ATR), which will locate the DNA damage and activate various
downstream proteins (72). ATM is the major regulator of
DDR following IR-induced DSBs, leading to phosphorylation of
downstream CHK1 and CHK2 (72). Activated CHKs will then
phosphorylate the isoforms of CDC25 phosphatases, triggering
their polyubiquitination and degradation (73). Meanwhile, the
dephosphorylation and activation of CDK2-cyclinE and CDK1-
cyclinB depend on the phosphatase activities of CDC25 (73).
As a result, with activation of DDR and subsequent CDC25
degradation, cell cycle arrest will occur at the end of G1 phase
or the end of G2 phase to allow time for DNA repair (73)
(Figure 2). Among the three isoforms of CDC25s (CDC25A, B,
C), CDC25A regulates both early (G1 phase to S phase) and late
(G2 phase to M phase) cell cycle checkpoints (Figure 2) (73).
Rapid degradation of CDC25A is critical for activating cell cycle
arrest upon IR-induced DNA damages (72). The ubiquitination
of CDC25A is carried out by the CRL E3 ligase SCFbeta−TrCP,
in which the beta-TrCP (β-transducin repeat-containing protein)
facilitates the recruitment of the CDC25A for Ub conjugation
(74).MLN4924-mediated inhibition of SCFbeta−TrCP will stabilize
the CDC25A protein, causing cell cycle checkpoint dysregulation
and potentially radiosensitization (Figure 2).

Accumulation of CRL substrates may also induce cell cycle
arrest via checkpoint activation. The Wee1 kinase, which
phosphorylates and keeps CDK1 in inactive form for activation of
cell cycle checkpoints, is another major CRL substrate (Figure 2)
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(75). Meanwhile, degradation of members of the universal cyclin-
dependent kinase inhibitors (CDKIs) family p21 (Cip1) and p27
(Kip1) is also mediated by CRLs (76). As such, several studies
reported the activation of cell cycle checkpoints with MLN4924
treatment (77–79). In cell lines of hormone-refractory prostate
cancer (HRPC), MLN4924 triggered cell cycle arrest at the G2
phase due to Wee1, p21, and p27 accumulation (79). In the
colorectal cancer cell lines of HT-29 and HCT-116, and breast
cancer cell lines of SK-BR-3 and MCF7, MLN4924 induced
stabilization of p27 and p21, respectively, leading to cell cycle
G2/M arrest (77, 78). MLN4924 and RT cotreatment induced a
more significant accumulation of Wee1, p21, and p27 than either
treatment modality alone, leading to prominent cell cycle arrest
and unanimous sensitization all these types of cancer cells toward
RT (77–79).

MLN4924 as a
Radiosensitizer—Anti-apoptotic Pathways
Increased radioresistance of cancer cells is developed by
the activation of several compensatory pro-survival cell
signaling pathways, including phosphatidylinositol 3-kinase
(PI3K)/AKT/mTOR pathway, EGFR/mitogen-activated protein
kinase (MAPK) pathway and NF-κB signaling pathway (80, 81).
The classical theories of how radiation activates these anti-
apoptotic pathways state that ionizing events in the cytosol
and the mitochondria will generate large quantities of reactive
oxygen species (ROS) and reactive nitrogen species (RNS)
that will inhibit protein phosphatase (PTPase) activities
(81). Radiation can also promote membrane-associated
receptor activation by lipid rafts aggregation, leading to
activation of downstream pathways (82). Activation of the
PI3K/AKT/mTOR, EGFR/MAPK, and NF-κB pathways can
facilitate the development of radioresistance by promoting DNA
damage repair, and transcriptional upregulation of a myriad of
stress-responsive proteins (83, 84) (Figure 2). Therefore, it is
critical to understand the impact of NEDDylation inhibition on
these compensatory pro-survival pathways activated by RT.

Inhibition of NF-κB pathway is one of the major causes of
MLN4924 induced cytotoxicity, as evidenced in the initial studies
in acute myeloid leukemia (AML) (49). The inhibitor of nuclear
factor kappa B (IκBα) binds to the NF-κB p65 and p50 complex
and keeps the heterodimer in the cytosol as an inactive form (85).
Activation of the pathway triggers rapid degradation of IκBα via
the SCFβ−TrCP E3 ligase, releasing the p65 and p50 heterodimer
for nuclear translocation and transcriptional upregulation of
its target genes (86). Treatment of MLN4924 will inhibit the
SCFβ−TrCP and prohibit RT-induced IκBα degradation, with
resultant sequestration of p65 and p50 in the cytoplasm (49,
52, 87) (Figure 2). This mechanism is validated in studies
showing that eradication of the RING-box protein Rbx2 in
the SCFβ−TrCP complex triggered IκBα stabilization and NF-κB
pathway inhibition, leading to re-sensitization of cancer cells
toward RT (88) (Figure 2). Furthermore, the existing studies
also suggested that the radiosensitizing effect of bortezomib is
largely due to the inhibition of the NF-κB pathway (89). As a

result, another major radiosensitizing mechanism of MLN4924
is achieved through the NF-κB pathway inhibition (Figure 2).

Several mTOR inhibitors, including everolimus and
temsirolimus, are under early Phase (I/II) clinical trials as
a radiosensitizer to treat several cancer types such as prostate
cancer, GBM, and lung cancer (90–92). In human cancer cell lines
of acute lymphoblastic leukemia (ALL), AML, cervical, breast,
colon, GBM, and kidney, the activity of mTOR is downregulated
by MLN4924 in an almost dose-dependent manner, as
evidenced with dephosphorylation of mTOR downstream
targets such as p70S6 kinase (51, 93–95). Intrinsic mTOR’s
upstream inhibitors, including the DEP domain containing
MTOR interacting protein (DEPTOR) and the regulated
in development and DNA damage responses 1 (REDD1),
are substrates for SCFβTrCP and cullin4A-RING (CRL4A),
respectively. These protein-drug interactions largely explain the
unanimous response of mTOR inhibition toward NEDDylation
inhibition (50, 51, 55). The significant inhibitory effect of
MLN4924 on the PI3K/AKT/mTOR axis has implicated the
NEDDylation inhibitors as potential therapeutic radiosensitizers
(Figure 2).

In summary, NEDDylation inhibition can block key
pro-survival pathways activated with RT via stabilization
of their intrinsic upstream inhibitory proteins. The unique
role of MLN4924 in blocking these compensatory pathways
demonstrated its potential application as a radiosensitizer
via “spatial cooperation,” “biological cooperation,” and
“cytotoxic enhancement” (4).

PROTEOLYSIS TARGETING CHIMERAS
(PROTACS)

Neither bortezomib nor MLN4924 addresses specific proteins
as they broadly inhibit the general machinery necessary for
protein degradation. MLN4924 is not selective since all the CRL
complexes in the cells are inhibited, blocking the activities of
over 400 enzymes (70). The PROteolysis TArgeting Chimeras
(PROTACs) technology was developed in recent years to
overcome these limitations of targeting the protein degradation
machinery (96). PROTACs are heterobifunctional molecules
with two different ligands connected via a linker (Figure 3).
One end of the PROTAC, i.e., the “warhead,” binds to
the protein of interest (POI), and the other end binds to the
receptor protein in the CRL complex, thereby promoting the
physical interaction of the target protein with the E3 ligase for
polyubiquitination (Figure 3) (97). Traditional targeted therapies
using occupancy driven pharmacology only affect enzymatic
function via competitive inhibition, which requires druggable
active sites in those enzymes that are susceptible to mutations
and protein overexpression (8).Whereas, polyubiquitinated POIs
will be degraded by the proteasome with the eradication of
both the enzymatic activities and the scaffold functions of
target proteins (97). Furthermore, PROTACs-induced protein
degradation is a catalytic process, as PROTACs will dissociate
from the CRL complex after POI polyubiquitination and binds
to a new target. This unique catalytic property of PROTACs
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FIGURE 3 | An overview of the PROTAC targeting EGFR for CRL2VHL-mediated polyubiquitination. (A) 2D structure of the PROTAC MS39 that targets EGFR. The

“warhead” potion of the PROTAC is based on EGFR inhibitor (EGFRi) gefitinib. (B) MS39 can recruit EGFR for polyubiquitin conjugation by the CRL2VHL. MS39

mediated EGFR degradation is a catalytic process, as evidenced with dissociation of the PROTAC from the CRL2VHL complex after EGFR polyubiquitination.

can lead to efficient POI clearance at a very low dose
5 (98) (Figure 3).

Due to these unique characteristics, targeting CRL substrates
related to the development of radioresistance with PROTACs
could provide a new strategy to sensitize cancer cells toward RT
(70) (Figure 4). Since 2015, over 30 small-molecule PROTACs
have been reported, most of them utilize substrate receptor
proteins von Hippel-Lindau (VHL) in the CRL2 complex
(CRL2VHL), and cereblon (CRBN) in the cullin4-RING complex
(CRL4CRBN) as the PROTAC binding sites in the E3 ligase

(99) (Figure 4). PROTACs against radioresistance-related
key substrates of CRL2 and CRL4 have been developed.
These substrates include the EGFR, androgen (AR) and
estrogen (ER) receptors, CDKs, MAP kinase kinase 1 (MEK1)
and MEK2, anaplastic lymphoma kinase (ALK), Bruton
tyrosine kinase (BTK), bromodomain and extra-terminal
motif (BET) proteins, and bromodomain (BRD) proteins
(Figure 4) (100–107). Since all these PROTACs are first-in-
class protein degraders developed within the past 5 years, a
comprehensive understanding of the underlying molecular
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FIGURE 4 | A non-exhaustive list of PROTACs targeting proteins related with the development of radioresistance. Corresponding CRLs that mediate

polyubiquitination of these proteins were also identified. EGFR, epidermal growth factor receptor; ER, estrogen receptor; AR, androgen receptor; CDK,

cyclin-dependent kinase; ALK, anaplastic lymphoma kinase; MEK, mitogen-activated protein kinase kinase; BTK, Bruton tyrosine kinase; BET, bromodomain and

Extra-Terminal motif; BRD, bromodomain.

mechanism of these novel compounds is essential for developing
next-generation radiosensitizers.

PROTACs as Radiosensitizers—Targeting
Receptors
Targeting EGFR using traditional targeted therapies, such as
monoclonal antibodies or tyrosine kinase inhibitors (TKIs), as
radiosensitizers have gained moderate success in non-small-
cell lung cancer (NSCLC), but failed in GBM and HNSCC
to improve OS rates (108, 109). Genetic alterations, including
amplification, rearrangement, altered splicing, and mutations,
that regulate EGFR expression levels and protein activities in
GBM and HNSCC, will eventually lead to the development
of resistance toward EGFR inhibitors (108, 110). Lysosome-
independent degradation of EGFR is mediated by CRL2VHL,
consistent with the report in clinical trial showing stabilization
of EGFR with bortezomib-mediated proteasome inhibition (32,
111). Recently, several PROTACs were developed to target
EGFR for CRL2VHL-mediated degradation. PROTAC-based
technology offers great flexibility in choosing the clinically
relevant forms of EGFR proteins targeted for degradation
by changing the “warhead” of the degrader (Figure 3). For
example, the lapatinib-based PROTAC largely degraded the
wildtype, and exon-20 insertion mutant forms of EGFR; the
gefitinib-based PROTAC selectively degraded EGFR with exon-
19 deletion, and L858R point mutation; afatinib-based PROTAC
degraded double mutant (L858R/T790M) EGFR (112). All these
PROTACs can efficiently eliminate EGFR at low-nanomolar
concentrations, and exerted sustained inhibitory effects on
cancer cell proliferation and downstream kinases signaling of
EGFR (112).

RT-induced overexpression of hormonal receptors, including
AR and ER, plays a vital role in mediating radioresistance in
prostate and breast cancers, respectively (113, 114). In castration-
resistant prostate cancer (CRPC) cells, the PROTAC ARD-61
can efficiently degrade AR and inhibited cancer cell proliferation
with half-maximum inhibitory concentration (IC:50) values <

500 nM, regardless of AR mutations, and expression status of
AR splice variants, such as AR splice variant-7 (AR-V7) (102).
Meanwhile, the viability of cells not expressing AR was not
affected (102). Another AR degrader ARD-69 has DC50 values
of < 1 nM in prostate cancer cell lines LNCaP and VCaP (DC50:
the concentration at which 50% of the target protein has been
degraded) (115). The importance of these PROTACs as potential
radiosensitizers for prostate cancer is emphasized by the study
showing that targeted degradation of RT-increased ARwith FDA-
approved AR degradation enhancer, dimethylcurcumin (ASC-
J9), significantly sensitized prostate cancer toward radiation
in xenograft models, while conventional anti-androgen drugs,
such as enzalutamide, has no radiosensitizing effects (114).
Meanwhile, the ER degrader ERD-308 can induce over 95% of
ER degradation at concentrations of < 5 nM in ER+ breast
cancer cell lines of MCF-7 and T47D (101). Given the synergistic
effect of typical anti-estrogenic drugs with RT in the breast, and
cervical cancers, these ER degraders can also be used as potential
radiosensitizers alongside with RT (116). More importantly,
these degraders can overcome the common resistant mechanism
developed during anti-hormonal therapy.

PROTACs as Radiosensitizers—Targeting
Oncogenic Kinases
It is well-known that many patients will eventually become
drug resistant and develop disease relapse with prolonged
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treatment of protein kinase inhibitors (117). The mechanism
of drug resistance is mainly attributed to the kinome
rewiring effect, whereby reactivation of the oncogenic
pathways restored via compensatory feedback activation of
alternative kinases (117). Particularly, RT-induced activation
of MEK1/2 is associated with radioresistance is found in
several human malignancies (118, 119). Targeted inhibition
of MEK1/2 using kinase inhibitors led to radiosensitization
in several types of cancer, such as astrocytoma and pancreatic
tumor (120, 121). Meanwhile, CDK inhibitors, especially
those against CDK4 and CDK6, synergized with RT in
killing GBM cells and prolonged survival in the orthotopic
GBM model (122). However, resistance toward MEK1/2
and CDK inhibitors will inevitably occur with prolonged
treatment (123).

Treatment with PROTACs will lead to catalytic degradation
of specific kinases, offering sustained inhibition on their
downstream targets (112). PROTACs for kinases critical for
radioresistance, including CDKs, MEK1/2, ALK, and BTK,
have been recently developed (103, 105–107). Given their
unique pharmacological characteristics, these PROTACs
carry great potential as radiosensitizers. For example, the
PROTAC MS432 recruits MEK1/2 for CRL2VHL-mediated
polyubiquitination (105). It can suppress extracellular signal-
regulated kinase (ERK) phosphorylation and efficiently inhibit
colorectal cancer cell proliferation with DC50 values of
31 nM and 17 nM for MEK1 and MEK2 in HT-29 cells,
respectively (105). Meanwhile, the CDK6 degrader was
recently developed by linking the FDA-approved CDK6
inhibitor palbociclib with a thalidomide derivative for targeted
CDK6 polyubiquitination by CRL4CRBN (124). Given that
the combination treatment of RT with CDK inhibitors
palbociclib and ribociclib are well-tolerated in malignancies
such as breast cancer and glioma (NCT 02607124), CDKs-
targeting PROTACs are great pharmaceutical candidates for
radiosensitizers (125).

CONCLUSION AND DISCUSSION

In summary, protein turnover is a dynamically regulated
process influencing many important biological functions,
including DDR, cell cycling, and signaling transductions.
Pharmacological intervention of protein turnover offers a
new therapeutic window for radiosensitization. Driven by
their unique cytotoxic mechanisms, the novel strategies
targeting the UPS with NEDDylation inhibitors and the
PROTACs carry great potential as radiosensitizers to improve
the efficacy of RT. The NEDDylation inhibitor MLN4924
exerts several cytotoxic functions, including DNA damage, cell
cycle checkpoints dysregulation, and inhibition of NF-κB, and
mTOR pathways (Figure 2). Preclinical studies had validated
the efficacy of NEDDylation inhibitors as radiosensitizers.
Meanwhile, recent progress in PROTAC technology has shown
significant improvements in terms of the cellular permeability
and substrate specificity. The PROTACs can selectively recruit
key proteins related to radioresistance, such as EGFR, AR,
ER, MEK1/2, and CDKs, for CRL-mediated polyubiquitin
conjugation and subsequent degradation. Based on these strong
basic and preclinical investigations hereby summarized, further
clinical studies using NEDDylation inhibitors and PROTACs
as radiosensitizers are warranted for the therapeutic gain of
human malignancies.
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