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Abstract

The paper investigates a new scheme for generating lifetime probability distributions. The

scheme is called Exponential- H family of distribution. The paper presents an application of

this family by using the Weibull distribution, the new distribution is then called New Flexible

Exponential distribution or in short NFE. Various statistical properties are derived, such as

quantile function, order statistics, moments, etc. Two real-life data sets and a simulation

study have been performed so that to assure the flexibility of the proposed model. It has

been declared that the proposed distribution offers nice results than Exponential, Weibull

Exponential, and Exponentiated Exponential distribution.

Introduction

Probability distribution plays a vital role in modeling lifetime data that arise in different fields

of science such as in Survival analysis, Economics, Biology, Engineering, and in some other

applied field of sciences. There are many lifetime probability distributions that can be used to

model the data, for example, Exponential, Weibull, and Weibull Exponential distribution are

among others. All these distributions have desirable properties and real applications. However,

these distributions fail to model the data following a non-monotonic hazard rate function, for

example, Exponential distribution can only model the constant hazard rate and the Weibull

distribution can only model a monotonic hazard rate function. In this paper, we have present

a new distribution that can model both the monotonically and non-monotonically hazard rate

functions. But in practice, we have real data sets which follow a non-monotonic hazard rate

function, for example, the infant mortality rate, or the lifetime of an electronic device follows a

non-monotonic hazard rate functions.

To overcome the above limitations found in the existing probability distributions, research-

ers are working to modify these distributions. It is usual practice to modify the current distri-

butions by generating a generator and then applied to the existing distributions so as to derive

a new probability model. For example, Aldeni et. al [1] produced a new family of distributions

arising from the quantile of generalized lambda distribution, Cordeiro et. al [2] worked on the

generalized odd half-Cauchy family of distributions, Alzaatreh et. al [3] presented a general-

ized Cauchy family of distributions, Alzaatreh et. al [4] introduced T-normal family of
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distributions, Nasir et. al [5] investigated the generalized Burr family of distributions based on

quantile function, Mudholkar et. al [6] worked on the Exponentiated Weibull family of

distribution.

This paper contributes a new scheme for generating probability distributions to the existing

literature of probability theory. In this paper, a new scheme is investigated and applied to the

existing probability distributions so as to derive a new probability distribution. The main

objective of the paper is to achieve maximum flexibility while modeling the lifetime data with

both the monotonically and non-monotonically hazard rate functions.

Let X be a continuous random variable follows the Exponential distribution then the cumu-

lative distribution function (Cdf) is given by

FðxÞ ¼ 1 � expð� axÞ; x > 0; a > 0 ð1:1Þ

The Exponential distribution is modified by many researchers, for example, Gupta and

Kundu [7] presented the generalized distribution which is also known as Exponentiated Expo-

nential distribution. The Cdf is given by

FðxÞ ¼ ð1 � expð� lxÞÞa; x; l; a > 0 ð1:2Þ

Barreto, and Cribari [8] introduced a generalization of the Exponential-Poisson distribu-

tion with the following Cdf

FðxÞ ¼
1 � expð� lþ lexpð� bxÞÞð Þ

1 � expð� lÞ
; x; l; b > 0 ð1:3Þ

Barreto et. al [9] introduced the Beta Generalized Exponential distribution. El-Bassiouny

[10] introduced the Exponential Lomax distribution. Mudholkar and Srivastava, (1993)

defined the Exponentiated Weibull family of distribution [6]. Nadarajah and Kotz [11] present

the Beta Exponential distribution.

In this paper, a novel family is produced called Exponential- H family of distribution. We

discussed one special case of this family and call it New Flexible Exponential distribution

(NFE) by employing the Weibull distribution as a baseline. The detailed discussion is as fol-

lows

Exponential- H family (Ex-H) of distributions

The Exponential- H family (Ex-H) is mostly related to the Weibull-G family of distributions

investigated by Marcelo et. al [12]. The cumulative distribution function (CDF) of the Expo-

nential- H family (Ex-H) takes the following form

Gðx; a; zÞ ¼ 1 � expð� aLðx; zÞÞ; x; a > 0 ð2:1Þ

where L(x;z) = H(x;z)exp(x), and H(x;z) is the non-decreasing function hazard rate function

depending on the parameter vector z. The corresponding probability density function (PDF)

is given by

gðx; a; zÞ ¼ aexpð� aLðx; zÞÞlðx; zÞ; x; a > 0 ð2:2Þ
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New Flexible Exponential distribution (NFE)

This section illustrates the special case of the Ex-H family by considering the hazard function

of the Weibull distribution. The hazard function of the Weibull distribution is defined by

Hðx; zÞ ¼ axb� 1

By employing the above result in Eq (2.1) and (2.2), we obtained the CDF and PDF of the

NFE distribution respectively

Fðx; a; bÞ ¼ 1 � exp � a2bxðb� 1ÞexpðxÞ
� �

; x > 0; b > 1; a > 0 ð3:1Þ

f ðxÞ ¼ a2bxðb� 2Þðxþ b � 1Þexp x � a2bxb� 1expðxÞ
� �

; x > 0 ð3:2Þ

The survival and hazard rate function of NFE is defined by

SðxÞ ¼ expð� a2bxb� 1expðxÞÞ ð3:3Þ

hðxÞ ¼ a2bxb� 2ðxþ b � 1ÞexpðxÞ ð3:4Þ

Fig 1 shows the graphical representation of the probability density function and cumulative

distribution function, with different parameter values.

Theorem 1. The behavior of the hazard rate h(x) function of NFE (a,b) is defined by

a. Increasing when a>0,b>1,

b. Decreasing when a>0,b�1.

Proof. The derivative of Eq (3.4) is given by

h0ðxÞ ¼ a2bxb� 2ðb2 þ bð2x � 3Þ þ x2 � 2xþ 2ÞexpðxÞ

Fig 1. The Pdf and Cdf of NFE.

https://doi.org/10.1371/journal.pone.0238746.g001
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For a>0,b�1,h0(x). Then the function h(x) is decreasing and for a>0,b>1. For a>0,b>1, h0

(x) = 0 implies that the h(x) has a maximum at

x ¼ 1 � b�
ffiffiffiffiffiffiffiffiffiffiffi
b � 1
p

and, the function h(x) is increasing for a>0,b>1,

Hence, the hazard rate function has the ability to model both monotonically and non-

monotonically hazard rate functions.

Fig 2 shows the plot for the hazard function of the New Flexible Exponential distribution

with different values of a parameter.

Quantile function and median

The quantile function Q(NFE)(x) of the NFE(a,b) is the real solution of the following equation

FðxÞ ¼ u

1 � exp � a2bxb� 1expðxÞ
� �

¼ u ð4:1Þ

where u~Uniform (0,1).

Solving (4.1) for x, we have

x ¼ ðb � 1ÞW
� logð1� uÞ

a2b

� �1=ðb� 1Þ

b � 1

 !

ð4:2Þ

Fig 2. Hazard function of NFE.

https://doi.org/10.1371/journal.pone.0238746.g002
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where W (Z) is the Lambert W function and is defined as

WðzÞ ¼

X1

n¼1

ð� 1Þ
nnn� 2

ðn � 1Þ!
zn:

For the median, put u = 0.5 in Eq (4.2).

Rth moments

Theorem 2: If a random variable X has NFE distribution with parameters a,b then the rth

moments (about the origin) of X is defined by

u0r ¼
X1

k¼0

ð� 1Þ
k

k!
ða2bÞkþ1 Gðrþ bþ bk� kÞ

ðkþ 1Þ
rþbþbk� k þ ðb � 1Þ

Gðr þ bþ bk � k � 1Þ

ðkþ 1Þ
rþbþbk� k� 1

" #

Proof. We know that

u0r ¼ EðxrÞ ¼
Z1

0

xrf ðxÞdx

Putting (3.2) in the above expression, we obtained the following form

u0r ¼
Z1

0

xra2bxðb� 2Þðxþ b � 1Þexp x � a2bxb� 1expðxÞ
� �� �

dx

¼

Z1

0

xrþb� 1a2bexpðx � a2bxb� 1expðxÞÞ
� �

dxþ b � 1

Z1

0

xrþb� 2a2bexpðx � a2bxb� 1expðxÞÞ
� �

dx
ð5:1Þ

Solving the first part in the above expression (5.1), we have

¼

Z1

0

xrþb� 1a2bexp x � a2bxb� 1expðxÞ
� �� �

dx

¼

Z1

0

xrþb� 1a2bexpðxÞexp � a2bxb� 1expðxÞ
� �� �

dx

¼
X1

k¼0

ð� 1Þ
k

k!
ða2bÞkþ1

Z1

0

xrþbþbkþk� 1expððkþ 1ÞxÞ
� �

dx

¼
X1

k¼0

ð� 1Þ
k

k!
ða2bÞkþ1 Gðrþ bþ bk� kÞ

ðkþ 1Þ
rþbþbk� k ð5:2Þ
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Now solving the second part of (5.1), we have

¼ b � 1

Z1

0

xrþb� 2a2bexp x � a2bxb� 1expðxÞ
� �� �

dx

¼
X1

k¼0

ð� 1Þ
k

k!
ða2bÞkþ1

ðb � 1Þ
Gðr þ bþ bk � k � 1Þ

ðkþ 1Þ
rþbþbk� k� 1

ð5:3Þ

By combining (5.2) and (5.3) the result has obtained

u0r ¼
X1

k¼0

ð� 1Þ
k

k!
ða2bÞkþ1 Gðrþ bþ bk � kÞ

ðkþ 1Þ
rþbþbk� k þ ðb � 1Þ

Gðr þ bþ bk � k � 1Þ

ðkþ 1Þ
rþbþbk� k� 1

" #

Order statistics

Let X1,X2,X3,. . .Xn be ordered random variables, then the Pdf of the ith order statistics is given

by,

fði;nÞðxÞ ¼
n!

ði � 1Þ!ðn � iÞ!
f ðxÞFðxÞði� 1Þ

½1 � FðxÞ�ðn� iÞ; ð6:1Þ

The 1st and nth order probability density function of NFE can be obtained by putting (3.1)

and (3.2) in (6.1), and is given by respectively

fð1:nÞðxÞ ¼ n a2bxðb� 1Þðxþ b � 1Þexp x � a2bxb� 1expðxÞ
� �� �

exp � a2bxb� 1expðxÞ
� �� �ðn� 1Þ

ð6:2Þ

fðn:nÞðxÞ ¼ n a2bxðb� 1Þðxþ b � 1Þexp x � a2bxb� 1expðxÞ
� �� �

1 � exp � a2bxb� 1expðxÞ
� �� �n� 1

ð6:3Þ

Parameter estimation

In this section, the maximum likelihood method is used to find out the estimates of the

unknown parameters of NEF (a, b) based on a complete data set information. Let us assume

that we have a sample X1,X2,X3. . .Xn from NEF (a,b). The Likelihood function is given by

L ¼
Yn

i¼1

f ðxi; a; bÞ; where a; b > 0 ð7:1Þ

Substituting (3.2) in (7.1), we get

L ¼
Yn

i¼1

ða2bxðb� 2Þðxþ b � 1Þexpðx � a2bxb� 1expðxÞÞÞ ð7:2Þ

By applying the natural log to (7.2), the log-likelihood function is defined by

� ¼ nlogða2bÞ þ ðb � 2Þ
Xn

i¼1

logxi þ
Xn

i¼1

logðxi þ b � 1Þ þ
X1

i¼1

ðxi � a
2bxi

b� 1expðxiÞÞ ð7:3Þ

PLOS ONE NFD

PLOS ONE | https://doi.org/10.1371/journal.pone.0238746 October 1, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0238746


To find the estimates of the unknown parameters, we have to compute the partial deriva-

tives of (7.3) with respect to parameters and equate the results to zero

2n
a
� 2ab

Xn

i¼1

ðxb� 1

i expðxiÞÞ ¼ 0 ð7:4Þ

n
b2
þ
Xn

i¼1

ðlogxiÞ þ
Xn

i¼1

1

ðxi þ b � 1Þ
þ
Xn

i¼1

ð� a2xi
b� 1expðxiÞðlogxi þ 1ÞÞ ¼ 0 ð7:5Þ

The above two Eq (7.4) and (7.5) are not in closed form. Thus, it is difficult to estimate the

unknown parameters and hence we refer to use the numerical technique that is the Newton

Raphson or Bisection method to get the MLE.

Asymptotic confidence bounds

Since, the MLE of the unknown parameters is not closed in form and thus the exact distribu-

tion of MLE cannot be derived. However, one can find the asymptotic confidence bounds for

the unknown parameters of NEF(a,b) based on the asymptotic distribution of MLE which is as

follows

The second time partial derivatives of Eq from (7.4) and (7.5) is respectively given by

@�
@a2
¼ I11 ¼ �

2n
a2
� 2b

Xn

i¼1

ðxi
b� 1expðxiÞÞ ð8:1Þ

@�
@ab
¼ I12 ¼ � 2a

Xn

i¼1

ðxi
b� 1expðxiÞðblogxi þ 1ÞÞ ð8:2Þ

@�
@b2
¼ I22 ¼ � 2

n
b3
�
Xn

i¼1

1

ðbþ xi � 1Þ
2

 !

þ a2
Xn

i¼1

ðxi
b� 1expðxiÞlogxiÞðblogxi þ 2Þ ð8:3Þ

The observed information matrix is defined by

I ¼ �
I11 I12

I21 I22

 !

Hence, the variance-covariance matrix is approximated as

V ¼
v11 v12

v21 v22

 !

¼
I11 I12

I21 I22

 !� 1

To obtain the estimate of V, we have to replace the parameters by the corresponding MLE,

which is defined as

v̂ ¼
Î11 Î12

Î21 Î22

0

@

1

A

� 1

ð8:4Þ
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By using the above variance-covariance matrix, we can derive the (1 - β) 100% confidence

intervals for the parameters a and b in the following form

â � Zb
2

ffiffiffiffiffiffiffiffiffiffiffi
varðâ

p
Þ; b̂ � Zb

2

ffiffiffiffiffiffiffiffiffiffiffi

varðb̂
q

Þ;

where Zb
2

is the upper b

2

� �th
percentile of the standard normal distribution.

Renyi entropy

Theorem 3: If a random variable X has NFE(a,b) then the Renyi entropy RH(x) is defined by

RHðxÞ ¼
1

1 � p
log ða2bÞpþj

X1

j¼0

X1

k¼0

ð
p

k
Þ
ð� 1Þ

j

j!
ðb � 1Þ

p� k

" #
Gðpðb � 2Þ þ kþ bj � jþ 1Þ

ð� j � 1Þ
ðpðb� 2Þþkþbj� jþ1Þ

Proof. The general form of the Renyi entropy is given by

RHðxÞ ¼
1

1 � p
log
Z1

0

f pðxÞdx

By employing (3.2) in the above expression, we have

¼
1

1 � p
log
Z1

0

a2bxðb� 2Þðxþ b � 1Þexpðx � a2bxb� 1expðxÞÞ
� �p

dx

¼
1

1 � p
log ða2bÞp

Z1

0

xpðb� 2Þðxþ b � 1Þ
pexpðx � a2bxb� 1expðxÞÞ

� �p
dx

2

4

3

5 ð9:1Þ

using the following Binomial and exponential expansion

ðxþ b � 1Þ
p
¼
X1

k¼0

ð
p

k
Þxkðb � 1Þ

p� k

and

expðx � a2bxb� 1expðxÞÞp ¼
X1

j¼0

ð� 1Þ
j

j!
ða2bxi

b� 1expðxiÞÞ
j

After a few steps, we get

RHðxÞ ¼
1

1 � p
log ða2bÞpþj

X1

j¼0

X1

k¼0

ð
p

k
Þ
ð� 1Þ

j

j!
ðb � 1Þ

p� k
Z1

0

xkþbj� jþpðb� 2Þexpðð� j � 1ÞxÞdx

2

4

3

5

A solution to the integral form in the above expression leads to the final result

RHðxÞ ¼
1

1 � p
log ða2bÞpþj

X1

j¼0

X1

k¼0

ð
p

k
Þ
ð� 1Þ

j

j!
ðb � 1Þ

p� k

" #
Gðpðb � 2Þ þ kþ bj � jþ 1Þ

ð� j � 1Þ
ðpðb� 2Þþkþbj� jþ1Þ

ð9:2Þ
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Applications

This section illustrates the usefulness of NFE(a,b) distribution by using two real data sets. The

comparison with other distributions (Exponential, Weibull Exponential and Exponentiated

Exponential distributions) have been studied by using different criteria including Akaike

information criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian

information criterion (BIC), and Hannan Quinn information criterion (HQIC). For a more

detailed discussion on these criteria and their applications to various fields, we refer to see

[13–20]. The mathematical form of these criteria are given by

AIC ¼ � 2Lþ 2p; AICc ¼ AICþ
2pðpþ 1Þ

n � p � 1
; CAIC ¼ � 2Lþ PflogðnÞ þ 1g

BIC ¼ PlogðnÞ � 2L; HQIC ¼ � 2Lþ 2PlogflogðnÞg:

where, L ¼ Lðĉ; yiÞ is the maximized likelihood function and yi is the given random sample, ĉ

is the maximum likelihood estimator and p is the number of parameters in the model.

As a general rule, a probability model with fewer values of these criteria should be consid-

ered the best-fitted model among other probability distributions.

Data set 1: Failure times of Aircraft windshield

The first data set represents the failure times of 84 Aircraft windshields recently studied by

Ramos et. al [21]. The data set values are 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467,

0.309,1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912,2.632, 3.595, 1.070, 1.914,

2.646, 3.699, 1.124, 1.981, 2.661,3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035,

1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432,2.097, 2.934, 4.240, 1.480, 2.135,

2.962, 4.255, 1.505, 2.154,2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,4.376,

1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485,1.652, 2.229, 3.166, 4.570, 1.652, 2.300,

3.344, 4.602, 1.757,2.324, 3.376, 4.663.

Fig 3 shows the empirical and theoretical Cdf and Pdf of NFE distribution while Fig 4 repre-

sents the QQ and PP plots. Table 1 represents the maximum likelihood estimates of the New

Flexible Exponential distribution for aircraft data. Table 2 represents the goodness of fit crite-

ria including AIC, CAIC, BIC, and HQIC. The numerical values in Table 2 are less for the

New Flexible Exponential distribution than others and hence we conclude that the New Flexi-

ble Exponential distribution perform better as compared to Exponential, Weibull Exponential

and the Exponentiated Exponential distribution.

Data set 2: Strengths of 1.5 cm glass bares

The second real data set represents the Strengths of 1.5 cm glass bares, measured at the

National Physical Laboratory, England. The data set is taken from the Smith and Naylor [22]

with the following values 0.55,0.93,1.25,1.36,1.49,1.52,1.58,1.61,1.64,1.68,1.73,1.81,2,0.74,

1.04,1.27,1.39,1.49,1.53,1.59,1.61,1.66,1.68,1.76,1.82,2.01,0.77,1.11,1.28,1.42,1.5,1.54,1.6,1.62-

,1.66,1.69,1.76,1.84,2.24,0.81,1.13,1.29,1.48,1.5,1.55,1.61,1.62,1.66,1.70,1.77,1.84,0.84,1.24,1.-

3,1.48,1.51,1.55,1.61,1.63,1.67,1.7,1.78,1.89.

Fig 5 shows the empirical and theoretical Cdf and Pdf of NFE distribution while Fig 6 repre-

sents the QQ and PP plots. Table 3 represents the maximum likelihood estimates of the New

Flexible Exponential distribution for aircraft data. Table 4 represents the goodness of fit crite-

ria including AIC, CAIC, BIC, and HQIC. The numerical values in Table 4 are less for the

New Flexible Exponential distribution than others and hence we conclude that the New
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Fig 4. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for NFE.

https://doi.org/10.1371/journal.pone.0238746.g004

Fig 3. Histogram, theoretical density, empirical and theoretical CDF for NFE.

https://doi.org/10.1371/journal.pone.0238746.g003
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Flexible Exponential distribution perform better as compared to Exponential, Weibull Expo-

nential and the Exponentiated Exponential distribution.

Simulation

To conduct a simulation study, Eq (4.2) is used to generate random data from the New Flexible

Exponential distribution. The simulation experiment is repeated for 100 times each with sam-

ple of size n = 120, 150 and 180. First, we fixed the parameter b = 0.3 and vary

a = 0.008,0.009,0.01,0.02 0.3. Secondly, we fixed the variable a = 0.01 and vary

b = 0.4,0.44,0.5,0.51. Table 5 demonstrates the mean Bias and Mean square error (MSE). The

result given in Table 5 has shown that both the Bias and MSE are decreasing as the sample size

n increase.

Table 1. Maximum likelihood estimates for aircraft data.

Model Estimates

NFE(a,b) -0.1652185 1.2086781 _

EE(a,b) 0.7579791 3.5930709 _

E(a) 0.3902274 _ _

WE(a,b,c) 0.05827534 3.40973109 0.26963313

https://doi.org/10.1371/journal.pone.0238746.t001

Table 2. Goodness of fit criteria, AIC, CAIC, BIC, HQIC for aircraft data.

Model AIC CAIC BIC HQIC
NFE(a,b) 269.9814 270.1277 274.8667 271.9464

EE(a,b) 286.7922 286.9385 291.6775 288.7572

E(a) 331.9754 332.0236 334.418 332.9579

WE(a,b,c) 270.3205 270.6168 277.6485 273.268

https://doi.org/10.1371/journal.pone.0238746.t002

Fig 5. Histogram, theoretical density, empirical and theoretical CDF for NFE.

https://doi.org/10.1371/journal.pone.0238746.g005
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Conclusion

In this paper, a new family of distribution called Exponential-H (Ex-H) family of distribution

is presented. The special case is derived by employing the Weibull distribution as a baseline

Fig 6. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for NFE.

https://doi.org/10.1371/journal.pone.0238746.g006

Table 3. Maximum likelihood estimates for glass bares data.

Model Estimates

NFE(a,b) -0.06832238 5.22227388 _

EE(a,b) 2.609189 31.235128 _

E(a) 0.6636407 _ _

WE(a,b,c) 0.02490157 0.87090869 3.15914456

https://doi.org/10.1371/journal.pone.0238746.t003

Table 4. Goodness of fit criteria: AIC, CAIC, BIC, HQIC for glass bares data.

Model AIC CAIC BIC HQIC
NFE(a,b) 33.23809 33.43809 37.52436 34.9239

EE(a,b) 66.76709 66.96709 71.05336 68.4529

E(a) 179.6606 179.7262 181.8038 180.5035

WE(a,b,c) 35.32628 41.34891 41.34891 37.44822

https://doi.org/10.1371/journal.pone.0238746.t004
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distribution and we called it New Flexible Exponential distribution (NFE). Different statistical

properties of the NFE distribution are obtained such as hazard function, Survival function,

order statistics, moments, and Renyi entropy. The parameters of the model are estimated

using the maximum likelihood method. Moreover, the simulation study is also carried out.

Two data sets were used to support the usefulness of the NFE distribution. The numerical val-

ues conclude that the NFE distribution performed better than Exponential, Weibull Exponen-

tial, and Exponentiated Exponential distribution.

Supporting information

S1 Data. Failure times of Aircraft windshield [21].

(TIF)

S2 Data. Strengths of 1.5 cm glass bares [22].

(TIF)
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