Hindawi

Journal of Healthcare Engineering
Volume 2021, Article ID 6231116, 10 pages
https://doi.org/10.1155/2021/6231116

Research Article

Ultrasound Images Guided under Deep Learning in the Anesthesia
Effect of the Regional Nerve Block on Scapular Fracture Surgery

Yubo Liu®' and Liangzhen Cheng (»*

'Department of Anesthesiology, Jiangxi Armed Police Corps Hospital, Nanchang 330000, Jiangxi, China
2Second Department of Surgery, Jiangxi Armed Police Corps Hospital, Nanchang 330000, Jiangxi, China

Correspondence should be addressed to Yubo Liu; 32315305@njau.edu.cn

Received 29 June 2021; Revised 1 September 2021; Accepted 4 September 2021; Published 7 October 2021

Academic Editor: Enas Abdulhay

Copyright © 2021 Yubo Liu and Liangzhen Cheng. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In order to discuss the clinical characteristics of patients with scapular fracture, deep learning model was adopted in ultrasound
images of patients to locate the anesthesia point of patients during scapular fracture surgery treated with the regional nerve block.
100 patients with scapular fracture who were hospitalized for emergency treatment in the hospital were recruited. Patients in the
algorithm group used ultrasound-guided regional nerve block puncture, and patients in the control group used traditional body
surface anatomy for anesthesia positioning. The ultrasound images of the scapula of the contrast group were used for the
identification of the deep learning model and analysis of anesthesia acupuncture sites. The ultrasound images of the scapula
anatomy of the patients in the contrast group were extracted, and the convolutional neural network model was employed for
training and test. Moreover, the model performance was evaluated. It was found that the adoption of deep learning greatly
improved the accuracy of the image. It took an average of 7.5 + 2.07 minutes from the time the puncture needle touched the skin to
the completion of the injection in the algorithm group (treated with artificial intelligence ultrasound positioning). The operation
time of the control group (anatomical positioning) averaged 10.2 + 2.62 min. Moreover, there was a significant difference between
the two groups (p < 0.05). The method adopted in the contrast group had high positioning accuracy and good anesthesia effect,
and the patients had reduced postoperative complications of patients (all P <0.005). The deep learning model can effectively
improve the accuracy of ultrasound images and measure and assist the treatment of future clinical cases of scapular fractures.
While improving medical efficiency, it can also accurately identify patient fractures, which has great adoption potential in
improving the effect of surgical anesthesia.

1. Introduction

Scapular fracture was first described by Desault in 1805,
who studied the characteristics of scapular fracture.
Scapular fracture accounts for 1% of total body fractures
and 5% of total shoulder fractures [1]. It is usually caused by
accidents such as car accidents or falling from heights. The
majority of young men and middle-aged men account for
64% to 90% [2]. Scapular fractures such as painful fractures
and fall fractures (fatigue injuries) are rare. Scapular
fracture is often part of multiple traumas and is often
overlooked. With the development of society, science and
technology, and transportation, its incidence is gradually
increasing [3]. A combination of physical examination,

x-ray, or CT examination can usually make a definitive
diagnosis of shoulder and foot fractures. At present, most
of the surgical treatments for scapular fractures focus on
the shoulders, kidneys, and neck, including the articular
surfaces, which need to be reduced anatomically as much as
possible. However, the incidence of postoperative com-
plications such as joint pain, instability, and shock is rel-
atively high [4].

The local nerve block is mainly used for surgical anes-
thesia of the shoulder and wrist area. The requirements of
local nerve block for patient’s systemic physiological func-
tions and hardware equipment are lower compared with
general anesthesia, and postoperative pain relief is relatively
less [5]. In addition, the local nerve block can reduce general
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anesthesia. In areas where the local nerve distribution is
relatively concentrated, the local nerve block mainly forms
various block paths, including muscle groove, subclavian,
subclavian longitudinal penetration, subclavian polymor-
phic process, and axillary path [6]. The operation of tradi-
tional nerve fracture surgery requires that the patient should
be awake and can assist to report feelings, and the puncture
needle of the nerve trunk is contacted within a short period
of time, which will cause the patient’s subjective discomfort
and may cause nerve damage during the puncture process
[7]. The key to the success of nerve fracture surgery is the
correctness of the position of the peripheral nerve. It re-
quires the surgeon’s high clinical experience, which has a
great impact on the patient’s various anatomical changes, so
the success rate is not high. Nerve fracture surgery is often
accompanied by lesions of blood vessels or important tissues
and organs, which may cause serious complications or se-
quelae. The development and application of nerve stimu-
lation devices have increased the success rate of nerve
fracture surgery. However, puncture increases the discom-
fort of patients, and the use of intravenous analgesics and
sedatives is gradually increasing [8]. In recent years, with the
advancement of medical technology and the improvement of
human medical treatment, the demand for rapid onset, long-
term maintenance, high success rate, and uncomplicated
nerve fracture surgery has also increased. With the help of
the anatomical positioning of the nerve stimulator, the
peripheral nerve block becomes wider and wider. In recent
decades, the emergence of ultrasonic technology has made
scapular fracture surgery safer and more effective and fur-
ther expanded the scope of application [9]. This technology
rapidly changed the way of clinical anesthesia, and local
anesthesia can be performed in a visualized manner. Ul-
trasound is dynamic, real-time, recordable, and radiation-
free, and ultrasound-guided nerve block technology has
been developing and maturing in the past decade [10].
Ultrasound-guided nerve block is different from conven-
tional techniques. Traditional methods identify target nerves
by looking for paresthesia methods through body surface
anatomical location or inducing neuromuscular contraction
by nerve stimulator, but traditional methods cannot achieve
visualization of puncture points [11]. Ultrasound imaging
can visualize the nerve that needs to be blocked, as well as the
accompanying blood vessels and important tissues around
the nerve. By visualizing the nerve and the important
structures surrounding the nerve, it is possible to ensure
accurate diffusion of anesthetic drugs around the target
nerve during nerve block. It also avoids damage to blood
vessels and surrounding important tissue structures and
reduces the incidence of adverse events such as intrathecal
injection and intravascular injection [12].

Deep learning is a new research direction in the field of
machine learning. Unlike traditional machine learning,
deep learning neural networks include many hidden layers.
The machine can automatically learn the characteristics of
each level of the data and completely analyze and process
the data information. The excellent results of deep learning
technology in the medical field are mainly reflected in the
processing and analysis of medical images [13]. It does not
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need to manually extract the function or preprocess the
image. It can extract the information in the image and the
depth features of the image, thus contributing to disease
diagnosis and diagnosis. At present, the research and ap-
plication of in-depth learning in the field of anesthesia are
relatively rare, and the risk of death of patients after general
anesthesia can be predicted based on the data extracted
during surgery. In addition, deep learning has broad ap-
plication prospects for its performance and scalability in
anesthesia research.

The purpose of this research was discussing the fol-
lowing three issues: first, the difference in image accuracy
between deep learning ultrasound images and ordinary
ultrasound images; second, the adoption of artificial in-
telligence ultrasound to optimize anesthesia puncture path;
third, the effectiveness of ultrasonographic imaging guided
scapular regional nerve block in the treatment of surgical
pain of fracture. It was hoped to provide reference for other
regional nerve block anesthesia operations.

2. Methods

2.1. Research Objects. In this study, a total of 100 patients
with scapula surgery who underwent surgery from July 2017
to July 2019 were recruited. This study had been approved by
the Medical Ethics Committee of the Hospital, and the
family members of the patients included in the study had
signed the informed consent form.

Inclusion criteria were as follows: (i) patients with
diseases such as hypertension, diabetes, and respiratory
insufliciency according to the standards of the Amer-
ican Society of Anesthesiology (ASA); (ii) scapular
fracture surgery not exceeding four hours

Exclusion criteria were as follows: (i) patients with
paralysis; (ii) patients with speech dysfunction; (iii)
patients with skin infection at the puncture site; (iv)
patients with arm nerve plexus injury; (v) patients with
previous clavicle surgery experience; (vi) patients with
pleural fluid or ascites

In 100 patients undergoing scapular surgery, 1% of the
local anesthetic concentration and 7% of Lopimaran were
injected into the area to be anesthetized. Patients were
randomly rolled into control group (traditional body surface
positioning) and algorithm group (ultrasound-guided
positioning).

2.2. Experimental Environment

2.2.1. Construction of the Deep Learning Segmentation
Model. Convolutional neural network is a commonly used
deep learning algorithm [14]. The process is as follows.
Triggered by the human visual system, the continuous
modification is formed in a multilayer neural network
suitable for processing and recognizing images. A classic
convolutional neural network is composed of a convolu-
tional neural layer and a normalization layer, and its
structure is shown in Figure 1.
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Figure 1: Convolutional neural network data analysis model.

3. SegNet Model

Seg is a brand-new deep fully convolutional neural network
model (semantic pixel-wise neural network model) pro-
posed by three deep learning experts (Yadri-narayanan,
Kcndall, and Cipolla) from the University of Cambridge in
2010 that can perform image pixel-wise semantic division
and image labeling [15]. The SegNet model is mainly
composed of encoder, decoder, and oft-max layer. The
encoder and decoder appear in pairs for image feature ex-
traction and optimization. Its structure is shown in Figure 2.

The SegNet model divides an image into low-frequency
part, which is obtained by low-pass filtering (smoothing and
blurring) of the image, and high-frequency part, which is
obtained by subtracting the low-frequency part from the
original image [16]. The goal of the algorithm is enhancing
the high-frequency parts that represent details, that is,
multiplying the high-frequency parts by a certain gain value
and then recombining them to obtain an enhanced image.
Therefore, the core of the SegNet model is the calculation of
the high-frequency part of the gain coefficient. One solution
is setting the gain to a fixed value, and the other solution is
expressing the gain value as a quantity related to the vari-
ance, which will be explained in the additional equation
later.

It is assumed that the pixels in an image are represented
as x(i, j); then with (i, j) as the center, in the area where the
window size is (2n+1) * (2n+ 1), its local mean sum and
varjance can be expressed as the following equations:
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The mean value mx can be approximately regarded as the
background part, at this time x-m is the high-frequency
detail part, and the gain product for the high frequency is the
following equation:

fG, ) =m.(G, )+ GG, j)[x(@,j) —m G, )] (2)

For the gain G, the first option is taking a constant
greater than 1 to achieve the enhanced effect, which is the
following equation:

f G, j) =m.(, j) + C[x (i, j) —m, (i, j)]. (3)
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FIGURE 2: Image quality gain model.

Option two is that it is expressed as a change value
inversely proportional to the local mean square error, which
is the following equation:

fG ) =m,(G,j)+ [x(Gj)-m, G )] (4)

D
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The local mean square error is large in the high-fre-
quency area of the image, and the gain value is small at this
time, so that the result will not be too bright. However, the
local mean square error is very small in the smooth area of
the image, and the gain value is large at this time, which may
amplify the noise signal. Therefore, it is necessary to limit the
maximum gain to get better results.

3.1. Adaptive Contrast Enhancement. The principle of this
network is classifying the image into two parts. The low-
frequency part can be obtained by low-pass filtering of the
image. The high-frequency part is obtained by subtracting
the low-frequency part from the original image. The purpose
of this algorithm is visualizing the image in detail, that is,
multiplying the high-frequency part by a certain gain value
to reconstruct the emphasized image. The core of enhancing
image accuracy is repeatedly enlarging clear images in order
to improve image quality.

Nowadays, medically generated images are mainly
concentrated on low-frequency components, while noise
and image details are concentrated on high-frequency
components. The two components are separated in image
processing, and different operations and processing are
performed, which can avoid image detail loss and noise
amplification when the histogram equalization algorithm is
used. It aims to separate the high-frequency and low-fre-
quency components of the input image. Medical ultrasound
images have detailed and strict requirements, and blurring is
not allowed, so Gaussian low-frequency filters were used in
this study.



3.2. Anesthesia Methods. 4-5pug/kg fentanyl, 1.5-2mg/kg
propofol, and 0.1 mg/kg vecuronium were used. After suc-
cessful tracheal intubation, the anesthesia machine was
connected to mechanical ventilation, the tidal volume was
8-10 mL/kg, and the respiratory rate was 8-12 times/min.
During the operation, 0.06-0.1 ug/kg/min remifentanil was
used for continuous intravenous pump injection, Sevo-
flurane 1.0-1.3 MAC inhalation maintained the depth of
anesthesia within 40-60 BIS value, and intermittent intra-
venous injection of vecuronium was made to maintain
muscle relaxation. If the heart rate was lower than 55 beats/
min, 0.3 mg atropine was given, and when the systolic blood
pressure was lower than 25% of the preoperative base value,
10 mg ephedrine was given to increase blood pressure.

3.3. Traditional Body Surface Localization of the Scapula
Regional Nerve Block. The patient was anesthetized on the
inner side and 1/3 of the unaffected side of the site to be
anesthetized. The patient was supine with the head tilted to
about 1.5-2.0 cm. After disinfection of the scapular fracture
site, a 20 g puncture needle was inserted along the mus-
cularly groove, and the needle was slowly inserted in the
lower and lateral directions. The needle was inserted 1.5 to
2.0 cm, and the patient can feel the pain and location of the
puncture, so that the physician was informed. 20 mL local
anesthetic was injected into the muscle, and a 5-minute
massage was made to spread the anesthetic fluid further
away.

3.4. Artificial Intelligence Ultrasound-Guided Scapula Re-
gional Nerve Block. The patient was anesthetized on the
inner side and 1/3 of the unaffected side of the site to be
anesthetized. The head should be tilted to about 1.5-2.0 cm
and the patient should be supine with the scapula fracture in
contact. After disinfection, ultrasound was used to detect the
nerves that needed to be anesthetized. It was relatively more
pronounced by detecting the neural structure at the margin
lateral margin of the scapula. After the ultrasound showed
the nerves at the anesthetic site, the location of the puncture
should be determined and a local anesthetic of 20 mL was
injected into the muscle. After 5 minutes of massage, the
anesthetic fluid spread further.

3.5. Observation Indexes. The operative time, puncture
depth, puncture adjustment time, time to start anesthesia,
rate of good anesthesia, complication rate, and other indi-
cators of the two localized nerve area approaches were
shown. (I) The time of blocking action referred to the time
from the contact with the skin of the puncture needle to the
completion of the injection. The measuring tool of the ul-
trasonic device was used to measure the distance from the
puncture point to the target, and the actual puncture depth
was measured with a carrier. (II) The needle adjustment
times during the puncture process were recorded, so did the
occurrence of bone, needle head, and needle body defects
during the puncture process. In addition, the number of
cases of loss of electrical resistance when the transverse
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ligament of the upper arm was breached was also recorded.
(III) The anesthetic effect was evaluated by other anesthe-
siologists, and the anesthetic level and effect were measured
within 30 minutes after injection. The standard was as
follows: excellent: completely painless; good: reduced sen-
sation and mild pain; poor: normal feel and excruciating
pain. (IV) The incidence of complications such as perceptual
disturbance, vascular puncture injury, hematoma, puncture
site pain, pneumothorax, and local anesthesia intoxication
during the puncture process was recorded.

3.6. Statistical Methods. SPSS 16.0 was employed for analysis
and statistics. Normally distributed measurement data were
expressed as mean plus or minus standard deviation, and
single-factor analysis of variance was used for comparison
between groups. Nonnormally distributed measurement
data were expressed as median and interquartile range, rank
sum test rate was expressed as percentage (%), and Chi-
square test was used. Chi-square test was also used for grade
data. P <0.05 suggested that the difference was statistically
significant.

4. Results

4.1. Visual Evaluation of the Accuracy of Deep Learning Model
Images and Non-AI Images. The prototype of the scanned
object with “tomography” was shown clearly, so that the
doctor can identify it. In Figure 3, the scapula reached the
cutoft frequency after being filtered by Gaussian low-pass.
When the filter dropped to a certain value, the boundary was
clearly demarcated, leaving a clear barrier between it and its
surroundings.

In Figure 4, the second enhancement made the dark part
of the scanned object and the background next to it have
better contrast, and the color layering was obvious, which
can clearly highlight the characteristics of the main part.

Figure 5 shows a group of images of patients with
fractures. In the image before enhancement and optimiza-
tion, the fracture at the bottom right of Figure 5 does not
seem to be obvious. If it was not enhanced, it was easy to be
misjudged as a nonfracture site and affect the doctor’s
judgment, while the enhanced ultrasound image can clearly
show the location of the fracture.

The second boundary enhancement focused on the
optimization of some edge contours and the increase of
contrast, which further brought the segmented image closer
to the real value. Figure 6 shows the enhancement curve of
accuracy.

4.2. The Relationship between the Location of the Traditional
Nerve Block in the Scapula Region and the Actual Surface
Location of the Ultrasound Scapula Region. The location of
the traditional nerve in the scapula region overlapped with
the actual body surface location of the nerve in the scapula
region under ultrasound, accounting for 60%. The tradi-
tional location of the nerve in the scapula region was 38%
outside the actual body surface position of the nerve in the
scapula region under ultrasound. The traditional location of
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(b)

FiGure 3: Comparison of the effect of scapula ultrasound before and after the artificial intelligence enhancement. (a) Unenhanced ul-
trasound image of the scapula. (b) Enhanced ultrasound image of the scapula.

(a)

(b)

F1GURE 4: Comparison of the effect of scapula CT before and after artificial intelligence enhancement. (a) Unenhanced CT image of the

scapula. (b) Enhanced CT image of the scapula.

the nerve in the scapula region was 2% inside the actual body
surface position of the nerve in the scapula region under
ultrasound (Figure 7). The traditional positioning of the
body surface of the scapula region was 0.63 cm away from
the actual body surface of the scapula region under ultra-
sound. The location area of traditional and artificial intel-
ligence ultrasound overlapped greatly, and the location area
of artificial intelligence outside is about 36% more than that
of the inside.

4.3. Comparisons of Injection Time and the Distance between
the Puncture Point and the Scapula between the Two Groups.
In the contrast group (artificial intelligence ultrasound
positioning), it took an average of 7.7 2.1 min from the
time the puncture needle touched the skin to the completion
of the injection. The operation time of the control group
(anatomical positioning) averaged 10.7 + 2.4 min, and there
was a significant difference between the two groups
(p <0.05). The actual puncture depth of the contrast group
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F1GURE 5: Comparison of scapula fracture before and after ultrasound artificial intelligence enhancement. (a) Unenhanced ultrasound image

of the scapula. (b) Enhanced ultrasound image of the scapula.
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FIGURE 6: Accuracy enhancement curve.

was 62.5+7.2mm, and that of control group was
79.8 £ 8.9 mm. The difference between the two groups was
significant (p <0.05) (Figure 8).

4.4. Comparison of the Effects of the Motion Block between the
Two Groups. The score of motion block effect in the contrast
group and the control group is shown in Figure 9. The scores
of clenched fist, elbow flexion, wrist extension, and arm lift
were significantly different between the contrast group and
the control group, and the motion block effect of the contrast
group was better, with statistical difference (P < 0.05).

4.5. Comparison of Adverse Events during Puncture between
the Two Groups. The number of needle tracks needed to be
adjusted during puncture in the control group was
3.25+1.36 times, and that in the contrast group was
2.11+1.31 times. P = 0.009, with statistical difference. The
times of encountering bone during puncture were
1.91 £ 1.34 times and 0.68 £0.73 times in the two groups,

2%

[l Overlap
[ The lateral

Inside

F1GURE 7: The proportion of the nerve location on the body surface
in the scapula region of the traditional method and that under
ultrasound.

respectively, P =0.002, with a statistical difference

(Figure 10).

4.6. Evaluation of the Anesthesia Effect of the Two Groups.
In the contrast group, there were 11 cases with excellent
anesthesia effect and 9 cases with good anesthesia. There
were 13 cases with excellent anesthesia effect and 7 cases
with good anesthesia in the control group (Figure 11). The
results showed that the anesthesia effect score of the contrast
group was high and the anesthesia effect was good.
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FIGURE 8: Comparison of puncture time and actual puncture depth between the two groups (P <0.05). (a) Puncture time was compared
between the two groups. (b) The puncture depth of the two groups was compared (*a considerable difference between groups).
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F1GURE 9: The score of motion block effect between the contrast group and the control group (P < 0.05) (*a considerable difference between

groups).

Number

Algorithm group

m Number of needle track adjustments
@ Number of bone encounters

The control group

FiGure 10: Adjustment of the number of needle tracks and the number of bone encounters between the two groups (P <0.05)

(*a considerable difference between groups).

4.7. Comparison of Puncture Sites and Puncture Adverse
Reactions between the Two Groups of the Regional Nerve Block.
In Figures 12 and 13, one patient in the control group had a
transient abnormal sensation during puncture, while the

contrast group did not show transient abnormal sensation.
One case in the contrast group was found to have vascular
injury, and hematomas were formed during the puncture of
the injured blood vessel in the control group. The main
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The control group

Figure 11: Comparison of anesthesia effect evaluation between the two groups.

FiGure 12: The puncture site of the regional nerve block in the algorithm group (a) and the ultrasound anatomical diagram after

puncture (b).

complaint of pain during puncture was obvious in the two
groups, and there were six patients in the control group,
which accounted for 30%. Patients in the contrast group did
not have complain of significant pain, and there was a
difference between the two groups (p < 0.05). There was no
pneumothorax and local anesthetic poisoning in the two
groups.

5. Discussion

The adoption of ultrasonic technology in regional nerve
block has become a research hot issue in recent years. Ul-
trasound technology has produced revolutionary advances
in nerve blocks, including the development of spinal re-
gional nerve block [17]. However, there are few reports of the
use of ultrasound for nerve block in thoracic paravertebral
area. Nowadays, the application of ultrasound technology in
clinical regional nerve block has harvested good results and

accumulated experience related to real-time guidance of
parathoracic region nerve block [18]. In ultrasound, the
sagittal section scan block and the oblique section scan block
use two modes. The patient can choose the position of the
seated side and the position of the decubitus side, as well as
the clinical anesthesia area or sitting position. The selection
of ultrasonic detection mainly depends on the depth of
puncture target and the body shape of the patient, and the
weight of the patient has been shown in many studies to be
an important factor affecting the depth of thoracic puncture
[19]. An ultrasonic probe with the appropriate frequency
must be selected by the scanning site. High-frequency linear
detection was used for thoracic lateral spinal region nerve
block [20]. Ultrasonic imaging is determined by the physical
properties of the frequency and wavelength of the ultrasonic
wave that detects radiation. Ultrasonic frequency units are
related to resolution. The human ear can sense the frequency
of sound waves within 20 Hz-20kHz, and the medical
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(b)

Figure 13: The puncture site (a) of the regional nerve block and the ultrasound anatomy after puncture (b) in the control group. *The

bleeding point.

diagnostic frequency of ultrasonic waves is 1-30 MHz. The
higher the frequency of ultrasonic detection, the better the
transverse resolution. Ultrasound wavelengths mean the
distance between adjacent particles in two vibrating regions,
allowing a clearer distinction between nerves and sur-
rounding tissue. The longer the wavelength, the higher the
transmittance. The frequency of the linear probe is
6-13 MHz, which is suitable for photographing the tissue
structure of the body surface. Most of the detection fre-
quencies are 2-7 MHz, which can be used for deep tissue
structure imaging [21]. Therefore, the appropriate probe is
selected according to the body type of the patient and the
depth of the site to be anesthetized. In this study, the body
mass of patients was less than 30 kg/m? and good imaging
results were obtained using a high-frequency linear probe.
The ultrasonic waves emitted by the probes penetrated the
surface and propagated into the interior, reflecting the re-
actions that arouse when obstacles were encountered.
Various obstacles can produce different echoes, which are
collected and displayed on the screen to get a real-time view
of the various parts of the internal organs. In addition, the
color Doppler model was combined, which is particularly
sensitive to the flow of fluids. Therefore, the blood vessels
can be better observed by color Doppler spectroscopy and
the flow and diffusion of local anesthesia injection can be
observed, which can enable physicians to better conduct the
next operation [22].

On the whole, traditional puncture anesthesia lacks
the sense of breakthrough during epidural puncture, so
the success rate is low and complications are high. A safe
and effective guiding puncture method is urgently needed
in clinic. The results showed that the fracture site was not
obvious in the image before enhancement and optimi-
zation, and it was easy to be misjudged as a nonfracture
site, affecting the judgment of doctors. The enhanced
sonogram clearly showed the fracture location. The

localization area of traditional ultrasound and artificial
intelligence ultrasound overlapped greatly, and the area
of artificial intelligence localization was 36% more than
that of inner ultrasound. The algorithm group had fewer
puncture needle channels, fewer adverse reactions, and
broken operation time, indicating that the ultrasonic
positioning effect of the algorithm was better than that of
traditional puncture. After the visualization and real-time
properties of artificial intelligence ultrasound were used
for two control groups, the feasibility of applying ul-
trasonic image-guided regional nerve block based on
deep learning to scapula fracture anesthesia was
demonstrated.

6. Conclusion

The deep learning-based ultrasound image-guided imaging
during scapular fracture surgery with regional nerve block
anesthesia was compared with the use of traditional
puncture anesthetics. It was proved that the method pro-
posed in this study was more eflicient than the traditional
method, regardless of whether the method of puncture
accuracy evaluation or evaluation of anesthesia effect was
used. This method significantly shortened the time required
for puncture and reduced complications compared with
traditional puncture. In the future, we need to verify the
performance of our constructed model in more cases and
more disease types. In addition, based on the statistics of
various parameters formed by patients using this method, its
clinical diagnosis and prognostic predictive effects need to be
further studied.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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