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Oscillatory phenomena are ubiquitous in the brain. Although there are oscillator-based

models of brain dynamics, their universal computational properties have not been

explored much unlike in the case of rate-coded and spiking neuron network models.

Use of oscillator-based models is often limited to special phenomena like locomotor

rhythms and oscillatory attractor-based memories. If neuronal ensembles are taken to

be the basic functional units of brain dynamics, it is desirable to develop oscillator-based

models that can explain a wide variety of neural phenomena. Autoencoders are a special

type of feed forward networks that have been used for construction of large-scale deep

networks. Although autoencoders based on rate-coded and spiking neuron networks

have been proposed, there are no autoencoders based on oscillators. We propose here

an oscillatory neural network model that performs the function of an autoencoder. The

model is a hybrid of rate-coded neurons and neural oscillators. Input signals modulate

the frequency of the neural encoder oscillators. These signals are then multiplexed

using a network of rate-code neurons that has afferent Hebbian and lateral anti-Hebbian

connectivity, termed as Lateral Anti Hebbian Network (LAHN). Finally the LAHN output

is de-multiplexed using an output neural layer which is a combination of adaptive Hopf

and Kuramoto oscillators for the signal reconstruction. The Kuramoto-Hopf combination

performing demodulation is a novel way of describing a neural phase-locked loop. The

proposed model is tested using both synthetic signals and real world EEG signals. The

proposed model arises out of the general motivation to construct biologically inspired,

oscillatory versions of some of the standard neural network models, and presents itself as

an autoencoder network based on oscillatory neurons applicable to time series signals.

As a demonstration, the model is applied to compression of EEG signals.

Keywords: oscillatory autoencoder, Kuramoto oscillator, adaptive Hopf oscillator, frequency modulation,

multiplexing, phase synchronization, EEG

INTRODUCTION

Despite decades of research, the question of neural code is still controversial. Currently there
are two well-accepted approaches to the problem: the spike rate code and the spike timing code.
The former assumes that the neural code lies in the spike rate and has given rise to large class
of rate-coded neural networks (Lippmann, 1989; Ruck et al., 1990; Lawrence et al., 1997). The
latter holds that the code lies in the spike timing and has led to creation of a large class of spiking
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neuron networks (Maass, 1997b; Izhikevich, 2003, 2004; Ghosh-
Dastidar and Adeli, 2009). Both rate-coded and spiking neuron
networks are endowed with universal computational properties
(Maass, 1997a; Auer et al., 2008). However the basic functional
unit of the brain seems to be, not a single neuron, but a
“cell assembly” (Buzsáki et al., 2012), a cortical column being
an example of such a unit (Buzsáki and Draguhn, 2004).
The collective activity of a cell assembly is not a spike train
but a smoother signal called the local field potential (LFP)
(Buzsáki et al., 2012). Most of the functional neuro–imaging
data including the electroencephalogram (EEG) and functional
Magnetic Resonance Imaging (fMRI) encompass the description
of the neural activity at this level (Logothetis et al., 2001;
David and Friston, 2003; Whittingstall and Logothetis, 2009).
Thus when it comes to the description of neural activity at
the level of cell assemblies the standard tools and concepts of
signal processing could be deployed. The activity of a single cell
assembly can then be described in terms of amplitude, frequency,
and phase. Communication between two cell assemblies can be
described in terms of phase difference at a given frequency. Hence
observed neuro physiological phenomena may be explained in
terms of oscillator entrainment and phase synchronization.

It is then natural to envisage neural models of three broad
classes—rate code based, spike-based, and oscillator based. There
are indeed neural models of oscillators (Wang and Terman,
1995; Campbell et al., 1999; Ijspeert, 2008) but they seem to
be often applied to specialized purposes and do not seem to
enjoy the universality of both rate coded and spiking neuron
network models. Oscillatory neuron models are used to model
extensively oscillatory phenomena of the brain like building
generative models of cortical oscillations to understand brain
rhythms and neuronal synchronization (Cumin and Unsworth,
2007; Breakspear et al., 2010). Furthermore when it comes to
modeling behavior, they are also restricted to those behaviors
that are intrinsically rhythmic like the locomotor movements,
rhythmic hand movements, or swimming movements (Ijspeert
et al., 2005; Ijspeert, 2008). Such restricted use of oscillator
models is untenable since the very same brain oscillations which
drive the hand when making rhythmic tapping movements
also enable it to perform non-rhythmic point-to-point reaching
movements. Although there are exceptions to this case (see
Hoppensteadt and Izhikevich, 2000; Heitmann et al., 2015) there
exist only a minimal literature on using oscillatory dynamics
to explain non-oscillatory behavior. Therefore it is important
to investigate if oscillatory neural network models possess the
property of universal computation that forms the core strength of
its rival models: rate-coded and spiking neural network models.

The strength of the rate coded and spiking neuron networks
lies in the fact that they have been designed to solve a wide of
range of useful information processing problems: to construct
transformations from one space to another (Lippmann, 1989;
Schmidhuber, 2015), to map high dimensional information onto
bounded two-dimensional spaces (Kohonen, 1998), to process
sequences (Frasconi et al., 1995), to store patterns as attractors
(Hopfield, 1982; Trappenberg, 2003), to construct dimensionality
reduced representations by autoencoding (Oja, 1989; Sanger,
1989; Hinton and Salakhutdinov, 2006) and so on. In this

realm of applications, in most cases, equivalent oscillatory neural
network models have not been designed which, when realized,
could form another dimension for understanding standard
neural network theory.

Apart from the aforementioned research on neural codes,
in the realm of neural signal processing, it becomes natural
to link the brain signals arising from EEG and MEG to an
underlying oscillatory process which connects to the mechanistic
underpinnings of brain circuitry. Utilizing these ideas, a large
body of literature exists in the domain of EEG related applications
like Brain Computed Interfaces (BCIs). Often in these studies
motor imagery EEG signals are recorded, classified and the results
of classification are used to drive a machine like the wheelchair
(Leeb et al., 2007a,b). The dependence on the stationarity of
signals is very important for current methods, including optimal
spatial filtering (Ramoser et al., 2000) to solve these class of
problems posing difficulty in reliable processing of EEG. The
stochastic and non-linear nature of EEG signal thus poses
critical challenges in its processing such as feature extraction
and further classification (Pfurtscheller and Neuper, 2001). As of
now, there exists no benchmarkmethod to decipher this problem
of EEG processing. We believe that a better understanding of
the oscillatory neural network models, mimicking the underlying
neural process, could pave way to a novel class of algorithms for
processing EEG signals.

Although the objective of the proposed model is to shed
light on the oscillatory neural code, we would also like to
briefly cite literature on time series data mining and time
series representations. Time series data mining is apparently a
challenging one because of the unique characteristic features
of the time series data such as presence of noise, and non-
linear relation of the data elements (Wilson, 2017). A problem
that often arises in time series data processing is to form
an optimal representation of the data either by reducing or
approximating it, but making sure that the approximated version
of the data still carries the local/global features of the original
version. For the ease and efficient use of the data, the main
challenge is to choose an optimal representation of the same.
Time series data representation is a well-studied area where
methods such as Discrete Fourier Transform (DFT) (Faloutsos
et al., 1994), Discrete Wavelet Transform (DWT) (Percival and
Walden, 2006), time series Piecewise approximation (Keogh
et al., 2001a,b) have been proposed. Due to the current trends
in the use of “big data” processing, other novel methods such
as transformation of the time series data to discrete variables or
symbols has become popular (Lin et al., 2007). The main idea
behind this type of methodology is to transform time series data
to a sequential data of symbols by initially discretizing the time
series using methods like Piecewise Aggregate Approximation
(PAA) (Keogh et al., 2001b). This can be treated as a way to reduce
the number of points in the time series data and this is followed
by converting the approximated numerical data to corresponding
symbols using popular algorithms like SAX (Lin et al., 2007). The
advantage of converting the time series to symbolic sequences is
that, once the transformation is made, standard patternmatching
algorithms can be applied to the sequences for further processing.
The aforementioned methods are successful in data mining area,
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but carry little information on the neural processing of time
series data. This is not a flaw of the aforementioned methods
because they are not intended to provide any neural perspective
on time series data processing. However, the real brain is adept
at time series processing since most of the sensory inputs coming
from different sensory modalities such as vision, proprioception,
auditory, vestibular, tactile, and olfactory stimulus are dynamic
in nature. Hence, the objective of this study is to propose a
computational model that implements the autoencoding of time
series data using biologically plausible neural principles. The
very next sub section named as “background” gives the impetus
behind the proposed modeling architecture.

Background
In response to the aforementioned general motivation, we
now present a network of neural oscillators that serves as
an oscillatory autoencoder. The reason why we choose the
autoencoder architecture is due to the function it serves i.e.,
encoding the high dimensional input to a low dimensional
abstract representation and further decoding it back to the
original input signal. From a neural perspective this can be
broadly viewed as different stages of neural information transfer.
The first stage starts with the encoding of high dimensional
sensory stimulus coming from multiple sensory modalities to
a more compatible abstract representation in the subcortical
structures. For example, visual information fetched by ∼125
million retinal photoreceptors converge to ∼1 million neurons
of the lateral geniculate nucleus in the thalamus (Hubel, 1995).
This is one of the instances (amongmany) of huge dimensionality
reduction that takes place in the real brain. The decoder can
be viewed as the stage in which the information is transferred
from the subcortical structures to other cortical structures with
more number neurons i.e., transfer of information from lower
dimension to higher dimension (Guillery and Sherman, 2002).
Standard autoencoder networks use static neurons that have
limitations in capturing the temporal features of the input in
a naturalistic fashion. The proposed model uses the dynamics
of oscillatory system such as phase synchronization, frequency
tuning, and also uses the signal processing concepts such as
frequency modulation (FM) and multiplexing (MUX) to shed
light on the possible information transfer mechanisms in the
brain.

We brief out here the methods that are adopted to accomplish
the aforementioned objective (this is explained in detail in
the following methods section). In this model, a set of band-
limited signals are frequency modulated by a layer of neural
oscillators, multiplexed by a layer of rate-coded neurons, and
subsequently demultiplexed and demodulated by oscillatory
neurons. The network is a hybrid model consisting of two kinds
of oscillator models (Kuramoto and Hopf oscillators) and rate-
coded dynamic neurons. The signals obtained at the output of
the MUX stage may be considered as a reduced-dimensional
representation of the input signals. Finally we test the model on
actual EEG signals (real world data). The paper is outlined as
follows. Section II presents themethods and themodel equations,
followed by the results in Section III and finally the discussion in
Section IV.

METHODS

Here we propose the architecture of an autoencoder using
oscillatory neurons. The motivation for an oscillatory
autoencoder is explained above in the introduction section.
The model architecture described here consists of Encoder and
Decoder modules as shown in Figure 1. The encoder process
the input signals and makes a lower dimensional representation
of the same. The decoder module reconstructs back the original
input signal from this abstract representation.

The encoder receives inputs as an array of N band limited
signals, s1(t),.., sN(t). These signals are frequency modulated
and multiplexed by the encoder. The multiplexed signals
are demultiplexed and demodulated by the decoder. Both
the encoder and the decoder are networks of oscillators.
The networks are hybrids of Hopf and Kuramoto oscillators
(Kuramoto, 1984; Righetti et al., 2006). The motivation for
choosing two different phase oscillators is described in the
decoder section. The encoder and decoder modules are modeled
as follows.

A. Encoder
The encoder has two stages viz. Frequency Modulation (FM)
stage and MUX stage.

FM Stage
FM stage has N phase oscillators each with different intrinsic
frequencies. N is equal to the dimension of the input. Each of
the input signals is connected to one of these oscillators. Input
is encoded by the phase dynamics as given in (1). This phase
dynamics is equivalent to FM (Haykin et al., 1989) and hence the
name FM stage.

•

θi = ωE
i + si(t) (1)

θ i is the phase of the ith oscillator in the encoder layer. ωE
i is

the intrinsic angular frequency of the ith oscillator in the encoder
layer. (Note: The superscript E stands for Encoder layer).

MUX Stage
A classical MUX in electronics literature ensures harmonious
transfer of information between the sender and receiver by acting
like a multiple switch (Omotayo, 1985). Hence, a MUX usually
has n number of input lines and 1 output line. However, in the
proposed model we do not use this strict definition of MUX
instead we take the idea of compressing the n input signals to m
dimensions wherem<n. This is what is exactly achieved through
the hidden layers of a traditional autoencoder. The reason why
we named it MUX is to bring about a direct comparison of
neural information transfer to the radio FM communication
principles.

The MUX stage is implemented by a neural network
architecture known as Lateral Anti-Hebbian Network (LAHN)
that has Hebbian (excitatory) afferent and anti-Hebbian
(inhibitory) lateral connections (Földiak, 1990). The dynamics
of a neuron in LAHN is given by Equation (2). Hebbian learning
applied to the afferent weight connections (Equation 5) brings
the afferent weight vector close to the input data ensuring
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FIGURE 1 | The network architecture of the oscillatory autoencoder network. In the encoder module, the incoming message signals (s1,…, sN(t)) are encoded, via

FM, onto carrier signals with intrinsic frequencies ωE
1 ,…, ωE

N. A lateral anti-Hebbian layer is used for frequency multiplexing (MUX) of the modulated signals. In the

decoder module, frequency tracking (FT) is performed by a series of adaptive Hopf oscillators which can tune their intrinsic frequency dynamically, followed by a layer

of Kuramoto oscillators which synchronize to the frequency of the Hopf oscillators to form a basic unit which extracts the embedded input signals (DM). This is further

passed to a leaky integrator (LPF) to get smoothened output of the network [ŝ1,…, ŝN(t)].

feature selection by that particular neuron. The anti-Hebbian
rule applied to the lateral connections induces competition
among the LAHN neurons. Hence each LAHN neuron learns
different features from the input data. This network was
shown to extract optimal features from the input data by
converging transformation weight vectors to the subspace of
the principal components of the input data (Földiak, 1990).
Since this network maximizes the variance of the output
(Földiak, 1990), it extracts optimal features from the input
data. The information required for the unsupervised learning
of LAHN neuron is available locally at its synaptic connections
(Equations 4, 5) and this makes the network biologically
plausible.

This LAHN layer acts as the hidden layer for the oscillatory
autoencoder. The low-dimensional representations constructed
by the hidden layer of a traditional autoencoder are constructed
by this MUX stage in the proposed model. Hence, the number of
inputs going to the MUX layer is same as the number of encoder
oscillators in the FM stage and the number of outputs from the
MUX should be essentially lesser in number than its input to
achieve a dimensionality reduction.

The dynamics of a neuron in theMUX stage is given in (2) and
(3).

Yi(t) =

N∑

j=1

qijOj(t)+

n∑

k=1

wikYk(t − 1) (2)

Oj = sin(θj) (3)

Y i is the output of ith neuron, q and w are the afferent and lateral
weight connections of MUX respectively, N is the dimension of
the input, n is the total number of neurons in the LAHN. Oj

is the state of the jth input oscillator. In MUX, lateral weights
are updated using anti-Hebbian learning and afferent weights are
updated using Hebbian learning (Földiak, 1990) as given in (4)
and (5).

1wik = −ηLYi(t)Yk(t − 1) (4)

1qij = ηF[Oj(t)Yi(t)− qijYi
2(t)] (5)

ηL and ηF are the learning rates for lateral and feed forward
weights respectively. MUX with n nodes trained using (4) and
(5) mixes the input FM signals with a minimal overlap in their
frequency spectrums which further decreases the reconstruction
error.

B. Decoder
The decoder has three stages such as Frequency Tracking (FT)
performed by adaptive Hopf oscillators, Demodulation (DM)
using Kuramoto oscillators, and final smoothening of signal by
low-pass filtering (LPF) using leaky integrator neurons stages
respectively. Each section is explained in detail below.

FT Stage
Initially the responses of MUX are passed onwards to the
FT stage. The purpose of this stage is to tease out the
individual frequencies which are mixed by the MUX stage. This
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frequency tracking is achieved by using Hopf oscillators with
adaptive frequency dynamics. Hopf oscillators were successfully
implemented as an adaptive frequency system that updates its
intrinsic frequency in an iterative way until it converges to one
of the frequencies of the input data (Righetti et al., 2006).This
system of Hopf oscillators was previously shown by Righetti et al.
(2006) to learn the frequency components of its input signals.
This was achieved by adding a frequency adaptation variable to
the classical two variable Hopf oscillator dynamics (Righetti et al.,
2006).This was shown in phase oscillators having unit circle phase
plane limit cycles i.e., using Hopf oscillators. They have further
explained similar frequency adaptation dynamics for relaxation
oscillators too. However, in this model we are using harmonic
phase oscillators for the frequency tracking stage as explained
below.

Here, we wanted to achieve the aforementioned phenomena
of tracking the frequency of input data. The adaptive frequency
Hopf oscillators act like band-pass filters and filter out
different frequency bands from the mixed input signal. The
adaptive frequency dynamics is accomplished using the following
equations:

•
ri = ri(µ − ri

2) (6)
•

φ i = ωD
i −

ε

ri
Y sin(φi) (7)

•
ω D

i = −εY sin(φi) (8)

r, ϕ and ωD are the radius, phase and angular frequency variables
of a Hopf oscillator respectively (Note: the superscript D stands
for Decoder module). µ is the parameter that controls the radius
of the limit cycle. For µ =1, it produces a unit circle limit cycle. ε
is the coupling factor between the MUX and the Hopf oscillators
(Righetti et al., 2006). Because of linearity of the MUX, ε can be
computed directly using (9).

ε = P+ (9)

P = (I −W)−1Q (10)

P is the transformation matrix of the MUX and P+ is the pseudo
inverse of matrix P. I is the identity matrix. W and Q are the
lateral and afferent weight matrices of LAHN respectively. P can
be derived by virtue of the linearity of LAHN as given in (2).

DM Stage
The purpose of the DM stage is to extract the low-frequency,
band limited message signals from the outputs of the FT
stage. The DM consists of a layer of Kuramoto oscillators.
This shift from Hopf oscillator (in FT stage) to Kuramoto
oscillator (in DM stage) is to implement the process of
phase synchronization. Kuramoto oscillatory dynamics have
been previously implemented to achieve phase synchronization
(Kuramoto, 1984). This synchronization in the phase of two
oscillators is essential for extracting the message from the FM
signal (Haykin et al., 1989) (see Supplementary Material). Each
Hopf oscillator in the FT stage is coupled in a one-to-one fashion
to a Kuramoto oscillator in the DM stage. The pairs of oscillators

(the Kuramoto oscillators of DM and the Hopf oscillators of FT
stage) are coupled through their respective phase variables as
shown in (11) and (12).

•
γ i = ωE

i + K Di (11)

Di = sin(φi − γi) (12)

γ i is the phase variable of ith Kuramoto oscillator. It has the
same intrinsic frequency, ωE

i , as that of the encoder oscillators
(Equation 1) and K is a positive coupling factor (Kuramoto,
1984). This stage is crucial since phase synchronization occurs
at this stage and the synchronization dynamics further decodes
the low frequency message signal embedded in the output of the
Hopf Oscillator (see Supplementary Material).

LPF Stage
Di shown in (12) is the output of the decoder which is further
passed through a leaky integrator to smoothen the outputs, i.e.,
low pass filtering (LPF stage). Leaky integrator acts as a low
pass filter which further smoothens out the decoded signal, and
eliminates any high frequency components present. Dynamics of
leaky integrator is given in (13).

d
∧
s i

dt
= −A

∧
si + Di(t) (13)

sI is the state of ith leaky integrator which is the reconstructed
version of the input signal si(t); A is the leakage factor which is a
positive constant.

Hence the proposed model is a hybrid one consisting of
oscillatory layers sandwiching a rate coded layer. Hopf oscillators
are used in the model for FM. A layer of linear neurons with
lateral connections is used for frequency multiplexing which
essentially mixes the FM signals. Hopf oscillators with adaptive
frequency are used to track the carrier frequencies of the FM
signals. Finally, Kuramoto oscillators are used to demodulate the
FM signal and extract the message signal. Parameter values used
for the simulation is given in Table 1.

RESULTS

We now test the model described in the previous section on an
array of synthetic signals and also on real world EEG signals.

TABLE 1 | Parameter values.

Parameter Value

µ 1

ηF 0.01

ηL 0.01

dt 0.01 sec

ǫ 3

K 1
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A. Simulation of the Model on Synthetic
Signals
The synthetic signals used for the simulation are of the general
form s(t)= A1sin(ω1t)+ A2sin(ω2t).

Specifically, we consider 4 signals shown in (14), (15), (16) and
(17) (Figure 2).

s1(t) = sin(10π t)+ 0.5 sin(12π t) (14)

s2(t) = sin(20π t)+ 0.5 sin(28π t) (15)

s3(t) = sin(50π t)+ 0.5 sin(56π t) (16)

s4(t) = sin(70π t)+ 0.5 sin(80π t) (17)

The initial intrinsic angular frequencies of the FM oscillators
are taken as ωE = [200Hz, 350Hz, 850Hz, 1000Hz]. The
input signals, as given by Equations (14)–(17), are used to
modulate the encoder oscillators as per Equation (1). Let
the resultant frequency modulated signals be O1, O2, O3, O4

respectively as given by Equation (3). Figures 2A–D shows the
waveforms of the input signals (for a short duration) as given
by Equations. (14)–(17). Figures 3A–D shows the corresponding
frequency spectra. All the frequency spectra are obtained using
the Fourier Transformation on the input signals. Figures 3A–D
clearly show that the input signals are modulated to the
higher frequency regime corresponding to the respective carrier
waves.

The modulated signals are passed through a MUX which
has two neurons (n = 2). The outputs of MUX neurons
(MUX composite signal) are Y1 and Y2 as per Equation (2).
The spectra of Y1 and Y2 are depicted in Figures 3E,F. It
is evident from Figures 3E,F that the MUX selectively picks
and mixes the frequency components of the input signals
in such a way that their frequency spectra have minimum
overlap. In Figure 3E, one neuron of the MUX was more
biased to frequency spectra of O1 and O4. In Figure 3F, the
second neuron of the MUX was more biased to frequency
spectra of O2 and O3. The tendency of the hidden layer in

FIGURE 2 | The synthetic input signals used for simulating the oscillatory

autoencoder network. The waveforms (A–D) follow the equations (14) – (17)

respectively.

a traditional autoencoder to decorrelate the input signals, is
manifesting in the present context as a tendency to remix the
input signals so that there is minimal overlap in the spectrum
(Földiak, 1990).

The FT stage has four Hopf oscillators, which are intended to
track the four modulating frequencies. Tracking the frequency
is similar to tuning the intrinsic oscillations to that particular
channel frequency to fetch the information passed through that
respective channel. Figure 4 depicts the frequency adaptation of
Hopf oscillators at the FT stage. The intrinsic frequencies of Hopf
oscillators are initialized randomly and during the course of time
their frequencies get entrained to a specific modulator frequency.
Through this adaptation, oscillators are able to select a specific
channel of information from a mixture of MUX signals.

Figure 5 shows the FFT of the four Hopf oscillators’
responses. It is evident from the spectrum that each Hopf
oscillator is able to pick individual channel that carries the
message signal and hence implements the demodulation of the
frequency modulated signals. This is an interesting phenomenon
which is also observed in the real brain where two cortical
regions get entrained to a similar LFP frequency for information
transfer or feature binding (Singer and Gray, 1995; Fell and
Axmacher, 2011). Synchronization phenomena also circumvent
the need for any training between the cortical structures to
learn the transmitted information. That is, simply by tuning to
a common frequency, two neural structures can communicate
over a temporary channel, without any retraining of
connections. This is discussed further in detail in the discussion
section.

Figures 6A–D shows the original and the reconstructed
signals (shown for a short duration). The demodulated signals
are of lower amplitude and phase shifted compared to the
original signal. This can be further corrected using proper
amplification and lag shift operation on the output signals.
To quantify the accuracy of reconstructed signal, we compute
the reconstruction error. This gives an idea on how good the
system is with regard to its function as an autoencoder. It is
not advisable to directly compare the input and the raw output
signal because of the phase shift present in the output signal.
To this end, we first corrected the phase shift in the output
signal, by computing cross correlation between the input and
the output signal. Next, we computed the lag corresponding to
the maximum correlation value and circular shifted the output
signal using the previously found maximum lag value to correct
the phase shift. The percentage (%) reconstruction error is then
computed as the deviation of the Pearson correlation coefficient
between the input and the phase corrected output signal from
unity.

%error = [1− corr(x, y)]× 100

where x is the input signal and y is the amplitude and
phase corrected reconstructed output signal. The percentage (%)
reconstruction error with respect to the number of nodes in
the LAHN network shows a decreasing trend indicating a better
recovery of signal with increasing number of nodes in the LAHN
layer (Figure 6E). The reconstruction error is computed after
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FIGURE 3 | The Fourier transform (FFT) of: (A) Modulated signal O1 (B) Modulated signal O2 (C) Modulated signal O3 (D) Modulated signal O4 (E) MUX composite

signal Y1 (F) MUX composite signal Y2. To train the MUX network (LAHN), afferent weights were initialized using random values from uniform distribution [0, 1] and

lateral weights were initialized to zero. ηL and ηF were taken as 10−4.

FIGURE 4 | The adaptation of frequencies at the level of the Hopf oscillators in the decoder module: The frequencies are initialized randomly close to the encoder

frequencies which via adaptation entrain into each of the four carrier signal frequency. We chose µ = 1 for this simulation.

phase correction of the output signals as explained above. This
result shows that choosing an optimal number of neurons in the
hidden layer (based on the reconstruction error), it is possible
to form a more efficient abstract representation of the input
signal.

B. Simulation of the Model on Real World
Signals (EEG Signals)
This section explains the simulation results of the oscillatory
autoencoder model on real world data (i.e., data obtained

through empirical ways). For this, we considered empirically
recorded EEG signals obtained from BCI Competition 2008 -
Graz data set B (Leeb et al., 2008). The dataset essentially consists
of two class motor imagery EEG signals recorded from three
channels (C3, Cz, and C4) (Leeb et al., 2008) at a sampling
rate of 250Hz. Figure 7 shows the 1 s duration EEG signals
from the aforementioned channels. These EEG signals were
recorded during a motor imagery task. For further information
on the experimental protocol the readers may refer (Leeb et al.,
2008).
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FIGURE 5 | The Fourier spectrum of the four Hopf oscillators: (A–D) in the decoder layer show tuning of each oscillator to each channel.

These three EEG signals form the input to the model, which
is further used to modulate the frequency of the phase oscillators
with intrinsic frequencies (500, 600, and 750Hz). Figures 8A–C
shows the frequency spectrum of the frequency modulated
signals (EEG FM signals). These signals were further forward
passed to the LAHN layer (with two nodes) to get the low
dimensional representation of the same and to perform MUX
operation. Figures 8D,E shows the frequency spectrum of the
MUX-LAHN signals. It is vivid from the figure that each LAHN
neuron captures the frequency information of the EEG FM
signals and hence forms a low dimensional representation of the
raw EEG signals.

Composite MUX signals are further forward passed to the
adaptive Hopf oscillators where each Hopf oscillator tunes its
intrinsic frequency to each channel frequency. Adaptive Hopf
oscillators thus separate the signals from the composite MUX
signal (as shown in Figures 9A–B) and this is evident from the
frequency spectrum of each Hopf oscillator (Figures 9C–E).

The adaptive Hopf oscillator outputs are further passed
to the demodulator Kuramoto oscillators for phase locking
and extracts out the embedded EEG signals. Figure 10 shows
the reconstructed EEG signal from three channels along with
the original signal. The reconstructed EEG signals from the
oscillatory autoencoder are smoother than the original EEG
signals. This smoothing could be due to the large time
scales that govern learning in LAHN and adaptive Hopf
oscillatory stage. The subtle changes in the reconstructed
signal are due to the lower dimensional representation of
the LAHN hidden layer. However, the hidden layer serves
as a reliable low dimensional representation of the EEG
signals which is further delineated in the following discussion
section.

Comparison of the Model Result With the
Benchmark Method for Dimensionality
Reduction
In the case of aforementioned EEG result, apart from computing
the % reconstruction error, we compare the obtained values
with a benchmark dimensionality reduction and reconstruction
method to check the goodness of the proposed model. To
accomplish this we performed standard Principal Component
Analysis (PCA) on the input EEG data to reduce its dimension
and further reconstructed back the signal to compute the %
reconstruction error. After computing the reconstruction error
for each signal, an average reconstruction error is computed
to compare it with that of the proposed oscillatory network
model. The average reconstruction error of PCA is obtained
as 5.68% (computed using MATLAB custom code) considering
the first two principal components (because LAHN layer in
the model has 2 neurons). The average reconstruction error of
the oscillatory autoencoder model is obtained as 5.31%. The
average reconstruction error of the proposed oscillatory network
model is slightly lower than the standard PCA method by
0.31%. Apart from the decrease in the reconstruction error, the
neural attributes of the proposed model and also the theory that
the model embodies on the mechanisms of neural information
transfer in the brain enhances the significance of the proposed
model.

DISCUSSION

Summary of the Work
We propose here an oscillatory autoencoder that reconstructs
the input signal using a well defined encoder and decoder
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FIGURE 6 | Comparison of original and reconstructed signal from the oscillatory autoencoder: (A–D) show the original input (top) to the encoder and the

reconstructed signal (bottom) from the decoder using n = 2 in the MUX layer. We used A = 0.9 for the LPF stage. (E) shows the % of reconstruction error with respect

to the number of nodes (n = 1,2,3,4) in the MUX layer.

using the principles of FM, MUX, adaptive frequency
dynamics, and phase synchronization. We simulated the
model using synthetic (linear combination of sinusoids) and
also real world EEG signals, thus showing the robustness of
the model. The proposed study gives a proof of principle
for the potentiality of the oscillatory neural networks in

non-trivial applications where oscillations are seldom used
such as autoencoder (problem addressed in this paper), feature
extraction, clustering, classification etc where mostly rate
coded networks are used. The criticality of oscillations in
neurobiology, as mentioned below, is the motivation of this
work.
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FIGURE 7 | EEG signals from three channels: (Top–Bottom) figures show the EEG signals from C3, Cz and C4 channels respectively for 1 s duration. Voltages on

y-axis are given in µ volt.

FIGURE 8 | Frequency spectrum of EEG FM signals and EEG MUX signal: (A–C) show the frequency spectrum of the EEG frequency modulated signals. (D,E) show

the frequency spectrum of the composite MUX signal obtained from LAHN. It is vivid from the figures that the MUX signals cover the spectral information of the EEG

FM signals and form a low dimensional representation of the same.
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FIGURE 9 | Frequency spectrum of adaptive Hopf oscillators: (A,B) show the frequency spectrum of the two MUX signals. (C–E) show the frequency spectrum of

three adaptive Hopf oscillators and it is evident from the figure that the adaptive Hopf oscillators separate out the frequency spectrum of the EEG FM signals.

FIGURE 10 | Reconstruction of EEG signals: (A), (C) and (E) show the original EEG signals recorded from C3, Cz and C4 respectively and (B), (D) and (F) show the

reconstructed EEG signals of the respective channels by the oscillatory autoencoder model. The % of reconstruction error for each reconstruction is 5.8, 6.23, and

3.9% respectively. The absence of noise in the reconstructed signal and also the dimensionality reduction can influence the reconstruction error.
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Criticality of the Oscillations
Although in computational neuroscience literature, oscillatory
neurons are not as common as rate-coded or spiking neuron
models, oscillations figure prominently in experimental
neurobiology. There exists a large corpus of experimental
literature that correlates animal behavior with the aspects of
neural oscillations (Buzsáki, 2002; Lisman and Buzsáki, 2008;
Adhikari et al., 2010; Fell and Axmacher, 2011). Instances
can be found from experimental neurobiology wherein all
the major components of neural information processing viz.,
communication, representation and learning are implemented
by neural oscillations. Colgin et al. (2009) reported that CA1
region of hippocampus communicates with Medial Entorhinal
Cortex (MEC) via fast gamma synchronization (65–140Hz) and
with CA3 region via slow gamma synchronization (25–50Hz)
(Colgin et al., 2009). That is, by changing the frequency of the
signal, it is possible to select the route by which communication
takes place. Spatially distributed neurons can encode for several
individual features of an object by synchronizing the neural
discharges of the features, a phenomenon known as feature
binding (Singer and Gray, 1995). For instance, the presentation
of an optimally oriented bar gives rise to synchronized spiking
of neurons, which are spatially distributed, in the area 17 of the
visual cortex (Gray and Singer, 1987). Synchronization in the
neural discharge is mirrored in the phase of the corresponding
oscillatory LFP activity too. Hence there is a high correlation
between the spike timing with the phase of the LFP oscillations.
In case of feature binding, synchronization may not sometimes
be evident from the spiking activity of the neurons, but the
LFP activity shows robust phase synchronization (Alonso and
Garcia-Austt, 1987; Buzsáki et al., 1992). Thus understanding
the system dynamics in terms of oscillations becomes crucial.
In the perspective of learning, a volley of high frequency
pre-synaptic pulses with simultaneous depolarization at the
postsynaptic side leads to Long Term Potentiation (LTP) (Bliss
and Lømo, 1973; Lüscher and Malenka, 2012). These high
frequency spikes can be correlated with the corresponding
LFP oscillations. Hence the same LTP defined in terms of
the spikes can be redefined using oscillatory LFP (Chauvette
et al., 2012). Oscillations also have a pivotal role in cognition
in both normal and pathological conditions. For example, the
disconnectivity hypothesis of schizophrenia relates the disease
symptoms to the dysfunction in the communication between
different brain regions (Williams and Boksa, 2010). Gamma
rhythm has been reported to have a role in the information
transfer between the brain regions (Gray et al., 1989). In the
early onset schizophrenic patients there is a reduction in
the power of the gamma oscillation in the Prefrontal Cortex
(PFC) a reason accounted for impaired working memory
(Haenschel et al., 2009). Longer time scale oscillations like
circadian rhythms are also known to play a critical role in
major psychological disorders like bipolar disorder, depression,
addiction (McClung, 2007; Alloy et al., 2015). Thus, from
circadian to high gamma rhythms, oscillator models can
be used to describe brain dynamics over a wide range of
frequencies.

Relation of Neural Information Transfer to
Radio Communication Principles
The proposed work reinforces the hypothesis of information
transfer between the brain regions to FM radio principles
proposed by Hoppensteadt and Izhikevich (1998), that cortical
areas communicate each other by making sure that their
oscillations satisfy a resonant condition (Hoppensteadt and
Izhikevich, 1998). They hypothesized that cortical oscillations are
frequency modulated (FM) and, when the frequencies of two
cortical areas match, they communicate by phase modulation.
Thus, cortical communication is proposed to operate on the
lines similar to FM radio. Although their paper proposed
that signals can be frequency modulated and demodulated,
it does not present how these concepts could actually be
exploited to perform autoencoding, i.e., the input messages
getting frequency modulated, multiplexed, demultiplexed and
frequency demodulated. The proposed oscillatory autoencoder
model realizes this concept by invoking the adaptive frequency
and phase synchronization dynamics which take care of the
frequency tuning to the incoming FM signal and hence offers
a neurally plausible mechanism for the signal transmission
and reconstruction (autoencoding) in the brain. This is
achieved by the use of Hopf and Kuramoto dynamics. Both
Kuramoto and Hopf oscillators have been previously used
as models of neural oscillations in many instances (Cumin
and Unsworth, 2007; Righetti et al., 2009). The Kuramoto
model has been used to explain neuronal synchronization in
large connected networks (Cumin and Unsworth, 2007) and
especially building generative models of cortical oscillations
(Breakspear et al., 2010). On the other hand, adaptive Hopf
oscillators have been used for the generation of rhythmic
output patterns such as central pattern generators involved
in locomotion (Ijspeert et al., 2005). However, we have not
come across any literature exploiting the phase synchronization
properties of Kuramoto oscillators and adaptive frequency
aspects of Hopf oscillator to model frequency multiplexing
and demultiplexing. One of the interesting achievements of the
proposed model is to show that Kuramoto—Hopf oscillator
combination could act as a neural phase locked loop (PLL)
which can be used to decode information from a given cortical
region.

Possible Applications of the Model
Autoencoder networks are usually constructed out of rate coded
neurons, though in the recent times autoencoder networks with
spiking neurons have also been proposed (Burbank, 2015). In
its simplest form, a rate-coded autoencoder is a feedforward
network with a single hidden layer and is trained such that
the target output is the same as the input; the hidden layer
has fewer neurons than the input or the output layer. Then
the hidden layer learns to represent the input using fewer
dimensions and therefore achieves dimensionality reduction of
the input space (Hinton and Salakhutdinov, 2006). A similar
reduction is achieved in the proposed oscillatory model since the
hidden layer, LAHN, is of lower dimension than the input layer.
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The connection between Hebbian learning rule and Principal
Component Analysis (PCA) is not a new idea since Oja has
previously shown how a linear neuron adapting its synaptic
weight connections using Hebbian learning rule can converge
to the first principal component of the input data (Oja, 1989).
This was further extended by Sanger using an asymmetric
Generalized Hebbian Algorithm (GHA) learning rule that makes
the network to learn the first n principal components (Sanger,
1989) instead of just one principal component. Hebbian/anti-
Hebbian network also comes under the category of subspace
learning network. This type of network, reduces the input data
dimension by learning the principal subspace of the input data
(Földiak, 1990; Hu et al., 2015; Pehlevan et al., 2015). Other
neural networks in this line are subspace network, Rubner’s
network (Rubner and Tavan, 1989; Rubner and Schulten, 1990)
etc. Although these networks were initially modeled to explain
the computations behind the processing of streaming sensory
inputs, the synaptic plasticity rules based on the local activity
of the neurons neuronal activity were postulated rather than
derived from a cost function (Földiak, 1990). This gap was further
bridged by computing the local learning rules from a principled
cost function (Hu et al., 2015; Pehlevan et al., 2015). Changing
the non-linearity of the neuronal activation function explained
the potentiality of these networks in extracting the higher order
moments of the input data and hence qualified them as the
neural architectures for Independent Component Analysis (ICA)
(Oja, 1997). The aforementioned studies prove the criticality
of this type of network in various applications that include
subspace learning, source separation problem, dimensionality
reduction etc.

This dimensionality reduction has further implications
especially in EEG processing. The model reconstructs the
original EEG signals from their lower dimensional LAHN
representations. This means that these LAHN signals can serve
as the reliable representations especially for high channel EEG
signals. These representations could potentially be useful in BCI
related processing such as classification of EEG signals, feature
clustering, movement signature detection etc. The EEG signals
used for the model simulation are two class motor imagery
signals which are of particular interest in BCI application. Hence
the proposed model not only provides a biologically plausible
explanation for the information transfer in the brain but also
shows its possible potential application in BCI related EEG
processing. Another important feature that makes the current
model suitable for EEG processing is its ability to average out
the noise present in the input signal. As shown in the results
section, the input EEG signals have high frequency ripples in
its original form which is further averaged out to produce
a smooth reconstructed signal as the output from the model
(Figure 10). This could possibly be due to the large temporal
scale Hebbian learning that happens in the hidden LAHN
layer which could thus average out the noise present in the
input.

Future Extensions of the Proposed Model
A possible extension of the current model could be to add
additional circuitry that will enable routing of the signal from

the ith input channel to the jth output channel. It must be
possible to choose the input/output channels to be coupled
through another layer that projects to the current LAHN layer
that performs multiplexing of FM signals. In such an extended
model, the LAHN layer and the additional circuitry for route
selection can be compared to the functions of the thalamus
with respect to cortico-thalamic information processing. Hence
the proposed model serves as the proof of principle for the
potentiality of the oscillatory neural networks in information
transfer i.e., encoding and decoding of real world signals using
the principles of modulation, MUX, frequency adaptation and
phase synchronization and also shows its possible potential role
in EEG related applications. Another direction that the proposed
model could possibly take is to pick the brain components
from the EEG signals. By brain component we mean the
sources inside the brain responsible for the generation of the
EEG signal. Current approaches like Independent Component
Analysis (ICA) require manual selection of components which
has a source inside the brain for further analysis. We envisage
that using a hierarchical network of LAHN, we could possibly
isolate the brain components better due to its inherent ability
to filter out noise. As a future work, we envisage that the
current model could be possibly used (may be by invoking
minor changes) to study the EEG related phenomena like mu
band Event Related Desynchronization (ERD), Visual Evoked
Event Related Potential (ERP) etc which can possibly shed
light on the neural principles behind the occurrence of these
phenomena.

CONCLUSION

We propose a hybrid oscillatory network model that performs
the function of an autoencoder. Using this network, we are
able to encode the information onto oscillations, reduce the
dimensionality of information and effectively decode them using
a neural phase locked loop. The model was successfully applied
to both synthetic as well as real world EEG signals. Hence
the proposed model shows an oscillatory neural framework in
describing information transfer in the brain. By reconstructing
the EEG signals from its abstract representations in the hidden
layer we have shown the model’s ability in better feature
extraction of EEG signal which is a critical part in EEG
processing. Finally, we conclude that exploring the universality
of oscillator networks would open avenues for developing an
entirely new class of neural network models that describe
brain function in terms of oscillatory properties— amplitude,
frequency, and phase. The whole motivation of this work
was to show a proof of principle for the potentiality of the
oscillatory networks in other domains where usually rate coded
or spiking neurons were used. In the future, we plan to
apply the model to a wider variety of real world time series
signals.
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