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etwork implementation of
generalized solvation free energy for assessment of
protein structural models
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Rapid and accurate assessment of protein structural models is essential for protein structure prediction and

design. Great progress has been made in this regard, especially by recent application of “knowledge-based”

potentials. Various machine learning based protein structural model quality assessment methods are also

quite successful. However, performance of traditional “physics-based” models has not been as effective.

Based on our analysis of the fundamental computational limitation behind unsatisfactory performance of

“physics-based” models, we propose a generalized solvation free energy (GSFE) framework, which is

intrinsically flexible for multi-scale treatments and is amenable for machine learning implementation.

Finally, we implemented a simple example of backbone-based residue level GSFE with neural network,

which was found to have competitive performance when compared with highly complex latest

“knowledge-based” atomic potentials in distinguishing native structures from decoys.
1 Introduction

With time-consuming, expensive and sometimes extremely
challenging high resolution experimental analysis, reliable and
accurate computational protein structure prediction is highly
desired due to the tremendous amount of protein sequences
generated by present sequencing technologies. The long-lasting
and steadily increasing interest in this regard is evidenced by
the impressive development of the CASP (Critical Assessment of
techniques for protein Structure Prediction, http://
www.predictioncenter.org) community. The fundamental
underlying assumption of protein folding is that native struc-
tures have the lowest free energy among all possible structural
arrangements of residues/atoms in space.1 Unfortunately,
rigorous and atomistically detailed calculation of free energy for
typical realistic protein molecules is intractable and develop-
ment of approximate free energy estimators, widely addressed
as potentials or scoring functions, is essential. Two basic steps
of protein structure prediction are proposal and assessment of
structural models; the latter step is performed by comparing
scores given by various methodologies, which can be classied
into two major categories, namely “knowledge-based” (KB) and
“physics-based” (PB).2 It is widely realized that KB scoring is
much more effective than PB scoring in recognizing native
structures from decoys.3

A number of KB potentials are based on atom pair distances,
possibly with various forms of orientation consideration.4–8
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Reference state denition was acknowledged to be a major
source of differences among them.4,9 Additionally, denition of
reference state was found to impact selection of cutoff
distances.10 OPUS-CSF utilized some designed features extrac-
ted from backbone segments of various lengths (5 to 11 resi-
dues) to describe extent of nativeness11 and it was further
developed to include side chains.12 Utilization of rotameric
states besides distances13 and Voronoi contact surface14 were
also found to be quite successful. Entropy was also explicitly
considered in some models and found to be helpful.15,16 These
carefully handcraed potentials were relatively easy to explain
physically.

Many machine learning protein structural model quality
assessment protocols have been developed with great success.
Both single quality assessment models3,17–22 and meta-
models.23–25 have been utilized. A multiple object optimization
approach was also investigated.26,27 Physical explanation is less
straightforward for these machine learning based protocols.

In this paper, we analyzed the computational limitation of
present theoretical formulations underlying PB scoring, and
proposed an intrinsically multi-scale generalized solvation free
energy (GSFE) framework to facilitate application of powerful
machine learning optimization algorithms. Furthermore, we
provide a simple neural network implementation of the GSFE
framework at residue level for assessment of backbone protein
structural models. Despite simplicity, this implementation was
found to be competitive when compared with state-of-the-art KB
methods that are signicantly more complex. Further develop-
ment of GSFE for quality assessment of protein structural
models and protein design will be carried out in the near future.
We emphasize that traditional solvation free energy
RSC Adv., 2019, 9, 36227–36233 | 36227
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formulations remain powerful tools in tackling many problems.
Our formulation of GSFE is one possible alternative way to
facilitate utilization of machine learning optimization capacity.
Fig. 1 Schematic illustration of the GSFE framework. Here a residue in
a protein molecule is considered to be solvated by its neighboring
residues.
2 Methodology
2.1 Computational limitation of present solvation free
energy formulation

It has been widely accepted that hydrophobic interactions are
among the most important driving forces for protein
folding.28,29 Therefore, solvation free energy has been an
important topic with a long history of theoretical develop-
ment.30 Protein solvation free energy was itemized as an inde-
pendently calculated contribution to the total free energy as
indicated by the following equation:30

�kBT logP(S) ¼ Eintra(S) + Dm(S) + constant (1)

with S being the conguration of protein atoms and Dm being
the solvation free energy when the protein is in conguration S,
P(S) being the probability that the protein is in the S congu-
ration. The constant term was determined by selection of
a reference state. This framework is conceptually helpful for
understanding and also amenable for theoretical derivation of
large solute molecules like proteins. Most importantly, it is very
convenient for us to explicitly treat many interesting and useful
interfacial properties. These advantages explain its popularity.
However, direct and reliable separation of free energy of
a protein molecular system into internal and solvation free
energy experimentally is not an easy task for biomolecular
systems. Therefore, in development of computational models
according to this classical formulation, experimental validation
is not readily available. Meanwhile, due to the complexity of
congurational sampling and electrostatic calculations, theo-
retical approximations are unavoidable and experimental vali-
dation therefore is essential for development of reliable
computational methodologies. Present strategies for solving
this dilemma have been to validate computational methods of
solvation free energy with molecular dynamics (MD) simula-
tions30 (and references therein), which have their own approxi-
mations. An additional caveat of this formulation is that the
intramolecular packing term Eintra(S) and the solvation free
energy term Dm are calculated independently, thus making the
variance of the free energy calculation the sum of these two
parts. A formulation with unied calculation of both terms
would be preferable, where rstly direct comparison with
experimental data becomes more straightforward, and secondly
variance increase due to independent calculations could be
reduced.

Machine learning, especially deep learning has been
demonstrated to facilitate understanding of complex molecular
systems.31 The caveat of brute force utilization of deep learning
is that a deep neural network works as a black box of function
composers in many cases, and does not necessarily improve our
fundamental physical understanding. Therefore, it is highly
desirable to develop a theoretical framework that is amenable to
machine (deep) learning on the one hand, and to achieve a good
36228 | RSC Adv., 2019, 9, 36227–36233
balance of explainability and prediction capacity on the other
hand. With present solvation free energy frameworks, it is
difficult to effectively utilize both the optimization capacity of
machine learning algorithms and the available/expected high
resolution structure data.

We therefore propose in this paper an alternative theoretical
framework, a generalized solvation free energy framework. The
aim is to provide convenience for taking advantage of optimi-
zation capacity of machine learning algorithms and available
structural data on the one hand, and to support physical
explanation on the other hand.
2.2 The generalized solvation free energy framework

The denition of solute and solvent in molecular systems, while
it follows some intuition, is fundamentally arbitrary. The idea of
the generalized solvation free energy (GSFE) framework is to
dene each basic physical comprising unit of a given complex
system as solute and all its surrounding units as its specic
solvent. The GSFE framework has the following basic
properties:

(i) It is intrinsically multi-scale. Using protein molecular
systems as examples, basic physical comprising units of which
can be atoms, atomic groups, residues, clusters of residues,
structural domains, individual protein chains or even small
protein complexes in mega protein complexes.

(ii) Each basic comprising unit is both a solute and
a comprising unit of solvent for its neighboring units
simultaneously.

(iii) Solvent is specic for each solute unit, and is usually
heterogeneous.

This is in contrast to traditional denition of solution where
each basic unit/molecule is either solute or solvent, but usually
not both. Solvent in the traditional solution concept is in most
cases homogeneous. An illustration of the GSFE idea is pre-
sented in Fig. 1, where a residue in a protein molecule is
solvated by its neighboring residues. This new way of dening
solute and solvent seems to engender great difficulty in theo-
retical formulations. In contrast to homogeneous and conse-
quently easy to describe solvent in traditional denition of
solvation, here in GSFE each solute unit has its own specic
solvent, rendering direct representation of almost innitely
complex combinations of solvent impossible in multiple
component complex molecular systems. Pondering further, this
This journal is © The Royal Society of Chemistry 2019
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seemingly difficulty provides great convenience for machine
learning of the free energy as described below.

Again we use a typical protein molecular system as an
example with protein residues, water molecules and various
ions as the basic unit. For a given residue, its specic solvent
includes all other surrounding residues, possibly water mole-
cules and ions for residues close to surface. Fortunately, it is
quite well understood that in liquids and non-crystalline
condensed so matter, predominant molecular interactions
are usually quite short-ranged. We therefore may safely restrict
our attention to a limited spatial range by limiting the specic
solvent of a given solute to a certain cutoff distance. The task of
properly describing the solvent of a given solute unit remains
daunting aer this cutoff simplication. Specically, two layers
of neighboring residues for a fully buried residue solute may
amount up to 20 or even more, resulting in a maximum of 2020

possible amino acid identity combinations for a given posi-
tional conguration with immense additional spatial varia-
tions. For solute residues that are close to the surface, inclusion
of complex possible combinations of water molecules and
various other molecular entities are essential when explicit
water/ion representation is necessary. Putting aside the
complexity of the specic solvent environment for a given solute
unit for the time being, a great property emerges immediately.
The probability of a given unit existing in a given solvent is
solely determined by that solvent. Thus, for a given protein
structure model (e.g. a model in PDB), the probability of a given
residue having native sequence identity is solely determined by
the specic local solvent specied by the given structure model,
and this is true for all residues. When such a conditional
probability (p(xi|solventxi)) is properly accounted for, no addi-
tional explicit correlation between probabilities of different
residues taking respective amino acid identity and positions is
necessary. Consequently, all correlations among various
comprising solvent units and between the solute unit and
collections of solvent units are covered by this conditional
probability term, and therefore need not to be accounted for
explicitly! The free energy of a given n-residue protein sequence
X ¼ {x1, x2, ., xn} adopting a given structure (that denes
solvent for each solute residue) may be formulated as the
following:

F ¼ �ln P(structure|X) (2)

By the Bayes formula:

Pðstructure|XÞ ¼ PðX|structureÞPðstructureÞ
PðXÞ (3)

f P(X|structure)P(structure) (4)

When considering a maximum likelihood treatment, we
focus our attention to the likelihood, which may be expanded as
the following:

PðX|structureÞz
Yn

i¼1

pðxi |solventxiÞ (5)
This journal is © The Royal Society of Chemistry 2019
ln PðX|structureÞz
Xn

i¼1

ln pðxi |solventxiÞ (6)

Besides the maximum likelihood approximation introduced
in eqn (5) and (6), two additional approximations introduced
are the following: (1) Neglect of interactions between the ith
residue and all molecular systems comprising units not
accounted for by solventxi. (2) The over counting of implicit
correlations by p(xi|solventxi). Specically, let B, C and D be
neighbors of solute A, then correlations among (B, C, D) are
implicitly accounted for in p(A|B, C, D). Conversely, A is
a neighboring solvent unit for B, C and D; let us focus on D and
assume that D has four neighbors (A, B, C, X), then correlation
between B and C is counted again in p(D|A, B, C, X). The extent
of implicit over counting is determined by the number of
neighbors (i.e. cutoff distance). Even with the above-stated
approximations, this simple model performs competitively
(see Results section). We aim to improve GSFE in this respect in
our future work.

Given all the above mentioned approximations, p(xi-
|solventxi), which we have no idea in terms of explicit functional
forms, needs to solved for each residue. Fortunately, a neural
network may approximate any functions without knowing
explicit symbolic mathematical formulae as long as sufficient
data are available. p(xi|solventxi) can be learned from the
training dataset directly. Identities and positions of neigh-
boring residues constitute input for the neural network
approximating this complex conditional probability. All
possible complex correlations between solute xi and its envi-
ronment solventxi may be implicitly captured by a neural
network that is extremely good at solving non-linear mapping.
Pairwise interaction approximation has been widely utilized in
both KB and PB potentials. In the GSFE framework, both pair-
wise and higher ordered correlations within the selected solvent
were included and the relative importance of specic ordered
interactions (pair, triple and higher ordered) were determined
by the optimization process of the chosen neural network.
2.3 A simple neural network implementation

2.3.1 Datasets.We selected the Cullpdb dataset32 generated
on 2018.11.26 as our training dataset. The percentage identity
cutoff is 25%, the resolution cutoff is 2.0 angstroms, and the R-
factor cutoff is 0.25. For the 9311 chains in the Cullpdb list, we
downloaded the corresponding structures from PDB. We culled
the Cullpdb dataset and CASP13 dataset using the CD-HIT
server,33 sequences that had more than 25% identity to any
sequences in the two datasets were removed. 8129 structures of
the Cullpdb dataset and 16 structures of the CASP13 dataset
were kept aer these processes. The biopython library was used
to process and get features from these structures (for details see
denition of solvent environment). We further divided the
Cullpdb dataset into a training set (7316 structures), a valida-
tion set (406 structures) and a test set (407 structures) randomly.
16 proteins of CASP13 and their decoy structures are another
test set.
RSC Adv., 2019, 9, 36227–36233 | 36229
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In this work we use four decoy datasets to test our model,
CASP5-CASP8,34 CASP10-13,35 I-TASSER36 and 3DRobot37 decoy
sets. All the datasets are used to test ANDIS by Yu,35 the Rosetta
dataset was also used by Yu35 but the link is no longer available.

2.3.2 Neural network architecture and input tensor. We
dene the environment of a target residue by identity and
position of its neighboring residues. Different input features are
tested and the results are shown in the Results section. Here we
use the input features that produce the best performance as an
example. Pairwise distances of all residues in a protein are
calculated. For a target residue we sort the distances and choose
19 nearest residues as its neighbors. The relative orientation for
a pair of residues is dened by six angles. For residue A and
residue B, we construct Ca(A) � Ca(B), Ca(A) � N(A), Ca(A) �
Cb(A) and Ca(A) � C(A) vectors. Three angles formed by three
pair of vectors, (Ca(A) � Ca(B), Ca(A) � N(A)), (Ca(A) � Ca(B),
Ca(A) � Cb(A)) and (Ca(A) � Ca(B), Ca(A) � C(A)) are calculated.
For residue B and residue A we also construct three angles with
corresponding vectors, so for a pair of residues we have six
angles to represent their orientation. For GLY (that has no Cb

atom) we guess its HA2 position by the positions of its Ca, C
and N. For a neighbor residue we use its residue type (one-hot
encoding), distance to target residue and orientation as its
features. We further divide the neighbor residues into two parts,
sequence adjacent (abs(id(T) � id(N)) # 6) and sequence non-
adjacent (abs(id(T) � id(N)) > 6) ones. id(T) is the primary
sequence position of the target residue and id(N) is the primary
sequence position of a neighbor residue, abs function returns
the absolute value. Adjacent residues are sorted with the order
id(T) � id(N) (�6, �5, �4, �3, �2, �1, 1, 2, 3, 4, 5, 6). Not all
adjacent residues are necessarily neighbor residues as specied
by the distance criteria above. If a residue in this list is not
a neighbor residue the features of this residue is padded with
zero. Non-adjacent residues are sorted with their distance to
target residue. We use a list (1, 2, 3, 4, 5, 6, 7, 8, 9) to store the
features of these residues, for each position we store the
features of a residue. If there are not enough neighbor residues,
we will pad zeros as features in the corresponding place. Ca

depth and half sphere exposure (HSE) of the target residue are
also used as input features. The Ca depth is the distance of
a residue’s Ca atom to the solvent accessible surface. HSE is a 2-
dimensional measure of solvent exposure. Basically, it counts
the number of Ca atoms around a residue in the direction of its
side chain, and in the opposite direction (within a radius of 13
Fig. 2 Schematic representation of the vector organization for neural n
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Å). HSE comes in two avors: HSEa and HSEb. The former only
uses Ca atom position, while the latter uses both Ca and Cb

positions. So for a given target residue its input includes adja-
cent residue features, non-adjacent residue features, its Ca

depth and HSE values. All features are calculated with the bio-
python library. For each neighbor residue we use a 22-dimen-
sional one-hot vector to encode its residue type (20 natural
amino acids, 1 for other non-natural amino acids and an
additional type for non-neighboring residues for indexing
convenience), a 6-dimensional vector to store angles and a 1-
dimensional vector to store distance. For a target residue we
have 21 neighbor residues (12 adjacent and 9 non-adjacent),
and HSEa (2 dimension), HSEb (2 dimension), and Ca depth (1
dimension) together as a 5-dimensional feature. All features are
put together to form a 614-dimensional (21 � 29 + 5) feature
vector as our input (Fig. 2). We adjust distances, angles and HSE
values so that they fall approximately in the range (0, 1).

A simple four layer perceptron is constructed here with
PyTorch. For a target residue we present its input feature vector
to the neural network and predict its residue type. There are
three hidden layers and 512 neurons per layer. The activation
function used for hidden layers is ReLU. We use 21 neurons in
the output layer, 20 common residues are classied as 20
classes and all other residues are classied as the 21st class.
Somax activation function is used for the output layer and
cross entropy is selected as the loss function. The probability of
each residue type is predicted from the somax layer. We train
the network with our training dataset. A stochastic gradient
descent optimizer is utilized with a learning rate of 0.1. For each
batch we train all target residues in a protein. We train the
network for 30 epochs, aer each epoch we test the network
with the validation set. Best performing parameters in the
validation set are saved as our nal parameters. Finally we test
the model with the test dataset and the test accuracy for native
sequence identity prediction is 35.2%. Loss value and accuracy
of each epoch are shown in Fig. 3.
3 Results

To approximate local conditional probability p(xi|solventxi), we
investigated four progressively more complex sets of input
features. The most complex (also the one with the best perfor-
mance) has been presented in detail above. Three simpler sets
of input features are listed below: (1) Identity of neighbor
etwork input features.

This journal is © The Royal Society of Chemistry 2019



Fig. 3 Loss value and accuracy of training dataset and validation
dataset.

Table 2 Performance comparison in native structure recognition. The
number of proteins whose native structure is given the lowest energy
score (our method uses largest score) by the potential is listed outside
the parentheses. The average Z-scores of native structures are listed in
parentheses. Z-score is defined as (hEdecoyi � Enative)/d (our method
(Enative � hEdecoyi)/d), where Enative is the energy score of the native
structure, hEdecoyi and d are respectively the average and the standard
deviation of energy scores for all decoys in the set

Decoy sets CASP5-8 CASP10-13 I-TASSER 3DRobot

No. of targets 143 (2759) 175 (13 474) 56 (24 707) 200 (60 200)
Dre 64 (0.61) 56 (0.72) 43 (2.80) 1 (0.83)
RW 65 (1.01) 36 (0.86) 53 (4.42) 0 (�0.30)
GOAP 106 (1.67) 89 (1.62) 45 (4.98) 94 (1.85)
DOOP 135 (1.96) 121 (1.99) 52 (6.18) 197 (3.53)
ITDA 71 (1.15) 117 (1.67) 52 (4.98) 196(3.83)
VoroMQA 132 (2.00) 111 (1.77) 48 (5.11) 114 (1.89)
SBROD 88 (1.62) 119 (2.32) 33 (3.25) 49 (1.76)
AngularQA 59 (1.26) 24 (1.11) 29 (1.82) 9 (0.99)
ANDIS 138 (2.16) 129 (2.32) 47 (6.45) 200 (4.99)
GSFE 140 (1.76) 135 (1.83) 48 (4.21) 200 (3.43)

Table 3 CASP13 result; native structure ranks in decoy structures

Structure id Rank (Z-score) Structure id Rank (Z-score)

T0950-D1 1/39 (2.65) T0966-D1 1/87 (1.18)
T0953s1-D1 4/90 (1.92) T0968s1-D1 1/94 (1.42)
T0954-D1 1/87 (1.33) T0968s2-D1 2/95 (1.07)
T0955-D1 18/92 (0.68) T1003-D1 8/89 (1.13)
T0957s1-D1 2/92 (1.01) T1005-D1 1/83 (1.23)
T0957s2-D1 1/91 (1.60) T1008-D1 25/91 (0.84)
T0958-D1 4/90 (1.22) T1009-D1 1/85 (1.04)
T0960-D1 22/84 (0.71) T1011-D1 1/82 (1.33)
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residues and distances from them to the target residue are
chosen as input features, neighbor residues are sorted accord-
ing to their respective distance to the target residue. (2) HSE
values and Ca depth of target residue are added to the features.
(3) Relative orientations of neighboring residues are added.
Finally, on the basis of the third model, we divide neighboring
residues into two groups, sequence adjacent and sequence non-
adjacent, and organize as illustrated in Fig. 2. The architecture
of the neural network stays xed for all different input features,
and investigation in this regard will be performed in future
studies. We train our model using the four different sets of
input features, and test them on decoy sets. These datasets have
been used by Yu to compare ANDIS with other 8 methods.35 To
evaluate a structural model with our neural network, we rst
compute the conditional probability of each residue being in its
native sequence identity, and subsequently taking summation
of logarithm probabilities to obtain the maximum likelihood
score, with higher likelihood scores corresponding to lower
approximate free energy. The obtained scores are used to
distinguish native structures from decoy models. As indicated
by the results in Table 1, our best performing model is
competitive when compared with other KB potentials, most of
which takes atomic positions. We also nd that progressively
better performance is obtained when more information is
added to input features.

We further compare the results of our best performing
model with other state-of-the-art potentials as reported by Yu in
their ANDIS potential paper;35 the results are presented in Table
Table 1 Performance comparison in native structure recognition.
Models with input feature sets 1 through 4 are trained with different
input features as mentioned in the text. The number of proteins whose
native structure is given the lowest energy score (our method uses
largest score) by the potential is listed outside the parentheses. The
average Z-scores of native structures are listed in parentheses. Z-score
is defined as (hEdecoyi � Enative)/d (our method (Enative � hEdecoyi)/d),
where Enative is the energy score of the native structure, hEdecoyi and
d are respectively the average and the standard deviation of energy
scores for all decoys in the set

Decoy sets CASP5-8 CASP10-13 I-TASSER 3DRobot

No. of targets 143 (2759) 175 (13 474) 56 (24 707) 200 (60 200)
Model1 99 (1.35) 80 (1.13) 12 (1.54) 66 (1.85)
Model2 114 (1.52) 96 (1.20) 28 (2.32) 120 (2.09)
Model3 140 (1.83) 132 (1.75) 43 (3.95) 200 (3.33)
Model4 140 (1.76) 135 (1.83) 48 (4.21) 200 (3.43)

This journal is © The Royal Society of Chemistry 2019
2. We further present details of a test on 16 proteins of the
CASP13 decoy set and the results are presented in Table 3. Their
sequence identity with our training set is less than 25%. We
recognize 8/16 target structures from decoy structures, and the
average Z-score is 1.27. So our model can work with proteins
signicantly different from our training set in terms of
sequence identity.
4 Discussion

In this simple neural network implementation of the GSFE
framework, we utilized residue level spatial resolution. Despite
the simplicity, the best performing trainedmodel is competitive
in selecting native structures from decoys when compared with
sophisticated atomic potentials. The weakness of the trained
model as reected by the relatively small values of Z-scores is
likely due to the fact that only native structures are utilized for
the training, and this issue will be tackled in our future work.

It is important to note that the GSFE formulation has its own
limitation. Like all data driven representations, the availability
of sufficient data is critical in determining the accuracy of the
model. In this specic implementation, the work horse of GSFE
is the amino acid identity conditional probability p(xi|solventxi).
RSC Adv., 2019, 9, 36227–36233 | 36231
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When a local structure very different from all available struc-
tural data is presented to the neural network, its prediction is
apparently not as reliable as in the case of familiar input
features. It is trained on available structures and therefore is
likely to be not as effective under physical conditions that are far
from these data. The optimistic perspective is that more and
higher quality data will be generated and the model may
continuously advance based on further data input. Traditional
formulation is more powerful in many interesting schemes. For
example, if we were interested in investigating the response of
a protein under periodically varying electric elds; or if we were
interested in interfacial properties.

The free energy resolution and spatial range of molecular
interactions of GSFE is apparently limited by the specic basic
unit selected and available data. If we chose to carry out
atomistic GSFE training with a large cutoff distance, the
complexity of such local solvent would require excessively large
datasets and training time. However, due to the intrinsic multi-
scale denition, it is hopeful that we may train hierarchical
GSFE models to account for both relatively long-range interac-
tions and local chemical details. This is also a future direction
of our GSFE development.

At rst sight, the possible local chemical environment for
any residue/atom (and other possible denitions of the basic
unit) is an immense space and the available datasets (structures
in PDB) seems hopelessly small. However, evolution in billions
of years by huge number of organisms have sampled and found
at least a signicant fraction, if not all, of the important local
chemical environment spaces that were partially represented in
the presently available datasets. Nevertheless, the approxima-
tions introduced in our formulation have room to be improved.
The P(structure) term in eqn (4) was le out in the maximum
likelihood treatment. Physically, the P(structure) may be
expressed as the following:

P(structure) ¼ P(structure|fold)P(fold) (7)

With P(fold) being the probability of the concerned protein fold
in the manifold of all possible protein folds. Apparently, accu-
rate quantization of this equation needs understanding of the
whole protein fold space on the one hand, and structural vari-
ation within a specic fold on the other hand. To address this
issue properly so that we may move from present maximum
likelihood estimation to a full Bayesian treatment is a long term
goal of GSFE development.
5 Conclusions

We proposed the GSFE framework to achieve a balance of
physical interpretability and powerful non-linear optimization
capacity of neural networks. This framework is intrinsically
multi-scale and amenable to machine learning optimization.
One distinctive feature of GSFE is that implicitly considered
local correlations were not limited to pairwise interactions,
which is a widely utilized practice in many KB and PB poten-
tials. A simple neural network implementation of GSFE at
residue level for protein structural model assessment was found
36232 | RSC Adv., 2019, 9, 36227–36233
to be competitive with sophisticated state-of-the-art atomic KB
potentials in distinguishing native structures from decoys. In
future work, we plan to carry out investigations on more
sophisticated neural network architectures and training strat-
egies to achieve stronger capability in ranking decoys besides
distinguishing native structures from decoys, and to develop
hierarchical implementations of GSFE.
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14 K. Olechnovič and Č. Venclovas, Proteins: Struct., Funct.,

Bioinf., 2017, 85, 1131–1145.
15 K. Sankar, K. Jia and R. L. Jernigan, Proc. Natl. Acad. Sci. U. S.

A., 2017, 114, 2928–2933.
16 X. Wang, D. Zhang and S. Y. Huang, J. Chem. Inf. Model.,

2018, 58, 724–732.
17 R. Cao and J. Cheng, Sci. Rep., 2016, 6, 1–8.
18 R. Cao, D. Bhattacharya, J. Hou and J. Cheng, BMC Bioinf.,

2016, 17, 1–9.
19 R. Cao, B. Adhikari, D. Bhattacharya, M. Sun, J. Hou and

J. Cheng, Bioinformatics, 2017, 33, 586–588.
20 B. Manavalan and J. Lee, Bioinformatics, 2017, 33, 2496–2503.
21 J. Gao, Y. Yang and Y. Zhou, BMC Bioinf., 2018, 19, 1–8.
This journal is © The Royal Society of Chemistry 2019



Paper RSC Advances
22 G. Derevyanko, S. Grudinin, Y. Bengio and G. Lamoureux,
Bioinformatics, 2018, 34, 4046–4053.

23 R. Cao, D. Bhattacharya, B. Adhikari, J. Li and J. Cheng,
Bioinformatics, 2015, 31, i116–i123.

24 X. Jing and Q. Dong, BMC Bioinf., 2017, 18, 1–8.
25 D. Mulnaes and H. Gohlke, J. Chem. Theory Comput., 2018,

14, 6117–6126.
26 S. Song, J. Ji, X. Chen, S. Gao, Z. Tang and Y. Todo, Applied

So Computing, 2018, 72, 539–551.
27 S. Song, S. Gao, X. Chen, D. Jia, X. Qian and Y. Todo, Knowl.

Based Syst., 2018, 146, 58–72.
28 K. A. Dill and J. L. MacCallum, Science, 2012, 338, 1042–1046.
29 M. C. Bellissent-Funel, A. Hassanali, M. Havenith,

R. Henchman, P. Pohl, F. Sterpone, D. Van Der Spoel,
Y. Xu and A. E. Garcia, Chem. Rev., 2016, 116, 7673–7697.
This journal is © The Royal Society of Chemistry 2019
30 N. Matubayasi, Curr. Opin. Struct. Biol., 2017, 43, 45–54.
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