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A B S T R A C T   

Robotic manipulators are nonlinear systems, multi-input multi-output, highly coupled and 
complicated whose performance is negatively impacted by external disturbances and parameter 
un-certainties. Therefore, the controllers designed for such systems must be capable of managing 
their complexity. The main aim of this study is to tackle the trajectory tracking issue of the three- 
Link Rigid Robot Manipulator (3-LRRM) based on designing three control structures using a 
combi-nation Neural Network (NN) with Proportional, Integral and Derivative (PID) actions 
named Neural Controller Like PIPD (NN-PIPD) controller, Neural Network plus PID (NN + PID) 
controller NN + PID controller and Elman Neural Network Like PID (ELNN-PID) controller. The 
parameters of the proposed controllers are adjusted utilizing the Coot Optimization Algorithm 
(COOA) in order to reduce the Integral Time Square Error (ITSE). A novel objective function for 
tuning process to produce a controller with minimum value of the chattering in the control signal 
is proposed. The performance of the proposed controllers is evaluated in terms of disturbance 
rejection, model uncertainty, fluctuating initial conditions and reference trajectory tracking. 
According to the simulation results proved that the suggested NN-PIPD controller outperforms all 
other proposed controller structures for tracking performance, stability, and robustness. As a 
result of the com-parison analysis the optimal controller was considered to be an NN-PIPD 
controller for tracking trajectory, rejecting disturbances, and parameter variation with mini-
mizing ITSE of 0.001777.   

1. Introduction 

Robot manipulators have been used in industrial applications increasingly in recent years. Basically, industrial robot manipulators 
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are tools for handling and positioning [1]. Numerous applications have been found, including those for forging, handling hazardous 
radioactive materials, spray painting, automatic assembly lines, loading and unloading cargo, and military use [2,3]. Consequently, an 
efficient robot manipulator can regulate both its own motion and the effects of forces that exerts to the environment. Industrial robot 
manipulators are actually nonlinear systems MIMO and susceptible for variations in payload, nonlinear friction, and external dis-
turbances. Therefore, without a thorough understanding of the robot system, developing a precise controller is challenging [4]. 
Consequently, the challenge of regulating the location and orientation of a planar robotic manipulator has drawn attention from 
researchers [5]. Several research studies have been carried out on the design of various controller structures in order to solve the path 
tracking problem of 2-link robot manipulator (2LRM). The authors of [6] proposed several types of control strategies utilizing neural 
networks and PID controllers based fractional order and integer-based gorilla optimization algorithm to reduce the ITSE. In Ref. [7] the 
authors concentrated on using an adaptive fractional order fuzzy sliding mode proportional integral and derivative (FOFSMPID) 
controller based cuckoo search optimization technique. The extensive research has shown that the performance of the FOFSMPID 
controller is significantly better than others controllers. The authors of [8] described four structures of control that consisted of 
F/IOFPID controllers based most valuable player algorithm. The FOFPD-FOPID has lowest ITSE and best structure. Non-singular rapid 
terminal sliding mode control approach with a wavelet neural networks observer was proposed by the authors in Ref. [9]. Stability 
analysis utilizing the Lyapunov criterion shows that this control technique is stable. A FOPID controller was presented by the authors in 
Ref. [10]. The Interval Type II Fuzzy Fractional-Order Proportional Integral Differential (IT2FO-FPID) controller-based whale opti-
mization algorithm (WOA) was developed by the authors of [11]. A Non-Linear Fractional order PID controller (NLF-PID) was 
designed by the authors in Ref. [12]. A genetic algorithm based on multiple-objectives optimization is suggested for adjusting the gains 
of the proposed controller. Compared with other proposed controllers in different scenarios, the results showed that NLF-PID provided 
reliable and efficient control. The authors in Ref. [13] proposed a fractional order controller. The effectiveness method with respect to 
good tracking performance is demonstrated by simulation results and comparison with the calculated torque method. The FOFPID 
controller based Cuckoo search algorithm to modify the controller parameters was studied by the authors in Ref. [14]. Simulation 
results showed FOFPID controller is better in trajectory tracking compared to traditional PID and fuzzy PID controllers. The authors of 
[15] worked on optimizing the gains of FOPID controller using Bat algorithm. The authors of [16] designed a PID controller using a 
fuzzy neural network method. The efficiency of the proposed strategy is demonstrated through the numerical simulation results [17]. 
suggested using type-3 (T3) fuzzy logic systems (FLSs) (also known as T3-FLSs) to estimate and control the symmetrical perturbations 
and the dynamics of the robotic manipulators. The superiority of the proposed controller is shown by multiple simulations. Several 
research studies have been carried out on the design of various controller structures in order to solve the path tracking problem of 
3-link robot manipulator (3LRM). In Ref. [18] the authors presented the development of Fuzzy Logic and Adaptive Neuro-Fuzzy 
Inference System (ANFIS) controllers. The ANFIS Controller continuously performed better than the Fuzzy Logic Controller. A 
fractional-order self-tuned fuzzy PID (FOSTFPID) controller was presented in Ref. [19]. FOSTFPID, fractional-order fuzzy PID, and 
integer-order self-tuning fuzzy PID controllers’ performances were compared. All adjusted by the cuckoo search method. The com-
parison findings showed that FOSTFPID was clearly superior. A fuzzy fractional order adaptive impedance controller was presented by 
the authors in Ref. [20] in order to maintain force error in the tracking dynamic phase and prevent power overflow in the connection 
stage. The authors in Ref. [21] designed and three distinct position control approaches named PID, PD, and FLC controllers. The FLC 
showed minimum overshoot. On the other hand, the rising time and settling time performance of the PID and PD controllers were 
better. The authors in Ref. [22] introduced a Self-Regulated Fractional-Order Fuzzy Proportional–Integral–Derivative (SRFOFPID) 
controller. The study’s findings showed that the SRFOFPID controller’s degree of freedom and robustness are increased by fractional 
operators. The authors of [23] provided a sliding mode adaptive fractional fuzzy control. By using fractional-order adaptation laws to 
update fuzzy controller parameters. The integer-order Lyapunov stability criterion is applied, and fractional-order integral Lyapunov 
functions are suggested to aid in the stability analysis. The authors of [24] presented and evaluated two optimization methods for 
figuring out the best gains for a PID controller. an improved artificial bee colony and the basic artificial bee colony with multi-elite 
guiding. The Fuzzy-PID controller design of a 4 DOF industrial arm robot manipulator was utilized by the authors of [25]. The au-
thors of [26] introduced PID, tilt integral derivative (TID), and fractional-order proportional integral derivative (FOPID) controllers 
based grey wolf optimization (GWO) and particle swarm optimization (PSO) to optimize the controller gains. When compared to 
FOPID-PSO and other controllers, the FOPID controller optimized by GWO yields lower ITAE, resulting in superior performance 
[27–42]. introduced fuzzy based control algorithms for nonlinear system [43–46]. introduced safe and fast tracking on a robot 
manipulator and fuzzy technique. As is clear, most of the techniques mentioned above in most studies have their pros and cons. They 
were used in terms of complexity and time-consuming calculations at the expense of accuracy and time. 

In this study the main goal is to solve the trajectory tracking issue of the 3-LRRM based on designing three control structures. The 
interesting element and motivation in the proposed structures is to combine the power of neural network representation of linear and 
non-linear functions with the power and robustness of the PID controller for the purpose of obtaining a hybrid controller with both 
features. 

The main contributions of this work are.  

1. Designing three control structures consisting of Neural Network (NN) with Proportional, Integral and Derivative (PID) actions 
named Neural Controller Like PIPD (NN-PIPD) controller, Neural Network plus PID (NN + PID) controller NN + PID controller and 
Elman Neural Network Like PID (ELNN-PID) controller for 3-LRRM trajectory tracking problem.  

2. Finding the optimal parameters of the proposed controllers based on Coot Optimization Algorithm (COOA) to give the best desired 
performance. 
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3. Suggesting a new objective function for tuning process to produce a controller with the least amount of chattering in the control 
signal. 

4. Implementing a comparison study among the proposed controllers in terms of changing initial conditions, adding external dis-
turbances, changing system’s parameters, and adding all uncertainty effects together in order to select the best controller., 
changing system’s parameters, and adding all uncertainty effects together in order to select the best controller. 

The remaining parts of the article are structured in the following: The 3-LRRM’s dynamic model is explained in Section 2. The 
suggested controllers are outlined in Section 3. Section 4 displays the COOA. The simulation results are shown in Section 5. Section 6 
provides the conclusion. 

2. Three-LRRM dynamic model 

The robot manipulator consists of a set of links connected to one another by joints. A robot manipulator that is planar can only move 
in one plane. Many industrial robotic systems for assisted and medical automation use prototypes of planar robot manipulators. This 
study considers the planar robot manipulator with three links as revolute joints, assuming that every joint is taken to be actuated. A 3- 
LRRM system with 3 DOF is demonstrated in Fig. 1. The system’s 1st link is connected to a rigid bottom by a frictionless shaft, and the 
2nd link is connected to the 1st link’s end by a frictionless ball bearing. Ball bearings that don’t cause friction are used to connect the 
second and 3rd links [19]. The fundamental control equations in robotics are constructed using the manipulator’s dynamic equation of 
motion. The manipulator’s arm in a robot system moves dynamically due to the torques generated by the actuators [47]. A 3-LRRM has 
the following dynamic model. 

The 3-LRRM is described by the Lagrange dynamic model [48]. 
The following describes the x- and y-position equations for link1, as indicated in equations (1) and (2) [48]: 

x1 = lA1 cos (θ1) (1)  

y1 = lA1 sin (θ1) (2) 

In the same way, link2’s x- and y-position equations are provided by equations (3) and (4) 

x2 = lA1 cos (θ1) + lB2 cos (θ1 + θ2) (3)  

y2 = lA1 sin (θ1) + lB2 sin (θ1 + θ2) (4) 

Additionally, link3’s x- and y-position equations are provided by equations (5) and (6) 

x3 = lA1 cos (θ1)+ lB2 cos (θ1 + θ2) + lC3 cos(θ1 + θ2 + θ3) (5)  

y3 = lA1 sin (θ1)+ lB2 sin (θ1 + θ2) + lC3 sin(θ1 + θ2 + θ3) (6)  

where, li, θi , xi and yi are the length, angle, x-position and y-position of the link i. 
The following is the definition of Kinetic Energy (KE), as expressed in equation (7): 

Fig. 1. Three-LRRM’s structural diagram.  
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KE=
1
2

mA1 v2
1 +

1
2

mB2 v2
2 +

1
2

mC3 v2
3 (7)  

where, vi and mi ,are the velocity and mass at the end of the link i. The velocities for mA1 , mB2 and mC3 are represented by the variables 
v1, v2 and v3 , respectively, and can be computed in equation (8): 

v1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
1 + ẏ2

1

√

, v2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
2 + ẏ2

2

√

, v3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ẋ2
3 + ẏ2

3

√
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Thus, the Kinetic Energy (KE) is defined in equation (9): 

KE=
1
2
mA1

(
ẋ2

1 + ẏ2
1
)
+

1
2

mB2
(
ẋ2

2 + ẏ2
2
)
+

1
2

mC3
(
ẋ2

3 + ẏ2
3
)

(9) 

Additionally, the Potential Energy (PE) can be expressed as presented in equations 10 and 11: 

PE=
∑3

i=1
mi g hi(θ) (10)  

where, g is the gravity and hi is the height of mass of link i. 

PE=mA1 g lA1 sin(θ1)+mA2 g(lA1 sin(θ1)+ lB2 sin(θ1 + θ2)) + mC3 g( lA1 sin(θ1)+ lB2 sin(θ1 + θ2)+ lC3 sin(θ1 + θ2 + θ3)) (11) 

After that, the Lagrangian L is explained in equation (12) using the Lagrange dynamic: 

L=KE − PE (12) 

The following is the Euler Lagrange Equation (13): 

d
dt

[
∂L
∂θ̇i

]

−
∂L
∂θi

= Fθi (13)  

whereas the torque applied onto i-th link is denoted by Fθi or τi. 
The standard form for these manipulator dynamics is as indicated in equations 14–24 [49]: 

D(θ)θ̈+P
(
θ, θ̇

2)
+R

(
θ, θ̇iθ̇j

)
+G(θ) = τ (14)  

where, D(θ) is the inertia matrix. 

D=

⎡

⎣
D11 D12 D13
D21 D22 D23
D31 D32 D33

⎤

⎦ (15)  

D11 =(mA1 +mB2 +mC3)l2A1 +(mB2 +mC3)l2B2 +mC3l2C3 +2mC3lA1lC3 cos
(
θ2 + θ3] +2(mB2 +mC3)lA1lB2 cos(θ2)+ 2mC3lB2lC3 cos (θ3)

(16)  

D12 =(mB2 +mC3)l2B2 +mC3l2C3 +mC3lA1lC3 cos(θ2 + θ3)+ (mB2 +mC3)lA1lB2 cos(θ2) + 2mC3lB2lC3 cos (θ3) (17)  

D13 =mC3l23 +mC3lA1lC3 cos(θ2 + θ3) + mC3lB2lC3 cos (θ3) (18)  

D21 =mB2l2B2 +mC3l2B2 +mC3l2C3 +mC3lA1lC3 cos(θ2 + θ3)+mB2lA1lB2 cos(θ2)+mC3lA1lB2 cos(θ2) + 2mC3lB2lC3 cos (θ3) (19)  

D22 =mB2l2B2 +mC3l2B2 +mC3l23 + 2mC3lB2lC3 cos (θ3) (20)  

D23 =mC3l2C3 + mC3lB2lC3 cos (θ3) (21)  

D31 =mC3l2C3 +mC3lA1lC3 cos(θ2 + θ3) + mC3lB2lC3 cos (θ3) (22)  

D32 =mC3l23 + mC3lB2lC3 cos (θ3) (23)  

D33 =mC3l2C3 (24)  

P=

⎡

⎣
P1
P2
P3

⎤

⎦, is the term for centrifugal force,defined in equations (25 − 27): (25)  

P1 = − lA1(mC3lC3 sin(θ2 + θ3)+mB2lB2 sin(θ2)+mC3lB2 sin(θ2))θ̇
2
2 − mC3lC3(lA1 sin(θ2 + θ3)+ lB2 sin(θ3))θ̇

2
3 (26) 
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P2 = lA1(mC3lC3 sin(θ2 + θ3)+mB2lB2 sin(θ2)+mC3lB2 sin(θ2))θ̇
2
1 − mC3lB2lC3 sin (θ3)θ̇

2
3  

P3 =mC3lC3(lC1 sin(θ2 + θ3)+ lB2 sin(θ3))θ̇
2
1 + mC3lB2lC3 sin (θ3)θ̇

2
2 (27)  

R=

⎡

⎣
R1
R2
R3

⎤

⎦, is the term in Coriolis that is defined in equations (28 − 31) (28)  

R1 = − 2lA1(mC3lC3 sin(θ2 + θ3)+ (mB2 +mC3)lB2 sin(θ2))θ̇1θ̇2 − 2mC3lC3(lA1 sin(θ2 + θ3)+ lB2 sin(θ3))θ̇2θ̇3

− 2mC3lC3(lA1 sin(θ2 + θ3)+ lB2 sin(θ3))θ̇1θ̇3 (29)  

R2 = − 2mC3lB2lC3 sin(θ3)θ̇1θ̇3 − 2mC3lB2lC3 sin (θ3)θ̇2θ̇3 (30)  

R3 =2mC3lB2lC3 sin (θ3)θ̇1θ̇2 (31) 

Potential energy terms are defined in G, as expressed in equations 32–35: 

G=

⎡

⎣
G1
G2
G3

⎤

⎦ (32)  

G1 =(mA1 +mB2 +mC3)glA1 cos(θ1)+ (mB2 +mC3)gl2 cos(θ1 + θ2) + mC3glC3 cos (θ1 + θ2 + θ3) (33)  

G2 =(mB2 +mC3)glB2 cos(θ1 + θ2) + mC3glC3 cos (θ1 + θ2 + θ3) (34)  

G3 =mC3glC3 cos (θ1 + θ2 + θ3) (35) 

Using forward kinematic [30], the coordinates of the 3-LRRM’s end-effector will be found regarding the joint angles θr1, θr2 and θr3, 
as shown in the following equations 36 and 37: 

For a reference trajectory 

xr = lA1 cos(θr1)+ lB2 cos(θr1 + θr2) + lC3 cos(θr1 + θr2 + θr3) (36)  

yr = lA1 sin(θr1)+ lB2 sin(θr1 + θr2) + lC3 sin(θr1 + θr2 + θr3) (37)  

where, θr1, θr2 and θr3 are the desired trajectories and xr, yr is the desired coordinate of end effector 
Table 1 contains a list of the 3-LRRM parameter values that were utilized in this work [19]. 

3. Three-LRRM feedback linearization 

The feedback linearization of the 3-LRRM is employed by applying the nonlinear feedback control law, to determine the necessary 
joint torques, as demonstrated in equations 38–54 [50]. 

D(θ)θ̈+P
(
θ, θ̇

2)
+R

(
θ, θ̇iθ̇j

)
+G(θ) = τ (38)  

⎡

⎣
D11 D12 D13
D21 D22 D23
D31 D32 D33

⎤

⎦

⎡

⎢
⎢
⎢
⎣

θ̈1
θ̈2
θ̈3

⎤

⎥
⎥
⎥
⎦
+

⎡

⎣
P1
P2
P3

⎤

⎦+

⎡

⎣
R1
R2
R3

⎤

⎦+

⎡

⎣
G1
G2
G3

⎤

⎦=

⎡

⎣
τ1
τ2
τ3

⎤

⎦ (39)  

Table 1 
Three-LRRM’s parameters.  

Parameters Nominal value 

lA1 0.8 m 
lB2 0.4 m 
lC3 0.2 m 
mA1 0.1 kg 
mB2 0.1 kg 
mC3 0.1 kg 
g 9.81 m/ s2  
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θ̈=D− 1(θ)
(

τ − P
(
θ, θ̇

2)
− R

(
θ, θ̇iθ̇j

)
− G(θ) (40)  

where, 

D− 1(θ)=
1

det(D)

⎡

⎣
Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎤

⎦ (41)  

det(D)= (D11D22D33 − D11D23D32 − D12D21D33 +D12D23D31 +D13D21D32 − D13D22D31) (42)  

Q11 =D22D33 − D23D32 (43)  

Q12 = − (D12D33 − D13D32) (44)  

Q13 =D12D23 − D13D22 (45)  

Q21 = − (D21D33 − D23D31) (46)  

Q22 =D11D33 − D13D31 (47)  

Q23 = − (D11D23 − D13D21) (48)  

Q31 =D21D32 − D22D31 (49)  

Q32 = − (D11D32 − D12D31) (50)  

Q33 =D11D22 − D12D21 (51)  

θ̈1 =
1

det (D)
(Q11τ1 +Q12τ2 +Q13τ3 − Q11(P1 +R1 +G1) − Q12(P2 +R2 +G2) − Q13(P3 +R3 +G3)) (52)  

θ̈2 =
1

det(D)
(Q21τ1 +Q22τ2 +Q23τ3 − Q21(P1 +R1 +G1) − Q22(P2 +R2 +G2) − Q23(P3 +R3 +G3)) (53)  

θ̈3 =
1

det(D)
(Q31τ1 +Q32τ2 +Q33τ3 − Q31(P1 +R1 +G1) − Q32(P2 +R2 +G2) − Q33(P3 +R3 +G3)) (54) 

Now let 

x1 = θ1, x2 = θ2, x3 = θ3, x4 = θ̇1, x5 = θ̇2, x6 = θ̇3 (55)  

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6, ẋ4 = θ̈1, ẋ5 = θ̈2, ẋ6 = θ̈3 (56) 

The general form of state space is presented in equation (57) and the details are represented by equations 58–87: 

ẋ= f(x) + g(x)τ (57)  

where, 

f(x)=

⎡

⎣
f1(x)
f2(x)
f3(x)

⎤

⎦, g(x)=

⎡

⎣
g11(x) g12(x) g13(x)
g21(x) g22(x) g23(x)
g31(x) g32(x) g33(x)

⎤

⎦, τ=

⎡

⎣
τ1
τ2
τ3

⎤

⎦ (58)  

And 

f1(x)=
1

det(D)
( − Q11(P1 +R1 +G1) − Q12(P2 +R2 +G2) − Q13(P3 +R3 +G3)) (59)  

f2(x)=
1

det(D)
( − Q21(P1 +R1 +G1) − Q22(P2 +R2 +G2) − Q23(P3 +R3 +G3)) (60)  

f3(x)=
1

det(D)
( − Q31(P1 +R1 +G1) − Q32(P2 +R2 +G2) − Q33(P3 +R3 +G3)) (61)  
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g11(x)=
Q11

det(D)
, g12(x) =

Q12

det(D)
, g13(x) = Q13

/

det(D) (62)  

g21(x)=
Q21

det(D)
, g22(x) =

Q22

det(D)
, g23(x) = Q23

/

det(D) (63)  

g31(x)=
Q31

det(D)
, g32(x) =

Q32

det(D)
, g33(x) = Q33

/

det(D) (64)  

τ= g− 1(x)( − f(x)+ u) (65)  

g− 1(x)=
1

det (g)

⎡

⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤

⎦ (66)  

det(g)=
(
g11g22g33 − g11g23g32 − g12g21g33 + g12g23g31 + g13g21g32 − g13g22g31

)
(67)  

k11 = g22g33 − g23g32 (68)  

k12 = −
(
g12g33 − g13g32

)
(69)  

k13 = g12g23 − g13g22 (70)  

k21 = −
(
g21g33 − g23g31

)
(71)  

k22 = g11g33 − g13g31 (72)  

k23 = −
(
g11g23 − g13g21

)
(73)  

k31 = g21g32 − g22g31 (74)  

k32 = −
(
g11g32 − g12g31

)
(75)  

k33 = g11g22 − g12g21 (76)  

τ1 =
(
− k11f1(x) − k12f2(x) − k13f3(x)+ k11u1 + k12u2 + k13u3

) /
det (g) (77)  

τ2 =
(
− k21f1(x) − k22f2(x) − k23f3(x)+ k21u1 + k22u2 + k23u3

) /
det (g) (78)  

τ3 =
(
− k31f1(x) − k32f2(x) − k33f3(x)+ k31u1 + k32u2 + k33u3

) /
det (g) (79)  

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6, ẋ4 = u1, ẋ5 = u2, ẋ6 = u3 (80)  

e1 = x1d − x1, e2 = x2d − x2, e3 = x3d − x3 (81)  

e4 = ẋ1d − x4, e5 = ẋ2d − x5, e6 = ẋ3d − x6 (82)  

ė1 = ẋ1d − ẋ1, ė2 = ẋ2d − ẋ2, ė3 = ẋ3d − ẋ3 (83)  

ė4 = ẍ1d − ẋ4, ė5 = ẍ2d − ẋ5, ė6 = ẍ3d − ẋ6 (84)  

ė1 = e4, ė2 = e5, ė3 = e6, ė4 = ẍ1d − u1 (85)  

ė5 = ẍ2d − u2, ė6 = ẍ3d − u3 (86)  

u1 = ẍ1d − V1, u2 = ẍ2d − V2, u3 = ẍ3d − V3 (87)  

where, V1 , V2 and V3 are proposed controllers. 

4. Proposed hybrid PID Neural Controllers 

The PID controller is one of the most popular control methods and implemented in different applications, it is reliable and easy to 
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understand. The following equation (88) is a representation of the PID controller: 

u(t)=Kp e(t) + Kd
d
dt

e(t) + Ki

∫ t

0
e(τ)dτ (88)  

where, the control action is represented by u(t), the error by e(t) and the change in error by ė(t), and the proportional gain is repre-
sented by Kp. As a result, A control action is generated that is proportionate to the error signal e(t). The essential component for 
decreasing the steady-state error is Ki. by continuously integrating the error signal e(t) and Kd is the derivative part to generate the 
control signal proportionate to the error change with time, improving transient response and causing output overshoot damping [51]. 
The proposed controllers’ structures that combine the three actions proportional, integral, derivative and neural network in different 
ways will be illustrated below. To demonstrate the procedure for establishing the design of these controllers, the major parts and 
structures of the suggested controllers will be described in the following sections. The general block diagram of the proposed hybrid 
controllers using neural network combined with PID controller is presented in figure (2). 

The proposed method has a good merit where the neural network has a good capability in mapping linear and nonlinear data and 
the three operations of PID controller are known have a good robustness capability. Therefore, the combinations of these two tools give 
integration between each other and give superior results. In addition, the method has a good merit where it is clear in application, not 
need good an expert of the underlying system, can be used the constraints if they are presents on the system’s states and control signals 
and can be used for other systems by same idea as well as competes other methods in the performance and robustness. 

4.1. Neural Controller Like PIPD (NN-PIPD) controller 

Fig. 3 depicts the architecture of this neural PID controller. 
The difference between the ith link’s required position θri(t) and actual position θai(t) is known as eθi(t). The input layer with a one 

node is eθi(t). The first hidden layer with four nodes P1, I, P2 and D as following as illustrated in equations 89–92; 

P1n(t)=Kp1n eθn(t) or P1n(k) = Kp1neθn(k) (89)  

In(t)=Kin

∫

eθn(t) dt or In(k) = Kin

∑k

j=0
h× eθn(j) (90)  

P2n(t)=Kp2n eθn(t) or P2n(k) = Kp2n eθn(k) (91)  

Dn(t)=Kdn
d
dt

eθn(t) or Dn(k)=Kdn (eθn(k) − eθn(k − 1) )
/

h (92) 

Fig. 2. General block diagram for neural network combined with PID controller.  

Fig. 3. The structure of Neural PIPD controller.  
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where the number of links n = 1,2, 3 , and the sum of the second hidden layer is defined in equations 93 and 94; 
⎡

⎢
⎢
⎢
⎢
⎢
⎣

N1
1(k)

N1
2(k)

N1
3(k)

N1
4(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

v11 v12 0 0
v21 v22 0 0
0 0 v33 v34
0 0 v43 v44

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

P1(k)
I(k)

P2(k)
D(k)

⎤

⎥
⎥
⎦ (93)  

⎡

⎢
⎢
⎢
⎢
⎢
⎣

O1
1(k)

O1
2(k)

O1
3(k)

O1
4(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H(N1
1(k)

)

H(N1
2(k)

)

H
(
N1

3(k)
)

H
(
N1

4(k)
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v13 × O1
1(k − 1)

v14 × O1
2(k − 1)

v23 × O1
3(k − 1)

v24 × O1
4(k − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v31 × O2
1(k − 1)

v32 × O2
2(k − 1)

v41 × O2
3(k − 1)

v42 × O2
4(k − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(94)  

where the activation function is expressed in equation (95), 

H=
4

(1 + e− net)
− 2 (95)  

And the sum of the third hidden layer and the output are defined in equations 96–98; 
[

O2
1(k)

O2
4(k)

]

=

[
vv11 vv12
vv21 vv22

][
O1

1(k)
O1

4(k)

]

+

[
vv13 × O2

1(k − 1)
vv23×O2

4(k − 1)

]

+

[
vv14 × T(k − 1)
vv24 × T(k − 1)

]

(96)  

[
O2

2(k)
O2

3(k)

]

=

[
vv31 vv32
vv41 vv42

][
O1

2(k)
O1

3(k)

]

+

[
vv33 × O2

2(k − 1)
vv43×O2

3(k − 1)

]

+

[
vv34 × T(k − 1)
vv44 × T(k − 1)

]

(97)  

Ti(k)=Ti(k − 1) + w1 × O2
1(k) + w2×O2

2(k) + w3 × O2
3(k) + w4 ×O2

4(k) (98)  

4.2. Neural network + PID (NN + PID) controller 

The suggested hybrid controller’s structure consists of proportional, integral and derivative actions. Each output of these action is 
added to a one output of the neural network to produce the control signal as shown in Fig. 4. 

In this structure the input layer has three nodes eθi(k), eθi(k − 1), and eθi(k − 2) or A, B and C nodes, as displayed in equation (99). 
where; 

⎡

⎢
⎢
⎣

N1
1(k)

N1
2(k)

N1
3(k)

⎤

⎥
⎥
⎦=

⎡

⎣
v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤

⎦

⎡

⎣
eθi(k)

eθi(k − 1)
eθi(k − 2)

⎤

⎦+

⎡

⎢
⎢
⎣

N1
1(k − 1)

N1
2(k − 1)

N1
3(k − 1)

⎤

⎥
⎥
⎦ (99) 

The output of first hidden layer is presented in equation (100); 

Fig. 4. Neural controller + PID controller.  
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⎡

⎢
⎢
⎣

O1
1(k)

O1
2(k)

O1
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

H
(
N1

1(k)
)

H(N1
2(k)

)

H(N1
3(k)

)

⎤

⎥
⎥
⎦ (100)  

⎡

⎢
⎢
⎣

N2
1(k)

N2
2(k)

N2
3(k)

⎤

⎥
⎥
⎦=

⎡

⎣
vv11 vv12 vv13
vv21 vv22 vv23
vv31 vv32 vv33

⎤

⎦

⎡

⎢
⎢
⎣

O1
1(k)

O1
2(k)

O1
3(k)

⎤

⎥
⎥
⎦+

⎡

⎢
⎢
⎣

N2
1(k − 1)

N2
2(k − 1)

N2
3(k − 1)

⎤

⎥
⎥
⎦ (101) 

The output of the second hidden layer is defined in equation (102) 
⎡

⎢
⎢
⎣

O2
1(k)

O2
2(k)

O2
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

H(N2
1(k)

)

H
(
N2

2(k)
)

H
(
N2

3(k)
)

⎤

⎥
⎥
⎦ (102) 

The activation function is a sigmoid function as shown in equation (103) 

H=
2

(1 + e− net)
− 1 (103) 

The output of the third hidden layer is indicated in equation (104); 
⎡

⎢
⎢
⎣

O3
1(k)

O3
2(k)

O3
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

N3
1(k)

N3
2(k)

N3
3(k)

⎤

⎥
⎥
⎦=

⎡

⎣
w11 w12 w13
w21 w22 w23
w31 w32 w33

⎤

⎦

⎡

⎢
⎢
⎣

O2
1(k)

O2
2(k)

O2
3(k)

⎤

⎥
⎥
⎦ (104) 

Now the three control actions of PID are presented in equations 105–108; 

P(t)= eθi(t) or P(k) = eθi(k) (105)  

I(t)=
∫

eθi(t) dt or I(k) =
∑k

j=0
h× eθi(j) (106) 

The filter of derivative is presented in equation (107) 

fθi(s)=
N

s + N
eθi(s) (107)  

D(t)=
d
dt

fθi(t) or D(k)= (fθi(k) − fθi(k − 1) )
/

h (108)  

u1(k) = Kp

(
O

3

1
(k)+P(k)

)
(109)  

u2(k) = Ki
(
O3

2(k)+ I(k)
)

(110)  

u3(k) = Kd
(
O3

3(k)+D(k)
)

(111) 

Fig. 5. Elman neural like PID controller.  
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The equation of control signal is as presented equation (112); 

Ti(k)= u1 (k) + u2 (k) + u3 (k) (112)  

4.3. Elman Neural Network Like PID controller (ELNN-PID) 

In this proposed hybrid controller, the proportional, integral and derivative actions are combined with Elman neural network to 
produce the control signal as shown in Fig. 5.where, eθi(t) is the difference between the ith link desired and calculated positions θri(t)
and θai(t), respectively. eθi(t) is the input layer with a single node. The neuron’s outputs from the first hidden layer, which has three 
nodes P, I, and D, are as indicated in equations 113–115. 

P(t)=Kpeθi(t) or P(k) = Kpeθi(k) (113)  

I(t)=Ki

∫

eθi(t) dt or I(k) = Ki

∑k

j=0
h × ei(j) (114)  

D(t)=Kd
d
dt

eθi(t) or D(k)=Kd (eθi(k) − eθi(k − 1) )
/

h (115)  

where; 
⎡

⎢
⎢
⎣

N1
1(k)

N1
2(k)

N1
3(k)

⎤

⎥
⎥
⎦=

⎡

⎣
v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤

⎦

⎡

⎣
P(k)
I(k)
D(k)

⎤

⎦ (116)  

and 
⎡

⎢
⎢
⎣

C1
1(k)

C1
2(k)

C1
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

O1
1(k − 1)+p1 × C1

1(k − 1)
O1

2(k − 1)+p2 × C1
2(k − 1)

O1
3(k − 1)+p3 × C1

3(k − 1)

⎤

⎥
⎥
⎦ (117) 

The output of the second hidden layer is presented in equation (118); 
⎡

⎢
⎢
⎣

O1
1(k)

O1
2(k)

O1
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

H(N1
1(k)

)

H(N1
2(k)

)

H
(
N1

3(k)
)

⎤

⎥
⎥
⎦+

⎡

⎣
vc11 vc12 vc13
vc21 vc22 vc23
vc31 vc32 vc33

⎤

⎦

⎡

⎢
⎢
⎣

C1
1(k)

C1
2(k)

C1
3(k)

⎤

⎥
⎥
⎦ (118) 

The activation function is a sigmoid function as shown in equation (119) 

H=
2

(1 + e− net)
− 1 (119)  

⎡

⎢
⎢
⎣

C2
1(k)

C2
2(k)

C2
3(k)

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

O2
1(k − 1)+pp1 × C2

1(k − 1)
O2

2(k − 1)+pp2 × C2
2(k − 1)

O2
3(k − 1)+pp3 × C2

3(k − 1)

⎤

⎥
⎥
⎦ (120) 

The output of the third hidden layer is indicated in equation (121); 
⎡

⎢
⎢
⎣

O2
1(k)

O2
2(k)

O2
3(k)

⎤

⎥
⎥
⎦=

⎡

⎣
vv11 vv12 vv13
vv21 vv22 vv23
vv31 vv32 vv33

⎤

⎦

⎡

⎢
⎢
⎣

O1
1
(
k

O1
2(k)

O1
3(k)

⎤

⎥
⎥
⎦+

⎡

⎣
vvc11 vvc12 vvc13
vvc21 vvc22 vvc23
vvc31 vvc32 vvc33

⎤

⎦

⎡

⎢
⎢
⎣

C2
1(k)

C2
2(k)

C2
3(k)

⎤

⎥
⎥
⎦ (121) 

The output layer with a one node as expressed in equation (122). 

Ti(k)=w1 × O2
1(k) + w2 × O2

2(k) + w3 ×O2
3(k) (122)  

where. Kp,Ki,Kd,vij,vcij vvij,vvcij wi,pi and ppi, all are design parameters. 

5. Coot optimization algorithm (COOA) 

The COOA is a metaheuristic algorithm and inspired by coots’ forage for food in the wild. According to COOA, the individuals in 
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population are separated into members and leaders. High-quality solutions represent leaders, and low-quality solutions represent 
members. The following provides a detailed expression of the three primary COOA steps [52,53].  

• Initial Solution Set Generation. 

In the population each coot k is considered as a solution Ak, as described equation (123): 

Ak =Amin + r1
(
Amax − Amin); i=1,….,Npo, (123)  

where r1 represents the random number between 0 and 1, and Amax and Amin are the upper and lower bounds, respectively, of each 
existing solution. NPO, the population size, is represented in equation (123) as two groups: the good group, which has leaders from NL, 
and the bad group, which has members from NM. 

In the population each member is evaluated by their fitness function, and each member is then assigned to an appropriate group 
according to the fitness value that was determined. by Ldm, where m = 1, …, NL, represents each solution in the leader group, and Mrj, 
where j = 1, …,NM, represents each solution in the member group.  

• Member Group Update. 

In order to update each solution in the member set one of the following three techniques is used, as indicated in equations 124–126 
[54]: 

Mrnew
j =Mrj + FG1 ⋅ r2 ⋅

(
Ar d − Mrj

)
, (124)  

Mrnew
j =0.5 ×

( (
Mrj− 1 +Mrj

))
, (125) 

Fig. 6. Cooa flowchart.  
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Mrnew
j = Ldrd +2 ⋅ r3 ⋅ cos(2 ⋅ π ⋅ rʹ) ⋅

(
Ldrd − Mrj

)
, (126)  

where r′ represents the random number between − 1 and 1, and r2 and r3 are random numbers between 0 and 1. Ldrd is the leader 
group’s randomly selected solution. The random solution Ar d and iteration function FG1 expressed by equations 127 and 128: 

Ard =Amin + r4
(
Amax − Amin) (127)  

FG1 =1 − G ×

(
1

Gmax

)

, (128)  

where the random number r4 falls between 0 and 1. The current iteration and the maximum iteration number are denoted by G and 
Gmax, respectively.  

• The Leader Group update 

COOA uses local search, or circling the population’s best solution, Ldbest, to update solutions in the leader group. For the group, two 
distinct approaches are employed as expressed in equations 129 and 130 [55,56]: 

Ldnew
m = Ldbest + [FG2 ⋅ r5 ⋅ cos(2.π ⋅ rʹ).(Ldbest − Ldm)] if r6 <0.5 (129)  

Ldnew
m = − Ldbest + [FG2 ⋅ r7 ⋅ cos(2.π ⋅ rʹ).(Ldbest − Ldm)] if r6 ≥ 0.5 (130)  

where the random numbers r5, r6, and r7 range from 1 to 0. FG2 is an iteration function that can be stated as indicated in equation (131): 

FG2 =2 −

(
1

Gmax

)

G (131) 

In conclusion, Fig. 6 summarizes how COOA can be applied to a generic problem [57]. 
The steps to implement the proposed method are explained as follows.  

1 Choose the control structure you want to applied, also count the number of parameters required to tune in this controller and the 
range space for each parameter.  

2 Choose the optimization algorithm utilized to adjust the required parameters of the controller and choose the population size, 
number of iterations, and other parameters required for setting the optimization algorithm.  

3 determine the objective function as well as the necessary constraint imposed on the system so that to formulate a correct fitness 
function for the optimization algorithm.  

4 Choose the population of random solutions using the determined search space in step 1.  
5 Evaluate each solution in population and determine its fitness value  
6 Update the present population to produce new population and increase iterations by one. 

6. Simulation results 

This section addresses the performance of the suggested controllers for 3-LRRM trajectory tracking response and robustness. 
MATLAB is utilized to simulate the suggested controllers design regarding the 3-LRRM tracking issue and the test path. The simulation 
step size is 1 msec, and the time of the simulation is assumed to be 10 s. For every link, the torque constraints were set to [− 200,200] N- 
m. In addition, the fraction operator design makes utilizing Oustaloup’s approximation of the eleventh order (N = 5), which has a 
frequency range of [0.001, 1000] rad/s. The manipulator model follows a test trajectory tracking of every link after it has been 
analyzed, and the ITSE objective function has been taken into consideration. This helps to ensure that errors are minimized and that the 
tracking of the desired path is completed more quickly. The COOA was used to adjust the suggested controllers’ parameters based on 
the tracking error for the 3-LRRM between the actual and reference trajectory. when two initial conditions of the positions (− 0.15, 
− 0.85, − 1.15) and (0.15,-0.55,-0.85) rad for theta1, theta2, and theta3, are used in training process. The following is the COOA 
setting: The maximum number of iterations equals 500, and the population size is 100. The performance of suggested controllers is 
assessed using the ITSE computation. The controller considered most optimal is the one with the lowest ITSE. The following formula 
can be used to determine the ITSE, as demonstrated in equation (132): 

min J=
∫

t × e(t)2 dt (132) 

An essential strength of neural networks is their ability to bend themselves in order to capture complex underlying data structures. 
In the design of neural network controllers, this ability leads to the production of the most complex control signals of high frequency (i. 
e. chattering phenomenon). In fact, a chattering signal cannot be applied practically. Therefore, in order to overcome this problem, the 
new objective function is modified as indicated equation (133); 
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min J=
∫

t × e(t)2 dt + Co × ρ (133)  

where Co denotes number of slope sign alters of the control responses, and ρ indicates a small value, selected to be 10− 8. 
Table 2 displays the adjusting gains number and search space range that COOA uses to identify the best parameters set. Table 3 lists 

all of the proposed controllers’ tuned gains, and Table 4 lists each one’s rising time, maximum overshoot, settling time and ITSE. The 
performance of each proposed controller is shown in Fig. 7 along with the end-effector x-y plots, controller outputs, and trajectory 
tracking curves. Fig. 7(a–c) demonstrates the performance of the reference and actual values for theta1, theta2, and theta3. While 
Fig. 7(d–f) illustrates the output of the controller (torque1), torque2, and torque3, and Fig. 7 (g) displays the reference and actual 
trajectories. 

According to the results and the comparison among the proposed controllers, the NN + PIPD controller produced smoother 
response with faster convergence to the desired path and had lowest values of ITSE. With the lowest ITSE value and the smallest 
settling time, the NN + PIPD controller superior to other suggested controllers; in contrast, the ELNN-PID controller performs the 
worst. 

6.1. Robustness tests 

To demonstrate the effectiveness and robustness of each controller, the experiments that without adjusting the gains of the con-
trollers will be perform. 

6.1.1. Initial condition test 
By altering the starting positions of theta1, theta2, and theta3 to (0.2, − 0.5, and − 0.8) rad for the test of trajectory following, 

robustness of the suggested controllers is examined. The associated ITSE are provided in Table 5. Fig. 8 indicates the performance of 
the reference and actual values. Fig. 8(a–c) displays the following of trajectory for theta1, theta2, and theta3, respectively, as well as 
the trajectory followed by the 3-LRRM end-effector with each controller’s initial position changed. Whilst Fig. 8 (d) demonstrates 
trajectories-based beginning position (0.2, − 0.5, − 0.8) rad. 

It is observed that for varying starting positions of theta1, theta2, and theta3, respectively, the NN-PIPD controller performs better 
than all other suggested controllers and has the lowest ITSE value. In addition, the proposed NN-PIPD controller was able to track the 
desired trajectory with the minimum settling time. 

Table 2 
Total number of the suggested controllers’ design parameters along with their range of search.  

Controller Total Number of Controller Parameters PID Gains’ Range Kp, Ki, Kd All other Parameters Range 

NN-PIPD 120 − 150 to 150 − 1 to 1 
NN + PID 111 − 150 to 150 

N from 10 to 100 
− 1 to 1 

ELNN-PID 144 − 150 to 150 − 1 to 1  

Table 3 
The ITSE and the sign change of all control signals for the proposed Controllers when Nominal Plant is used with two initial positions (− 0.15, − 0.85,- 
1.15) and (0.15,-0.55,-0.85).  

Controller Type ITSE Number of slope sign changes for all Control Signals of the 3-links 

NN-PIPD 2.09072 × 10-5 187 
NN + PID 4.69431 × 10-5 57 
ELNN-PID 8.23779 × 10-5 71  

Table 4 
Details Features of Nominal System Trajectory with initial position (x1 = 0.15, x2 = − 0.55, x3 = − 0.85).  

Type of Controller Link No Rise Time Settling Time Over Shoot % ITSE × 10-5 

NN-PIPD L1 0.070 0.118 0.223 0.37839 
L2 0.029 0.088 15.17 0.29108 
L3 0.029 0.101 16.30 0.30737 

NN + PID L1 0.042 0.858 32.58 1.66783 
L2 0.028 0.730 40.29 1.26461 
L3 0.025 0.268 17.85 0.21392 

ELNN-PID L1 0.047 0.101 14.92 0.76218 
L2 0.190 0.190 0.031 1.08184 
L3 0.270 0.270 0.027 1.89864  
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Fig. 7. The performance of the reference and actual values (a) Theta1, (b) Theta2, (c) Theta3, and the output of the controller (d) (torque1), (e) 
torque2, (f) torque3, and (g) reference and actual trajectories. 
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6.1.2. Disturbance adding test 
By involving the disturbance value equals to [sin (100t)] N-m in for (2 s ≤ t ≤ 6 s) to the controller signal into 3-links together and 

setting the initial position (0,-0.7,-1) rad without altering the parameters of the proposed controllers, the disturbance rejection for each 
proposed controller has also been investigated. Table 6 displays the result that was obtained. Fig. 9 displays the performance of the 
reference and actual values. Fig. 9(a–b) indicates the path following of theta1, theta2, and theta3, respectively, as well as the trajectory 

Table 5 
The suggested controllers’ ITSEs with their starting 
initial positions (0.2, − 0.5, − 0.8).  

Controller ITSE 

NN-PIPD 2.3113 × 10-5 
NN + PID 76.6074 × 10-5 
ELNN-PID 8.38089 × 10-5  

Fig. 8. The performance of the reference and actual values (a) Theta1, (b) Theta2, (c) Theta3, and (d) trajectories based beginning position (0.2, 
− 0.5,-0.8) rad. 

Table 6 
The ITSE performance of the suggested control-
lers when adding disturbances sin (100t) to all 
control signals in period 2–6 s and initial con-
dition is (0, − 0.7, − 1).  

Controller ITSE 

NN-PIPD 0.086695 
NN + PID 0.059097 
ELNN-PID 0.464902  
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followed by 3-LRRM end-effector utilizing disturbance of [sin (100t)] N-m in all links. Meanwhile Fig. 9(d) demonstrates the tra-
jectories using disturbance [sin (100T)] N-M to all links using starting position (0, − 0.7,-1) rad. 

Comparative results explicitly demonstrate that NN + PID is the optimal controller and that it performs better for disturbance 
rejection than the other suggested controllers. While the proposed NN + PIPD controller represents the second one in terms of per-
formance and there is no significant difference between it and NN + PID. But ELNN + PID controller was the worst in terms of 
performance. 

6.1.3. Parameter change test 
Picking and placing objects of varying masses for a variety of applications is the main purpose of the robot manipulator with its end- 

effector. The values variation of the suggested controllers is investigated by adding the masses of link3 by 10 % and making sure the 
controller values stay the same. Table 7 presents the obtained ITSE, and Fig. 10 the performance of the reference and actual values. 
Fig. 10(a–c) displays the trajectory following of theta1, theta2, and theta3, receptively for each controller based on mass changes. 
While, Fig. 10(d) represents trajectories based 10 % adding in mass of link3 with beginning position (0, − 0.7, − 1) rad. 

The findings indicate that the suggested controllers for parameter variation have a higher ITSE than the NN-PIPD controllers. When 
compared to other proposed controllers, the NN-PIPD controller performs the best due to its lowest ITSE value, quick trajectory 
tracking, and improved theta1, theta2, and theta3 response. NN + PID is the worst controller because its ITSE is the highest. 

Fig. 9. The performance of the reference and actual values (a) Theta1, (b) Theta2, (c) Theta3, and (d) trajectories using disturbance [sin (100T)] N- 
M to all links using starting position (0, − 0.7,-1) rad. 

Table 7 
Initial position (0.0, − 0.7, − 1) and the ITSE of the 
suggested controllers for a 10 % increase in the third 
link’s mass.  

Controller ITSE 

NN-PIPD 0.06574 × 10-5 
NN + PID 323.861 × 10-5 
ELNN-PID 1.95897 × 10-5  
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6.1.4. All test case 
The effects of varying the parameters, adding disturbance, and adjusting the initial positions are combined to demonstrate the 

effectiveness of the suggested controllers. Table 8 lists the obtained ITSE. The trajectory following of theta1, theta2, and theta3 by the 
3-LRRM’s end-effector are displayed in Fig. 11(a–c), respectively. Meanwhile, Fig. 11(d–f) indicates the output of the controller 
(torque1), (torque2), (torque3), respectively and Fig. 11 (g) represents the reference and actual trajectories using the beginning po-
sition (0.2, − 0.5, − 0.8) rad with disturbance [sin (100T)] N-M for all links as well as 10 % adding in mass of link3. 

Despite initial position changes, disturbance additions, and parameter variations, the NN-PIPD controller’s ITSE remains the lowest 
of all the suggested controllers. In contrast, the ELNN-PID controller represents the worst controller with largest ITSE and the 
maximum settling time in its response as can be seen in the responses from theta1, theta2, and theta3. As a result of the comparison 
analysis, the optimal controller was considered to be an NN-PIPD controller for trajectory following, disturbance rejection, and 
parameter variation with a minimum ITSE of 0.001777. The results proved that despite the changes in parameters and condition, the 
proposed NN-PIPD controller is sufficient for the robot’s requirements in terms of accuracy and response. 

Fig. 10. The performance of the reference and actual values (a) Theta1, (b) Theta2, (c) Theta3, and (d) Trajectories based 10 % adding in mass of 
link3 with beginning position (0, − 0.7, − 1) rad. 

Table 8 
The reference and actual trajectories using 
starting position (0.2, − 0.5, − 0.8) with distur-
bance [sin (100t), sin (100t), sin (100t)] and 10 
% increasing in mass of the third link.  

Controller ITSE 

NN-PIPD 0.001777 
NN + PID 0.057480 
ELNN-PID 0.034756  
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Fig. 11. The performance of the reference and actual values (a) Theta1, (b) Theta2, (c) Theta3, and the output of the controller (d) torque1, (e) 
torque2, (f) torque3, and (g) reference and actual trajectories using the beginning position (0.2, − 0.5, − 0.8) rad with disturbance [sin (100T)] N-M 
for all links as well as 10 % adding in mass of link3. 
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7. Conclusions 

The main goal of this study is to tackle the trajectory tracking issue of the 3-LRRMbased on designing three control structures using 
a combination Neural Network (NN) with Proportional, Integral and Derivative (PID) actions named NN-PIPD controller, NN + PID 
controller NN + PID controller and ELNN-PID controller. The parameters of the proposed controllers are adjusted utilizing the COOA in 
order to reduce the ITSE. A new objective function for tuning process to produce a controller with minimum value of the chattering in 
the control signal is proposed. The performance of the proposed controllers is evaluated in terms of disturbance rejection, fluctuating 
initial conditions, reference trajectory tracking, and model uncertainty. Simulation results show that the proposed NN-PIPD controller 
performed better than other proposed controllers in terms of tracking performance, stability, and robustness. As a result of the 
comparison analysis, the optimal controller was considered to be an NN-PIPD controller for trajectory tracking, disturbance rejection, 
and parameter variation with a minimum ITSE of 0.001777. In future work, the same idea can also be implemented using other hybrid 
control structures and optimization strategies. The proposed controllers can also be implemented practically utilizing a real robotic 
manipulator equipped with all necessary hardware components and sensors. The analysis and discussion in this work can be extended 
to another robot manipulator, such as the SCARA or PUMA 560 robot. 
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