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Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between
qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics
of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses
on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud
model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information
communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation
results show that the cloud model bat algorithm has good performance on functions optimization.

1. Introduction

Metaheuristics is a new method for stochastic optimization;
in recent years, more and more different metaheuristic
algorithms have been proposed, such as particle swarm
optimization (PSO) [1], differential evolution (DE) [2], and
bat algorithm (BA) [3], and some novel metaheuristic algo-
rithms are proposed. The bat algorithm was proposed by
Xin-She Yang in 2010, which is inspired by the echolocation
behaviour of microbats. The bat algorithm controls the size
and orientation of bats moving speed through adjusting the
frequency of each bat and then moves to a new location; the
intensive local search is controlled by the loudness and pulse
emission rate. To some extent, PSO is a special case of suitably
simplified BA. Due to the fact that BA combines with the
advantages of swarm intelligence, which utilizes a balanced
combination of the advantages of the standard PSO and the
intensive local search controlled by the loudness and pulse
rate, BA is widely researched in different field applications.
BA has some advantages over other algorithms, and the
number of adjustable parameters is fewer. Consequently, BA
has been used for solving engineering design optimization
[4–6], classifications [7], fuzzy cluster [8], prediction [9],
neural networks, and other applications.

The cloud model is proposed by Li et al. in 1995, which
is a model of the uncertain transition between a linguistic

term of qualitative concept and its numerical representation
[10]. In recent years, the cloud model is applied in the field of
metaheuristics, such as cloud model based genetic algorithm
(CGA) [11] and cloud model based evolutionary algorithm
(CBEA) [12, 13]. In this paper, the bat algorithm was used
for reference, the echolocation mechanism based on cloud
modelwas remodeled, and twomechanismswere introduced:
population information communicating of each individual
and random Lévy flight; a cloud model bat algorithm (CBA)
was proposed, and the purpose is to improve the convergence
rate and precision of bat algorithm. At the end of this paper,
combination strategies and parameter settings of CBA are
discussed, several appropriate parameters are selected, and
eight typical benchmark functions are tested, and the test
results show that the proposed algorithm is feasible and
effective.

2. Behaviors of Bats and Cloud Model

2.1. Flight and Echolocation of Bats. Bats are the only volitant
mammals in the world; after tens of millions of years of
evolution, there are nearly 1,000 species of bats. Bats have
powered flight ability, which is much more complex than
glide; their flight can generate complex aerodynamic tracks,
and the flight is accompanied with local self-similarity [14].
Many microbats have amazing echolocation; these bats can
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Objective function 𝑓(𝑥), 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥
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Initialize the bat population 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and V

𝑖

Define pulse frequency 𝑓
𝑖
at 𝑥
𝑖
Initialize pulse rates 𝑟

𝑖
and the loudness 𝐴

𝑖

While (𝑡 < Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [(1)]

if (rand > 𝑟
𝑖
)

Select a solution among the best solutions
Generate a local solution around the selected best solution

end if
Generate a new solution by flying randomly

if (rand < 𝐴
𝑖
& 𝑓 (𝑥

𝑖
) < 𝑓 (𝑥

∗
))

Accept the new solutions
Increase 𝑟

𝑖
and reduce 𝐴

𝑖

end if
Rank the bats and find the current best 𝑥

∗

end while
Postprocess results and visualization.

Algorithm 1: Pseudocode of the bat algorithm (BA) [3].

emit a very loud and short sound pulse and receive the
echo that reflects back from the surrounding objects by their
extraordinary big auricle. Then, they analyze this feedback
information of echo in their subtle brain. They not only can
discriminate direction for their own flight pathway according
to the echo but also can distinguish different insects and
obstacles, to hunt prey and avoid collision effectively in the
day or night. Bats minimize the conspicuousness of their
echolocation call to potential insect prey by reducing call
intensity and by changing the frequencies in the call [15].
Furthermore, the echolocation signal that one individual bat
uses to collect information can simultaneously serve as a
communication function, allowing, for example, groupmem-
bers to remain in contact with one another. Echolocation call
plays a crucial and hitherto underestimated role for social
communication in a highly mobile and gregarious nocturnal
mammal and thus facilitates social communication in bats
population [16].

2.2. Bat Algorithm. In simulations, they use virtual bats
naturally, to define the updated rules of their positions 𝑥

𝑖

and velocities V
𝑖
in a 𝐷-dimensional search space. The new

solutions 𝑥𝑡
𝑖
and velocities V𝑡

𝑖
at time step 𝑡 are given by

𝑓
𝑖
= 𝑓min + (𝑓max − 𝑓min) 𝛽,

V𝑡
𝑖
= V𝑡−1
𝑖

+ (𝑥𝑡
𝑖
− 𝑥
∗
) 𝑓
𝑖
,

𝑥𝑡
𝑖
= 𝑥𝑡−1
𝑖

+ V𝑡
𝑖
,

(1)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform
distribution. Here, 𝑥

∗
is the current global best location

(solution) which is located after comparing all the solutions
among all the 𝑛 bats.

For the local search part, once a solution is selected
among the current best solutions, a new solution for each bat
is generated locally using random walk:

𝑥new = 𝑥old + 𝜀𝐴 𝑡, (2)

where 𝜀 ∈ [−1, 1] is a random number, while𝐴
𝑡
= ⟨𝐴𝑡
𝑖
⟩ is the

average loudness of all the bats at this time step.
Furthermore, the loudness 𝐴

𝑖
and the rate 𝑟

𝑖
of pulse

emission have to be updated accordingly as the iterations
proceed. These formulas are

𝐴𝑡+1
𝑖

= 𝛼𝐴𝑡
𝑖
,

𝑟𝑡+1
𝑖

= 𝑟0
𝑖
[1 − exp (−𝛾𝑡)] ,

(3)

where 𝛼 and 𝛾 are constants.
Based on these approximations and idealization, the basic

steps of the bat algorithm [3] can be summarized as the
pseudocode shown in Algorithm 1.

2.3. Lévy Flight. Lévy flight is a random walk in which the
step-lengths have a probability distribution that is heavy-
tailed. Lévy flight has several properties: “heavy tails,” sta-
tistical self-similarity, random fractal characteristics, and
infinite variance with an infinite mean value [17]. Lévy
distribution, Gaussian distribution, and Cauchy distribution,
which is a 𝛼 stable distribution; however, probability density
function (PDF) curves of Gaussian distribution and the
Cauchy distribution are symmetrical; Lévy distribution is
not symmetrical [18]. Probability density function of Lévy
distribution on 𝑥 > 𝜇 is

Lévy ∼ 𝑓 (𝑥) = √
𝐶

2𝜋

𝑒−𝐶/2(𝑥−𝜇)

(𝑥 − 𝜇)
3/2

, (4)

where 𝜇 is the location parameter and 𝐶 is the scale param-
eter. PDF curve of the three distributions is presented in
Figure 1.
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Figure 1: The PDF curve of the three distributions.

Studies have shown that flight behaviour ofmany animals
and insects has demonstrated the typical characteristics of
Lévy lights. A recent study by Reynolds and Frye shows that
fruit flies explore their landscape using a series of straight
flight paths punctuated by a sudden 90∘ turn, leading to a
Lévy flight-style intermittent scale free search pattern [19].
Studies on human behaviour such as the Ju/’hoansi hunter-
gatherer foraging patterns also show the typical feature of
Lévy flights [20]. Subsequently, due to the remarkable proper-
ties of stable Lévy distribution, Lévy flight has been applied to
optimization and optimal search [21], and preliminary results
show its promising capability.

2.4. Cloud Model. Cloud model build a transformational
bridge between a linguistic term of qualitative concept
and quantitative representation, which reflects randomness,
fuzziness, and the relationship between randomness and
fuzziness of uncertainty in knowledge representation [22, 23].
The cloud and cloud droplets are defined as follows.

Let𝑈 be the set𝑈 = {𝑥}, as the universe of discourse, and
let 𝐶 be a linguistic term associated with𝑈. The membership
degree of 𝑥 in 𝑈 to the linguistic term 𝐶, 𝜇(𝑥), is a random
number with a stable tendency. 𝜇(𝑥) takes the values in [0, 1].
A membership cloud, or compatibility cloud, is a mapping
from the universe of discourse 𝑈 to the unit interval [0, 1].
That is,

𝜇 (𝑥) : 𝑈 → [0, 1] ,

∀𝑥 ∈ 𝑈, 𝑥 → 𝜇 (𝑥) .
(5)

Thedistribution of𝑥 in universe of discourse𝑈 is called cloud
and each 𝑥 is called a drop of cloud [22].

A normal cloud is defined with three digital characteris-
tics, expected value 𝐸𝑥, entropy 𝐸𝑛, and hyper entropy 𝐻𝑒
and a cloud, namely, 𝐶(𝐸𝑥, 𝐸𝑛,𝐻𝑒). Expectation 𝐸𝑥 is the
position at 𝑈 corresponding to the center of gravity of the
cloud. In other words, the element 𝐸𝑥 in the universe of
discourse is fully compatible with the linguistic term. The
entropy 𝐸𝑛 is a measure of the coverage of the concept within
the universe of discourse. In other words, 𝐸𝑛 is defined by

the bandwidth of the mathematical expected curve (MEC)
of the normal cloud showing how many elements in the
universe of discourse could be accepted to the linguistic
term, the greater 𝐸𝑛, and the broader coverage. It can be
also considered as a measure of fuzziness of the concept,
representing the scope of the universe of discourse that can be
accepted by the concept.The hyper entropy𝐻𝑒 is the entropy
of the entropy 𝐸𝑛. It is a measure of dispersion of the cloud
drops; it can be used a measure of thickness of the cloud,
which not only reflects the randomness of samples appearing
that represent qualitative concepts value but also reveals the
relatedness between fuzziness and randomness.

Normal cloud model makes full use of the universality of
the normal distribution and normal membership function,
which not only broaden the formation conditions of the nor-
mal distribution but alsomake the normalmembership func-
tion be the expectation of the random membership degree;
the randomness and fuzziness are represented uniformly by
entropy and then the theoretical basis of universality of the
normal cloud model is established [24]. Cloud model has the
3𝜎 characteristics; there are 99.7% drops of cloud located in
[𝐸𝑥 − 3𝐸𝑛, 𝐸𝑥 + 3𝐸𝑛]. These drops of cloud are generated by
the normal cloud generator. Atomized feature of the cloud
model: the drops of cloud spread around while the hyper
entropy is increasing, butmany drops still stand in the central
area of the cloud, which can be used to adjust the strategies
of the evolution and help to escaping from local optima [11].
The clouds with different digital characteristics are depicted
in Figure 2.

3. Cloud Model Bat Algorithm

Bats prey by emitting pulse with a certain frequency and
detection of the echo; they communicate with each other
using echolocation call. This paper assimilates its principle
to idealize some of the echolocation characteristics of micro-
bats. Based on the excellent characteristics of cloudmodel on
uncertainty knowledge representation, a bat algorithm based
on cloud model was proposed (cloud model bat algorithm,
CBA).

3.1. Knowledge Representation of Bat Cloud. In order to depict
the CBA, the habits of bats are used for reference, taking
advantage of the excellent properties of cloud model. Firstly,
representation of relevant knowledge needs to be described;
several concepts certain about CBA were given as follows.

(1) Optimizing Generation. Optimizing generation indicates
the number of iteration circles in the algorithm; each iteration
circle may include several times replacement of population,
simply, namely, 𝑡.

(2) Individual. In CBA, each bat is treated as an individual;
when it is in flight, the position of each bat 𝑥𝑡

𝑖
signifies a

candidate solution of optimization problem, where 𝑖 is the
number of individuals and 𝑡 is the optimizing generation.
For the high-dimensional optimization, 𝑥𝑡

𝑖
represent a vector

under high-dimensional space, correspondingly, where each
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Figure 2: The cloud with different digital characteristics. 𝐶(0, 2, 0.2) denote a cloud, 0 is expectation, 2 is entropy, and 0.2 is hyper entropy.

dimension denotes an attribute of the solution of optimiza-
tion problem.

(3) Fitness Function. Fitness function denotes adaptation
degree of each individual aiming at their located environment
in the community. It is used to evaluate the individual and
decides which individual to retain or eliminate. Fitness func-
tion usually is the expression of costs, profitability, variance,
and so on.

(4) Population Bats Cloud.The bats live and prey together, and
many bats constitute a community. A cloud was generated,
which is to represent the distribution characteristics of the
same dimension of all individuals, called population bats
cloud, namely, 𝑃𝑏𝑐

𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒), where 𝑗 represents the 𝑗th

dimension of population and 𝐸𝑥, 𝐸𝑛, and𝐻𝑒 are three digital
characteristics of cloud model.

(5) Individual Experience. It denotes these individuals that are
able to remember their own history during the process of
optimization. In the proposed algorithm, bats can memorize
their own best location 𝑥

𝑝best during moving. Its main
purpose is to guide the flight of bat and to promote the
communication among the population.

(6) Population Elite. In this proposed algorithm, population
elite denotes the position of the optimal individual, namely,

𝑥
𝑔best; the population elite 𝑥

𝑔best will be saved and be used in
swarm information communication.

3.2. Cloud Model Bat Search Algorithm. In this paper, at the
basis of original BA and the habits of bats, based on the
cloud model and Lévy flights, cloud model bat algorithm is
proposed under idealized simulation of echolocation of bats.
For simplicity, some idealized rulesareas follows.

(1) Using the echolocation, bats not only can identify
the direction, measure the distance, and determine
the current status of their prey but also can avoid
collision, distinguish obstacles, and prey from back-
ground clutter. This paper only simulates that bats
search for a prey using echolocation mechanism in
a search space under ideal environment, where the
position of prey means an optimal solution of the
problem; each position of bats indicates a candidate
solution of optimization problem. Bats may not prey
their target, but they gradually approach the target,
close to the prey, approximately regard as successful
preying under a certain tolerance.

(2) Each bat flies randomly with frequency 𝑓𝑡
𝑖
; the posi-

tion 𝑥𝑡
𝑖
moves under the adjustment of frequency 𝑓𝑡

𝑖
.

The frequency 𝑓𝑡
𝑖
resembles an adjustment coefficient
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of step length, and frequency 𝑓𝑡
𝑖
of sound pulse is

changeable, where 𝑡 is the optimizing generation.

(3) The adjustment of frequency 𝑓 caused the change
of the wavelength 𝜆 (this is because of the fact that
𝜆𝑓 = V is a constant and V is the speed of sound in
air; typically, V = 340m/s); such wavelengths 𝜆 are in
the same order of their prey sizes and help to locate
the target. Generally, the frequency 𝑓 is in a range
[𝑓min, 𝑓max], and each individual can communicate
information with others by echolocation call in a
population.

(4) Each bat emits sonic pulse with emission rate 𝑅
𝑖
∈

[0, 1] and loudness 𝐿𝑑
𝑖
. At the beginning of prey,

bats have a smaller 𝑅
𝑖
and larger 𝐿𝑑

𝑖
. During the

process of locating prey, the pulse emission rate
increases and loudness reduces once the bat searches
for target traces, which is figuratively indicated by “bat
is approaching the target.”

(5) In exploration of bats for prey, their flight features
are accompanied by typical Lévy flight characteristic;
many insects and animals have it as well. Exploration
and traces its of to detect potential prey traces of a
random flight.

On the basis of the above mentioned idealized rules,
the properties of the cloud model are utilized which rep-
resents the membership degree of qualitative concept and
reveals the relationship between randomness and fuzziness
in uncertainty knowledge representation. According to nor-
mal cloud model generator with expectations, entropy, and
hyper entropy, many drops of the cloud with quantitative
transformation value corresponding to qualitative concept
are produced. In this paper, updating the position of bats
by cloud model, swarm information communication in each
individual and random Lévy flights are introduced, a cloud
model bat algorithm is proposed, and the steps of CMBA
algorithm can be summarized as follows:

(1) Initialization. Randomly initialize the position of each bat
in the population and relevant parameters.

(2) Initial Evaluation. Evaluate these initial positions using
fitness function, and find out a population elite 𝑥

𝑔best.

(3) Bats Cloud Updating. Generate bats cloud based on cloud
model, and update the position of bats.

(4) Swarm Information Communication. Information com-
munication of bat population adopts a differential operator
that is similar to mutation strategy “DE/best/2” in differential
algorithm.

(5) Bats Random Lévy Flight. Each bat randomly flights using
Lévy flight.

(6) Population Evaluation. For each population in steps (3)–
(5), evaluate each individual by fitness function and find out

and update the individual experience 𝑥
𝑝best for each bat and

population elite 𝑥
𝑔best in each step.

(7) Pulse Emission Rate and Loudness Update. The rate of
pulse emission 𝑅

𝑖
and loudness 𝐿𝑑

𝑖
for each bat need to

update when the achieved optimal solution after steps (3)–(5)
is better than the optimal solution of last generation.

(8) Termination Judgment. 𝑡 = 𝑡 + 1; execute steps (3)–(7)
until 𝑡 reaches a predefined maximum number of optimizing
generation.

In this algorithm framework, three problems need to be
solved: first of all, the formation of bat cloud model, second
information communication of bat population, and third the
updating of 𝑅, 𝐿𝑑.

3.2.1. Formation of Population Bats Cloud Model. This paper
simulates the moving of bats when several bats pursue and
capture prey. Each bat expects to move toward the direction
of prey (the optimal solution). In the search space, the entire
population is trying to approximate the optimal solution;
the position 𝑥𝑡

𝑖
of each individual should move toward the

optimum position. Consequently, the same dimensions of
population have stable tendency. However, each individual
has their own feature, and the implementations of position
updating are random for each individual. Therefore, the
characteristics of approximated process that bats have to
approximate prey are simulated by cloudmodel. Sequentially,
they adapt bat cloud model to depict the qualitative concept:
“bats approach their prey.”

Normal cloud model of bat approach process utilizes
the characteristics of cloud model that are the uncertain
transition between qualitative and quantitative. The pop-
ulations bats cloud 𝑃𝑏𝑐

𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒) analogize to cloud

𝐶(𝐸𝑥, 𝐸𝑛,𝐻𝑒), where the expected value𝐸𝑥 is the 𝑗th dimen-
sion of population elite 𝑥

𝑔best, the entropy 𝐸𝑛 is the average
loudness of all bats, and the hyper entropy𝐻𝑒 is the average
pulse emission rate of all bats. The population bats cloud
𝑃𝑏𝑐
𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒) is a 1-dimensional normal cloud. In order to

update the position of each individual, each dimension of new
individual is generated by randomly selecting several drops
of the cloud from cloud cluster, and then calculate the result
which is mean of the membership degree of each selected
drop multiplied by expected value 𝐸𝑥. The membership
degree of each drop is the certainty degree of approximation
expectation 𝐸𝑥. The computational formula is described as
follows:

𝑥𝑡+1
𝑖𝑖

= AVG (∑𝐸𝑥 × 𝑅𝑆 (𝑝𝑏𝑐
𝑖
(𝐸𝑥, 𝐸𝑛,𝐻𝑒))) , (6)

where 𝑖 denotes 𝑖th individual, 𝑗 denotes 𝑗th dimen-
sion, 𝐸𝑥 = 𝑥

𝑔best,𝑗, 𝐸𝑛 = AVG(∑Rate
𝑖
), 𝐻𝑒 =

AVG(∑ Loudness
𝑖
), 𝑅𝑆(⋅) denotes a function of the ran-

domly selected several records, and AVG(⋅) denotes averag-
ing function.

The pulse emission rate 𝑅
𝑖
increases and loudness 𝐿𝑑

𝑖

decreases while the iteration is increasing, and the entropy
𝐸𝑛 and hyper entropy 𝐻𝑒 therewith update. Consequently,
different cloud clusters are generated, so those individuals
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gradually approach the target. Position of the bat is updated
by population bats cloud 𝑃𝑏𝑐

𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒), which quantifica-

tionally represents the qualitative concept that bat approaches
target. Sequentially, which reflect the determine tendency
of swarm optimizing, meanwhile show the fuzziness and
randomness of uncertainty knowledge representation.

The proposed algorithm introduces information commu-
nication in bat population under idealized conditions, which
assure that the entire bat colony gets helpful information by
communicating experience among individuals in a bat popu-
lation.Thismechanismguides these bats that are approaching
prey fast.

Bats can emit sound pulses with certain frequency range.
Generally, the frequency 𝑓 is in a range [𝑓min, 𝑓max] and the
typical range is [0, 1] in implementation. This paper defines
the frequency 𝑓 updating formula as follows:

𝑓𝑡
1𝑖
= ((𝑓

1,min − 𝑓1,max)
𝑡

𝑛
𝑡

+ 𝑓
1,max)𝛽1, (7)

𝑓𝑡
2𝑖
= ((𝑓

2,max − 𝑓2,min)
𝑡

𝑛
𝑡

+ 𝑓
2,min)𝛽2, (8)

where 𝛽
1
, 𝛽
2
∈ [0, 1] is a random vector drawn from a

uniform distribution, 𝑓
1,max = 𝑓

2,max = 𝑓max, 𝑓1,min =
𝑓
2,min = 𝑓min, and 𝑛𝑡 is a constant. The frequency 𝑓 would

be analogous to an adjustable parameter. The step length
of individual moving is adjusted by adjusting frequency
𝑓. Meanwhile, it can be interpreted as bats adjusting their
own position by adjusting their own frequency and com-
municating with other bats. Information communication of
bat population adopts a differential operator that is similar
to mutation strategy “DE/best/2” in differential algorithm,
which is described as follows:

𝑥𝑡+1
𝑖

= 𝑥𝑡
𝑔best + 𝑓

𝑡

1𝑖
(𝑥𝑡
𝑟1
− 𝑥𝑡
𝑟2
) + 𝑓𝑡
2𝑖
(𝑥𝑡
𝑟3
− 𝑥𝑡
𝑟4
) , (9)

where 𝑥𝑡
𝑔best represents the current population elite after

updating by bat cloud updating and 𝑥𝑡
𝑟𝑖

is 𝑖th individual
randomly selected in the population after bat cloud updating.

In addition, the above mentioned mechanism accelerates
the convergence rate, while the Lévy flight behavior is
introduced to greatly ensure the swarm diversity against the
premature convergence. Random Lévy flights are manipu-
lated at the basis of individual experience 𝑥𝑡

𝑝best, where 𝑥
𝑡

𝑝best
represents the current individual experience after swarm
information communication. The random Lévy flights are
used to improve the individual ability to escape from the
local optima; simultaneously, thismechanism also assures the
intensification. The detailed description is as follows:

𝑥𝑡+1
𝑖

= 𝑥𝑡
𝑝best + 𝜇 × sign [rand − 0.5] ⊕ Lévy, (10)

where 𝜇 is a random parameter drawn from a uniform
distribution, sign ⊕means entry-wise multiplications, rand ∈
[0, 1], and random step length Lévy obeys Lévy distribution.

3.2.2. Method of Pulse Emission Rate and Loudness Updating.
The pulse emission rate 𝑅

𝑖
and loudness 𝐿𝑑

𝑖
of each bat will

be adjusted suitably when it moves to a better position than
last generation 𝑡 − 1. In this paper, the updating formulas
adopt (11). It is worth noting that the loudness and emission
rates will be updated only if the final population elite 𝑥𝑡

𝑔best in
current generation are better than the final population elite
𝑥𝑡−1
𝑔best in last generation:

𝐿𝑑𝑡+1
𝑖

= 𝛼𝐿𝑑𝑡
𝑖
,

𝑅𝑡+1
𝑖

=
1

1 + 𝑒(−(10/𝑡max)×(𝑡−(𝑡max/2))+𝑅
1

𝑖
)
,

(11)

where 𝛼 ∈ [0, 1] is a constant, 𝑡 is optimizing generation, 𝑡max
denotes maximum optimizing generation, and 𝑅1

𝑖
denotes

initial pulse emission rate of each bat.
Cloud model bat algorithm is inspired by the behavior of

bat; original BA and cloudmodel are used for reference, based
on the properties of cloud model and echolocation of bat
in foraging behavior, to remodel the algorithm framework,
defining several idealized rules and constructing optimizing
mechanism; a cloud model bat algorithm is proposed. The
cloud model bat algorithm is different from the original bat
algorithm, which uses echolocation predation mechanism
of bats as the starting point and uses the universality of
the normal cloud model as the basis. Several predominant
mechanisms are integrated organically in the CBA.

For the performance of the proposed algorithm, the pop-
ulations bats cloud 𝑃𝑏𝑐

𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒) utilizes the information

provided by the current optimal solution to generate the
drops of cloud. The loudness and pulse emission rate are
regarded as entropy 𝐸𝑛 and hyper entropy 𝐻𝑒, respectively,
to control the measure of the coverage and randomness
of optimal solution structure. Reduction of the loudness
and increasing of the pulse rate emission show that bats
approach their target. To quantificationally represent this
qualitative concept by population, bats cloud model makes
many individual clusters around the current optimal solution
and forms a bat cloud, thus exploring much better solutions.
This proposed algorithm has strong stability with bat cloud
updating, which can gradually approach the optimal solution.

The swarm information communication guides thewhole
populationmoving toward the optimal solution.The increase
or decrease of frequency 𝑓 controls the scale of the indi-
vidual moving forward or backward. Each individual can
communicate information with others and ultimately move
toward the common goal or direction. On the one hand,
(7) implements on the basis of population elite 𝑥𝑡

𝑖
, which

can accelerate the convergence speed of proposed algorithm;
however, it may lead to premature convergence. On the other
hand, the mechanism also reflects the importance of Lévy
flight.

From (7), we know that premature convergence may take
place; from (8), Lévy flight is implemented on the individual
experience of population. This randomness of Lévy flight
can ensure the diversity of the population against premature
convergence. Lévy flight has a certain role in escaping from
local optima; meanwhile, based on individual experience of
population it can accelerate the convergence rate to some
extent.
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(a) Box-and-whisker after 50 independent runs with different population
size 𝑝𝑠, where 1–9 in abscissa axis correspond to 𝑝𝑠 = 10, 15, . . . , 50,
respectively
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(b) Iterative curve after one independent run with different population
size 𝑝𝑠, where 1–9 in abscissa axis correspond to 𝑝𝑠 = 10, 15, . . . , 50,
respectively

Figure 3: Box-and-whisker diagram and iterative curve about the impact of different population size 𝑝𝑠.

The range of loudness 𝐿𝑑
𝑖
and pulse emission rate 𝑅

𝑖

may have influence on the performance of the proposed
algorithm; meanwhile, the number of the drops of cloud is
no exception. In [13], for the drops of cloud are generated
by the normal cloud generator, there are 99.7% located in the
interval [𝐸𝑥 − 3𝐸𝑛, 𝐸𝑥 + 3𝐸𝑛]. Consequently, initial value of
𝐿𝑑
𝑖
initializes 0.5(𝑥max−𝑥min)/3, where 𝑥max and 𝑥min denote

the upper and lower limit of the search space.The range of the
drops of cloud that are located around the expectation𝐸𝑥will
reduce while the loudness 𝐿𝑑

𝑖
reduces gradually. In addition,

the thickness of cloud cluster will increase while the pulse
emission rate increases gradually; even the cloud cluster is
excessively discrete and represents atomized feature. In [25],
the expectation 𝐸𝑥 can be approximated by reverse clouds
generator and the error is less than 0.01 if only the number of
the drops of cloud is more than 10. Similarly, to approximate
entropy𝐸𝑛 and assure relative error less than 0.01, the number
of the drops of cloud is more than 100. Consequently, this
paper produces 100 drops of cloud in the implementation,
as a cloud cluster, and randomly selects a larger sample with
50 drops of cloud from the cloud cluster to fit the structure
individual.

4. Simulations and Result Analysis

In order to validate the validity of bat cloud model algo-
rithm, several unconstrained high-dimensional benchmark
test functions are selected (simulation platform: Microsoft
Windows XP Professional SP3, AMD Athlon (tm) II X4 640
3.00GHz, 4.00GB; programming tools: Matlab R2012a).

4.1. Parameter Settings and Analysis. In this section, in order
to test the sensibility of parameter settings, the 2-dimensional
Rosenbrock function was selected. And its global minimum

value is 0 at (1, 1, . . . , 1); the global minimum is inside
a long, narrow, and parabolic shaped flat valley. To find
the valley is trivial. To converge to the global minimum,
however, is difficult. Statistical result of minimum fitness
after 50 independent runs was represented by box-and-
whisker diagram, and the iterative curve was depicted for
once independent run.

To initialize the parameter frequency 𝑓 ∈ [0, 2], 𝑛𝑡 =
4000, select different population size 𝑝𝑠 for experiment. The
purpose is to investigate the influence of the population size
for the proposed algorithm. The descriptive statistics of the
results are plotted in Figure 3(a), where 1–9 in abscissa axis
correspond to 𝑝𝑠 = 10, 15, . . . , 50, respectively. As shown
as Figure 3(a), the precision of the optimum value gradually
increases while the population size 𝑝𝑠 increases, and the
increment of precision gradually decreases. The precision
of the optimum value is low and the extreme outliers
will appear when population only includes 10 individuals,
which show that the population size is insufficient and the
exploring ability is poor. The precision of the optimal value
increases properly and the outliers are mild when population
size increases to 20. After the population size reaches 30,
performance of the proposed algorithm gradually stabilizes,
and the incremental extent of the precision is inapparent.

Figure 3(b) is the iterative curves for one independent
run of CBA. As shown in the figure, the difference of the
optimum value is not outstanding after the population size
increases to 30. Considering the precision and calculation,
𝑝𝑠 = 45 is a preferable balance, which has high precision and
less calculation; in addition, the convergence rate is relatively
fast.

After setting the parameter 𝑝𝑠 = 45, 𝑛𝑡 = 4000 to test the
proposed algorithm with different upper limit of frequency
𝑓 ∈ [0, 𝐹]. The purpose is to investigate the impact of the
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(a) Box-and-whisker after 50 independent runs with different upper limit
of frequency 𝑓 ∈ [0, 𝐹], where 1–6 in abscissa axis correspond to 𝐹 =
0.5, 1, 2, . . . 5, respectively
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(b) Iterative curve after one independent run with different upper limit
of frequency 𝑓 ∈ [0, 𝐹], where 1–6 in abscissa axis correspond to 𝐹 =
0.5, 1, 2, . . . 5, respectively

Figure 4: Box-and-whisker diagram and iterative curve about the impact of different upper limit of frequency 𝑓 ∈ [0, 𝐹].
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(a) Box-and-whisker after 50 independent runs with different parameter
𝑛𝑡, where 1–8 in abscissa axis correspond to 𝑛𝑡 = 1000, 2000, . . . , 8000,
respectively
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(b) Iterative curve after one independent run with different parameter
𝑛𝑡, where 1–8 in abscissa axis correspond to 𝑛𝑡 = 1000, 2000, . . . , 8000,
respectively

Figure 5: Box-and-whisker diagram and iterative curve about the impact of different parameter 𝑛𝑡.

frequency range for the proposed algorithm. The descriptive
statistics of the results are plotted in Figure 4(a), where 1–6 in
abscissa axis correspond to 𝐹 = 0.5, 1, 2, . . . , 5, respectively.
As shown in Figure 4(a), the algorithm is very sensitive to
the initial values, while 𝑓 ∈ [0, 0.5], the exploring ability
is weak and cannot avoid the premature convergence and
escape from local minima, and the stability is poor. The
performance of algorithm is relatively good when the range
is [0, 1]; the performance of CBA gradually reduces while the
upper limit of frequency increases. Figure 4(b) is the iterative

curves for one independent run of CBA. Figure 4(b) shows
that the performance of algorithm and convergence speed are
preferable to the other condition.

Confirm the parameter 𝑝𝑠 = 45, 𝑓 ∈ [0, 1], and then
investigate the impact of the parameter 𝑛𝑡 for the proposed
algorithm. The descriptive statistics of the results are plotted
in Figure 5(a), where 1–8 in abscissa axis correspond to
𝑛𝑡 = 1000, 2000, . . . , 8000, respectively. Figure 5(b) is the
iterative curves for one independent run of the proposed
algorithm with different parameter 𝑛𝑡. As shown in Figure 5,
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Table 1: Benchmarking test functions.

Benchmarks
functions

Functions expression Exact value 𝑥
∗

Search space

𝑓
1
: Sphere 𝑓(𝑥) =

𝑛

∑
𝑖=1

𝑥2
𝑖

𝑓min = 0 (0, 0, . . . , 0) [−10, 10]

𝑓
2
: Schwefel 𝑓(𝑥) =

𝑛

∑
𝑖=1

𝑥𝑖
 +
𝑛

∏
𝑖=1

𝑥𝑖
 𝑓min = 0 (0, 0, . . . , 0) [−10, 10]

𝑓
3
: Rosenbrock 𝑓(𝑥) =

𝑛

∑
𝑖=1

[(𝑥
𝑖
− 1)2 + 100(𝑥

𝑖+1
− 𝑥
𝑖

2)
2

] 𝑓min = 0 (1, 1, . . . , 1) [−2.408, 2.408]

𝑓
4
: Ackley

𝑓 (𝑥) = 20 + 𝑒 − 20 exp[−0.2√(1
𝑛
) ×
𝑛

∑
𝑖=1

𝑥2
𝑖
]

− exp[−0.2√ (
1

𝑛
) ×
𝑛

∑
𝑖=1

cos (2𝜋𝑥
𝑖
)]

𝑓min = 0 (0, 0, . . . , 0) [−30, 30]

𝑓
5
: Griewangk 𝑓(𝑥) =

1

4000
×
𝑛

∑
𝑖=1

𝑥2
𝑖
−
𝑛

∏
𝑖=1

cos
𝑥
𝑖

√𝑖
+ 1 𝑓min = 0 (0, 0, . . . , 0) [−600, 600]

𝑓
6
: Rastrigin 𝑓(𝑥) = 10𝑛 +

𝑛

∑
𝑖=1

[𝑥2
𝑖
− 10 cos (2𝜋𝑥

𝑖
)] 𝑓min = 0 (0, 0, . . . , 0) [−5.12, 5.12]

𝑓
7
: Shubert 𝑓 (𝑥, 𝑦) = [

5

∑
𝑖=1

𝑖 cos (𝑖 + (𝑖 + 1) 𝑥)] ⋅ [
5

∑
𝑖=1

𝑖 cos (𝑖 + (𝑖 + 1) 𝑦)] 𝑓min ≈ −186.7309 — [−10, 10]

𝑓
8
: Easom 𝑓(𝑥, 𝑦) = − cos (𝑥) cos (𝑦) exp [− (𝑥 − 𝜋)2 + (𝑦 − 𝜋)2] 𝑓min = −1 (𝜋, 𝜋) [−10, 10]
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Figure 6: Box-and-whisker after 20 runs independently about
different strategies combination.

the performance of the algorithm has improved to some
extent with gradually increasing parameter 𝑛𝑡. In general,
the algorithm parameter is not sensitive for parameter 𝑛𝑡.
Considering the precision of optimal value, convergence
speed, and stability, parameter 𝑛𝑡 around 5000 or 6000 is
preferable. In this paper, 𝑛𝑡 = 6000.

4.2. Combination Strategies Analysis. In order to discuss the
impact of three strategies (bats cloud updating, swarm infor-
mation communication, and bats random Lévy flight) after
selecting proper parameter, firstly, set bats cloud updating as
C, swarm information communication asG, and bats random
Lévy flight as L and then select Rosenbrock as test function.
The statistical results after 20 times run independently are
shown in Figure 6, where 1–6 in abscissa axis correspond to

LGC, CLG, CGL, GL, CL, and CG, respectively, where the
combination of letters represents the combination of different
strategies. As shown as Figure 6, LGC sometimes can find a
better solution, but it is unstable, and several extreme outliers
appear sometimes, which represent that the algorithmmay be
premature convergence.TheCLG is themost unstable, which
is sensitive to the initial position. GL can repeatedly find
a better solution; however, several extreme outliers appear
likewise, which represent that the algorithm lacks stability.
CL optimizes difficultly and its performance is poor.WithCG
several mild outliers will appear and the performance of CG
is somewhat less thanCGL, and the reason is lack of diversity
without L. Nevertheless, the CGL loses trifling precision of
the optimum value, but the overall performance is the most
stable, and it can always find better solution.

4.3. Experimental Results and Analysis. In order to compare
the performance with other algorithms, eight test functions
are selected to test CBA convergence. In Table 1, the values
listed in the search space column are used to specify the range
of the initial random particles’ position; the 𝑥

∗
denotes the

global optimum, and the 𝑓min is the corresponding fitness
value.

In [11], a cloud model based genetic algorithm (CGA)
was proposed; CGA is based on both the idea of GA and the
properties of randomness and stable tendency of a normal
cloud model. In [12], a cloud model based evolutionary
algorithm (CBEA) was proposed by Zhang et al., which is
based on the outstanding characteristics of the cloud model
on the process of transforming a qualitative concept to a
set of quantitative numerical values and integrates with the
basic principle of evolutionary computation. In [13], cloud
based evolutionary algorithm (CBEA) was proposed by Liu
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Table 2: Experimental results comparison between CGA, CBA, and SAPSO.

Algorithms 𝑓
2

𝑓
3

𝑓
5

𝑓
6

𝑓
7

S-S [−10, 10] [−2.048, 2.048] [−512, 512] [−10, 10] [−10, 10]
F-D 5 2 10 15 2
CGA 0.00013 2.5749𝑒 − 08 0.01170 1.8529𝑒 − 06 −186.6267

SAPSO — 3.5383𝑒 − 003 5.7773𝑒 − 008 1.9425𝑒 − 004 —
CBA 1.9850𝑒 − 93 1.2683𝑒 − 12 0 0 −186.7309

Table 3: Experimental results comparison between CBEA08, CBA, and SAPSO.

Algorithms 𝑓
1

𝑓
5

𝑓
6

𝑓
7

𝑓
8

S-S [−100, 100] [−600, 600] [−5.12, 5.12] [−10, 10] [−100, 100]
F-D 10 10 10 2 2
CBEA08 0 0 0 −186.7309088310227 −1

SAPSO 0.04860173 5.7773𝑒 − 008 1.9425𝑒 − 004 — —
CBA 0 0 0 −186.7309088310230 −1

Table 4: Experimental results comparison between CBEA09, CBA, and SAPSO.

Algorithms 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑓
5

S-S [−5.12, 5.12] [−10, 10] [−30, 30] [−32.768, 32.768] [−32.768, 32.768]
CBEA09 1.1696𝑒 − 166 5.2927𝑒 − 97 26.178 0 0
SAPSO 0.04860173 — 3.5383𝑒 − 003 1.5684𝑒 − 003 5.7773𝑒 − 008

CBA 0 2.4707𝑒 − 223 28.879 0 0

et al., who discuss the atomized feature of cloud model;
the selection pressure of evolution is adjusted by changing the
hyper entropy that is the main factor in atomized feature.

There are many ways to carry out the comparison of
algorithm performance with different termination criteria;
the preferable approaches is to compare their accuracies for a
fixed number of fitness function evaluations 𝐹𝐸𝑠. This paper
adopts fixed 𝐹𝐸𝑠 as the termination criterion (𝐹𝐸𝑠 = 𝑝𝑠 ×
𝑡 ×𝑁, where 𝑝𝑠 is population size, 𝑡 is optimizing generation,
and 𝑁 is the number of fitness function evaluations in each
optimizing generation). In order to compare with different
algorithms, search space (SS) and function dimension (FD)
of selected benchmark functions are consistent with corre-
sponding algorithm. CBA is run 50 times independently for
each function and the mean of the function values found in
50 runs was described in experimental result.

In [11], 𝑝𝑠 was set as 100, selected different test functions
have different optimizing generation 𝑡, the minimum 𝐹𝐸𝑠

is 106, and the maximum 𝐹𝐸𝑠 is 2 × 107. In this paper,
optimizing generation 𝑡 is set as 200 in each run for corre-
sponding function. 𝐹𝐸𝑠 = 27000. The experimental results
are presented in Table 2, where results of CGA in 30 runs are
derived from [11] and results of SAPSO (simulated annealing
particle swarm optimization) are derived from [6].

Table 3 shows the results of comparison betweenCBEA08
and CBA, where results of CBEA08 in 50 runs are derived
from [12], and results of SAPSO are derived from [6]. Here
𝑝𝑠 = 1000, 𝑡 = 100, and 𝐹𝐸𝑠 = 105. In this paper, for these
functions, 𝑡 is set as 500, corresponding to 𝐹𝐸𝑠 = 67500.

Table 4 shows the results of comparison betweenCBEA09
and CBA, where results of CBEA09 in 50 runs are derived
from [13], and results of SAPSO are derived from [6]. All
the selected functions are 30-dimensional function, and the
optimizing generation 𝑡 is set as 500 for all algorithms.

Tables 2, 3, and 4 not only show that the proposed
algorithm is feasible and effective but also demonstrate
the superior approximation capabilities in high-dimensional
space. The proposed algorithm can perform better perfor-
mance while the optimizing generation 𝑡 increases gradually.
As shown as Table 2, CBA has higher precision than CGA
both unimodal and multimodal functions. From Table 3,
CBA has similar precision than CBEA08 both unimodal
and multimodal function, and several theoretical values of
benchmark function can be achieved. Table 4 shows the
results that are tested under high-dimensional condition.The
CBA can perform with better precision, except for Rosen-
brock function which has no best performance. Rosenbrock
function has a narrow valley from the perceived local optima
to the global optimum.

5. Conclusions

In this paper, the bat algorithm is used for reference;
two mechanisms were introduced, population information
communicating of each individual and random Lévy flights,
to propose a cloud model bat algorithm based on normal
cloud model and echolocation mechanism. Cloud model
builds a transformational bridge between a linguistic term
of qualitative concept and quantitative representation, which
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reflects randomness, fuzziness, and the relationship between
randomness and fuzziness of uncertainty in knowledge rep-
resentation. A population bats cloud model 𝑃𝑏𝑐

𝑗
(𝐸𝑥, 𝐸𝑛,𝐻𝑒)

was built, which analogizes to cloud 𝐶(𝐸𝑥, 𝐸𝑛,𝐻𝑒), which
depicts the qualitative concept: “bats approach their prey.”
CBA mainly considers the balance between the global
random search and local search and the balance between
intensification and diversification. In addition, we discuss the
mechanism and parameter set of CBA; several appropriate
parameters are set. The simulation results show that the
proposed algorithm is feasible, effective, and robust.
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