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Abstract

The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified.

However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is

that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a

marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the

determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other,

andby the relatively poorquality of available functional genomics data sets. Here, weuse correlation, partial correlationandprincipal

component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human

proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction

network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from

false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and

nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the

impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of

gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and

errors) of interactomic data sets.
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Introduction

The rates of evolution of the proteins of any organism vary

enormously: some proteins remain virtually unaltered during

long evolutionary periods, whereas others tolerate fast accu-

mulation of amino acid changes (Zuckerkandl and Pauling

1965; Dickerson 1971; Li et al. 1985). A long list of factors

affecting rates of protein evolution has been identified, in-

cluding patterns and levels of gene expression (Duret and

Mouchiroud 2000; P�al et al. 2001; Drummond et al. 2005),

essentiality (Hurst and Smith 1999; Jordan et al. 2002; Rocha

and Danchin 2004; Alvarez-Ponce et al. 2016), dispensability

(i.e., fitness upon gene knockout; Hirsh and Fraser 2001;

Yang et al. 2003; Wall et al. 2005; Zhang and He 2005),

functional category (P�al et al. 2001; Rocha and Danchin

2004; Greenberg et al. 2008; Alvarez-Ponce and Fares

2012), number of functions (Wilson et al. 1977; Salathé

et al. 2006; Podder et al. 2009), number of protein–protein

interactions and other metrics of network centrality (Fraser

et al. 2002; Hahn and Kern 2005), protein length (Marais

and Duret 2001; Lemos et al. 2005; Ingvarsson 2007), gene

compactness (Liao et al. 2006), and duplicability (Lynch and

Conery 2000; Van de Peer et al. 2001; Kondrashov et al.

2002; Nembaware et al. 2002; Scannell and Wolfe 2008;

Panchin et al. 2010; Pegueroles et al. 2013). However, little

is known about what fraction of the variability of rates of

evolution is explained by each factor (for review, see

Herbeck and Wall 2005; P�al et al. 2006; Rocha 2006;

Alvarez-Ponce 2014; Zhang and Yang 2015). Accurately

addressing this question is complicated by the facts that 1)

the different determinants of rates of protein evolution are

often correlated to each other (e.g., Koonin and Wolf 2006),

and 2) the available data sets corresponding to the different

variables have different quality (i.e., they are not equally noisy;

e.g., Plotkin and Fraser 2007).
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Initial models, based on theory, predicted that rates of pro-

tein evolution should be primarily dictated by the relative im-

portance and functional density of proteins, with more

important and/or functionally dense proteins tending to be

more evolutionarily constrained (Kimura and Ohta 1974;

Zuckerkandl 1976; Wilson et al. 1977). Genomic analyses,

however, have lent only limited support to these models

(Hurst and Smith 1999; P�al et al. 2003; Wang and Zhang

2009). The current view is that rates of protein evolution

are primarily determined by levels of gene expression (and

in the case of complex organisms, by expression breadth,

i.e., the number of tissues in which a gene is expressed),

with all other factors explaining a very small fraction of the

variation of rates of protein evolution. For instance, using

Principal Component Regression (PCR) analysis (Mandel

1982), Drummond et al. (2006) showed that, in yeasts, one

principal component (PC) mostly dominated by surrogates of

translation frequency (mRNA abundance, protein abundance

and Codon Adaptation Index) accounted for 43% of the var-

iance in rates of evolution, whereas all other PCs accounted

for <1%. Analyses in other species, using PCR and other

multivariate analysis techniques, have also pointed out to an

overarching role of gene expression (e.g., Ingvarsson 2007;

Larracuente et al. 2008; Yang and Gaut 2011). However,

analyses by Plotkin and Fraser (2007) suggested that this ob-

servation was an artifact of the fact that different factors had

been measured with different degrees of noise, and that once

noise was equalized across the different variables, they all had

a comparable contribution to the variability of rates of protein

evolution.

Genes and proteins rarely act in isolation. Instead, they

tend to work as part of complex networks of interacting

molecules. One question that has been subject to intense

debate is whether the centrality of proteins within molecular

networks significantly impacts rates of protein evolution.

Network centrality is typically measured as degree (the num-

ber of interactions a protein is involved in), or using more

global measures of centrality such as betweenness (the num-

ber of shortest paths between all pairs of other proteins that

pass throughout a certain protein; Freeman 1977) and close-

ness (one divided by the average distance between a protein

and all other proteins in the network; Bavelas 1950). Pioneers

in the field hypothesized that rates of protein evolution should

decrease as the number of molecular interactions increases, as

interactions impose functional constraints on the involved

amino acid residues (Ingram 1961; Dickerson 1971; Wilson

et al. 1977). In agreement with this hypothesis, Teichmann

(2002) found that proteins that form part of protein com-

plexes tend to evolve particularly slowly, and Fraser et al.

(2002) observed a negative correlation between the number

of protein–protein interactions in yeast and rates of protein

evolution. However, Bloom and Adami (2003) claimed that

the correlation between rates of protein evolution and num-

ber of interactions observed by Fraser et al. was simply a

by-product of the facts that certain techniques used to detect

protein interactions systematically detect more interactions

for highly abundant proteins, and that abundant proteins

tend to be highly constrained. Using partial correlation anal-

ysis, Fraser and Hirsh (2004) showed that the correlation be-

tween proteins’ rates of evolution and number of interactions

was independent of protein abundances. Several subsequent

analyses in a range of species have also concluded, using

partial correlations, that the correlation between proteins’

rates of evolution and different measures of centrality (includ-

ing the number of interactions) is independent of confound-

ing factors such as protein abundances (Jordan et al. 2003;

Agrafioti et al. 2005; Hahn and Kern 2005; Lemos et al. 2005;

Alvarez-Ponce and Fares 2012). However, the correlation is

often very weak, and sometimes even nonexistent (Batada

et al. 2006; Larracuente et al. 2008; Hahn et al. 2004; see

supplementary table S1, Supplementary Material online for a

summary of previously reported correlation coefficients). In

addition, it has been shown that partial correlation analysis

can produce spurious results when applied to noisy data (as

functional genomics data usually is), and PCR has been pro-

posed as an alternative (Drummond et al. 2006) (even though

this method has limitations as well; Plotkin and Fraser 2007).

Using this technique, Drummond et al. (2006) claimed that

the effect or the number of protein–protein interactions and

betweenness on rates of evolution in yeasts was negligible.

Together, these analyses draw a picture in which the effect

of network centrality on rates of protein evolution appears to

be very weak, or even negligible, particularly once confound-

ing factors are corrected for. However, it should be noted that

most of these analyses have been conducted in yeasts, and

none has focused on humans (supplementary table S1,

Supplementary Material online). In addition, most analyses

have relied on partial correlation analyses and/or on largely

incomplete interactomic data sets of poor quality. Currently

available interactomic data sets are known to suffer from very

high rates of false positives and false negatives, as well as

important biases (Bader et al. 2004; Deeds et al. 2006;

Hakes et al. 2008; Kelly and Stumpf 2012; Alvarez-Ponce

2017), which may have affected prior analyses.

Here, we use correlation, partial correlation and PCR anal-

yses to assess the relative contributions of several factors to

the variability of rates of protein evolution in the human signal

transduction network. For that purpose, we use the entire

human protein–protein network and a manually curated net-

work data set of exceptionally high quality representing the

human signal transduction network (Cui et al. 2007). In sharp

contrast with the prevailing view, our analyses show that net-

work centrality has an important effect on rates of protein

evolution. Surprisingly, the combined effect of network

parameters is comparable, or even stronger according to

some analyses, to the combined effect of expression param-

eters (expression level and breadth, protein abundance and

breadth, and Codon Adaptation Index).
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Materials and Methods

Interactomic Data Sets

The entire human protein–protein interaction network was

derived from the BioGRID database, version 3.4.137 (Chatr-

Aryamontri et al. 2015). Only physical interactions among

human proteins were considered. After removing redundant

interactions, the network consisted of 15,960 proteins and

213,009 nonredundant interactions. The network consists of

a giant connected component with 15,928 nodes and

212,992 interactions, and 32 small components (with 2–3

nodes). For each of the 15,960 proteins in the network, we

computed their degree as the number of interactions in which

they are involved. For the 15,928 proteins in the giant con-

nected component, betweenness and closeness were com-

puted using Pajek 4.05 (Nooy et al. 2005). The yeast, fly, and

worm protein–protein interaction networks were derived

from the same database and treated in the same manner.

The human signal transduction network was obtained

from Cui et al. (2007). This data set consists of a total of

1634 nodes connected by 4665 nonredundant interactions.

The data set was obtained by merging multiple manually gen-

erated data sets (Ma’ayan et al. 2005; Awan et al. 2007;

www.biocarta.com; http://www.ccmi.org/), and by additional

manual curation (Cui et al. 2007). We eliminated nodes that

do not represent genes/proteins, but signaling molecules of

other kinds (e.g., second messengers), resulting in a network

with 1,551 nodes and 4,350 interactions. The network con-

sists of a giant connected component with 1,524 nodes and

4,331 interactions, and 11 small components with 2–7 nodes.

As for the entire network, degree was computed for all nodes,

and betweenness and closeness was computed only for those

that were part of the giant connected component. We deter-

mined whether each interaction was a physical protein–

protein interaction by searching it in the BioGRID database,

version 3.4.137 (Chatr-Aryamontri et al. 2015). A total of

1,623 of the 4,350 interactions were deemed physical

interactions.

Rates of Protein Evolution

For each of the human genes represented in the network, we

identified the most likely mouse ortholog using a best recip-

rocal hit approach. All human and mouse protein and CDS

sequences were retrieved from Ensembl, release 62 (Yates

et al. 2016). For each human gene, the longest protein and

its encoding CDS were chosen for analysis. The human pro-

tein was used in a BLASTP search against the entire mouse

proteome, using an E-value cut-off of 10�10. The best hit was

used as query in a second BLASTP search against the human

proteome. If the best hit recovered in the second BLASTP

search was a protein encoded by the original gene, then

the corresponding human and mouse genes were considered

orthologs. The accuracy of this approach has been

demonstrated (Wolf and Koonin 2012; Dalquen and

Dessimoz 2013).

For each pair of orthologous genes, the encoded protein

sequences were aligned using ProbCons, version 1.12 (Do

et al. 2005), and the resulting alignment was used to align

the corresponding CDS sequences. For each of the resulting

alignments, we estimated the nonsynonymous to synony-

mous divergence ratio (x¼ dN/dS) using PAML, version 4.4

(codeml program, M0 model; Yang 2007). The same meth-

ods were used to identify and analyze pairs of D. mela-

nogaster–D. yakuba, C. elegans–C. briggsae, and S.

cerevisiae–S. paradoxus orthologs.

Gene Expression Data and Additional Information

For each gene, we gathered the following information from

different sources:

• Protein abundance: For each human, fly, worm and yeast

gene, an estimate of the total abundance of the encoded

proteins in the entire body was obtained from the PaxDb

database, version 3 (Wang et al. 2012). These estimates

were obtained by combining multiple protein abundance

data sets.

• Protein expression breadth: For each human gene, protein

expression data across six different organs/tissues (brain,

heart, liver, lung, plasma, and platelet) were obtained

from the PaxDb database, version 3 (Wang et al. 2012).

Protein expression breadth was computed as the number of

different organs/tissues in which each protein was

detected. This number ranged between 0 and 6.

• Messenger RNA abundance: RNA-seq data for a total of 32

human organs/tissues were obtained from the HumanAtlas

database (Uhlen et al. 2015). For each human gene, mRNA

abundance was estimated as the average across the 32

tissues. Messenger RNA abundance data for D. mela-

nogaster and C. elegans were obtained from the FlyAtlas

database (whole adult fly; Chintapalli et al. 2007) and the

EBI Expression Atlas (accession number E-MTAB-2812;

Petryszak et al. 2015), respectively. S. cerevisiae gene ex-

pression data was obtained from Nagalakshmi et al. (2008).

• Messenger RNA expression breadth: For each human gene,

mRNA expression breadth was computed as the number of

organs/tissues in which the mRNA was detected (with an

FPKM value equal to or higher than 1). This number ranged

between 0 and 32. For each fly gene, expression breadth

was computed as the number of adult tissues in which the

gene was expressed according to the FlyAtlas database

(ranging from 0 to 16). Genes were considered to be

expressed at a certain tissue if they were detectable in at

least 3 out of the 4 biological replicates.

• Codon Adaptation Index: For each human, fly, worm and

yeast gene, the CAI (Sharp and Li 1987) was computed

using the cai program from the EMBOSS package (Rice

et al. 2000).
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• Protein length: For each human, fly, worm, and yeast gene,

the length of the longest encoded protein was considered.

• 50 and 30 UTR length: For human, fly, and worm genes, 50

and 30 UTR length was derived from the gene structure

annotations contained in Ensembl’s BioMart (Kinsella

et al. 2011). For yeast genes, average UTR lengths were

obtained from Pelechano et al. (2013).

• Average intron length: Intron lengths were derived from

the gene structure annotations contained in Ensembl’s

BioMart.

• Duplicability: For each human, fly, worm and yeast gene, a

list of paralogs in the same genome was obtained from

Ensembl’s BioMart. Genes with no paralogs were deemed

singletons, and genes with at least one paralog were clas-

sified as duplicated.

• Essentiality: For each human gene, phenotypic data for its

mouse ortholog was obtained from the Mouse Genome

Database (Eppig et al. 2015). If the mouse ortholog was

involved in a lethal phenotype, then the human gene

was considered essential; otherwise, the human gene was

deemed nonessential. Fly and worm essentiality data were

derived from the Online Gene Essentiality Database (Chen

et al. 2012). Yeast essentiality data were obtained from

Giaever et al. (2002).

• Number of publications: For each human gene, the total

number of research articles that mention the gene was re-

trieved from PubMed (ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA/gene2pubmed.gz) on November 15, 2016.

• Subcellular location: Human proteins were considered ex-

tracellular if classified as such in the MetazSecKB database

(categories “curated” or “highly likely”), or membrane if

classified as such in the UniProt database (UniProt consor-

tium 2015).

Statistical Analyses

All our correlation, partial correlation and PCR analyses were

restricted to genes for which we had both network and evo-

lutionary rate information (i.e., genes that were represented

in the network and had detectable orthologs in mouse, D.

yakuba, C. briggsae, or S. paradoxus). Our PCR analyses were

further restricted to genes for which data were available for all

studied variables. Correlation and partial correlation analyses

were performed using the functions “cor.test” and

“pcor.test” (Kim and Yi 2006) in R (Ihaka and Gentleman

1996), respectively. Data transformation was not required,

as we performed nonparametric tests. PCR analyses were

performed using the “pls” library (Mevik and Wehrens

2007) for R. Three separate analyses were conducted, using

x, dN or dS as response variables. In each analysis, continuous

independent variables were log-transformed if that increased

the percent of the variance of the dependent variable

explained by the model (R2). For those continuous indepen-

dent variables that included zero values, a small constant

(0.0001) was added, in order to allow log-transformation. In

all analyses, independent variables were scaled to zero mean

and one variance. Essentiality and duplicability were treated as

binary variables (essentiality was 0 for nonessential genes and

1 for essential ones; duplicability was 0 for singleton genes

and 1 for duplicated ones).

Results

Correlation and Partial Correlation Analysis

We first reconstructed the human protein–protein interaction

network from the contents of the BioGRID database (Chatr-

Aryamontri et al. 2015). This database contains physical

protein–protein interactions determined by thousands of

large-scale and small-scale experiments. After filtering (see

Materials and Methods), the network consisted of 15,960

genes/proteins and 213,009 nonredundant interactions. For

each human gene represented in the network, we identified

its most likely ortholog in the mouse genome and inferred the

strength of purifying selection acting on the sequence of the

encoded protein from the nonsynonymous to synonymous

divergence ratio (x¼ dN/dS). This ratio is expected to be lower

than one for genes under purifying selection (with values

closer to 0 indicating stronger purifying selection), equal to

one for genes evolving neutrally, and higher than one (at least

in a subset of codons) for genes under positive selection.

Mouse orthologs were identified for a total of 13,576 of

the human genes represented in the network. The remaining

genes were excluded from all our analyses.

We evaluated the correlation between x and 14 parame-

ters, including three measures of network centrality (number

of physical protein–protein interactions, betweenness, and

closeness), five expression parameters (mRNA abundance,

mRNA breadth – the number of tissues in which mRNA is

present – protein abundance and breadth, and Codon

Adaptation Index). four measures of compactness (protein

length, 50 UTR length, 30 UTR length, and average intron

length), and two other parameters (duplicability and essenti-

ality). Essentiality and duplicability were treated as binary var-

iables (essential¼ 1, nonessential¼ 0; duplicated¼ 1,

singleton¼ 0). All parameters negatively correlate with x,

with the only exception of protein length, which exhibits a

positive correlation with x (table 1 and fig. 1). Essential genes

evolved slower than nonessential genes (median x for essen-

tial genes: 0.067, median x for nonessential genes: 0.106;

Mann–Whitney U test, P¼ 2.63� 10�96; fig. 1P), and dupli-

cated genes evolved slower than singleton genes (median x
for duplicates: 0.085, median x for singletons: 0.127; Mann–

Whitney U test, P¼ 6.66� 10�78; fig. 1O). This is in agree-

ment with prior observations: even though duplicates evolve

faster immediately after gene duplication (Lynch and Conery

2000; Van de Peer et al. 2001; Han et al. 2009; Pegueroles

et al. 2013), genes with paralogs are overall more conserved

than those without paralogs (Nembaware et al. 2002;
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Yang et al. 2003; Davis and Petrov 2004; Jordan et al. 2004;

Yang and Gaut 2011).

Surprisingly, network centrality parameters are stronger

correlates of x (�0.237� q��0.260) than expression

(�0.158� q��0.192; table 1), compactness (0.024�
q��0.157; table 1) or other parameters (q¼�0.160 for

duplicability and�0.182 for essentiality). We divided pro-

teins into four groups according to the number of inter-

actions (group 1: 1–3 interactions, n¼ 3101; group 2: 4–

10 interactions, n¼ 3269; group 3: 11–27 interactions,

n¼ 3339; group 4:>27 interactions, n¼ 3867). The me-

dian x steadily decreased as the number of interaction

increased (group 1: 0.131, group 2: 0.110, group 3:

0.094, group 4: 0.064; fig. 1D). Any pair of groups exhib-

ited statistically significant differences (Mann–Whitney’s

U test, P� 4.51� 10�8).

We next used partial correlation analysis to evaluate

whether the correlation between x and the measures of

network centrality was independent of the other 11 fac-

tors. We first controlled for each nonnetwork parameter

individually. The correlation between x and the number

of interactions, betweenness and closeness was signifi-

cant in all cases (supplementary table S2, Supplementary

Material online). We next evaluated the partial correla-

tions between network centralities and x, controlling si-

multaneously for all 11 nonnetwork parameters, also with

significant results in all cases (supplementary table S2,

Supplementary Material online).

Principal Component Regression Analysis

Partial correlation analysis suffers from at least two problems

that limit its applicability to our data set. First, it assumes that

the controlling variables are independent of each other; how-

ever, many of the variables used in our study are correlated

with each other (supplementary table S3, Supplementary

Material online). Second, partial correlation analysis can pro-

duce spurious results when measurements for some of the

variables are noisy (Drummond et al. 2006). PCR has been

proposed as a suitable alternative to establish the determi-

nants of rates of protein evolution and their relative contribu-

tions (Drummond et al. 2006). This method seems to be less

sensitive to noise than partial correlation (but not completely

insensitive; Plotkin and Fraser 2007), takes into account the

interrelationships among the explanatory variables, and pro-

vides information on the relative contribution of several inde-

pendent variables to the variability of a dependent variable.

We performed three PCR analyses, using as dependent var-

iable either x, dN or dS (fig. 2). In all analyses, the following

variableswereusedasindependentvariables:degree,between-

ness, closeness, mRNA abundance, protein abundance, mRNA

expression breadth, protein expression breadth, Codon

Adaptation Index (CAI), protein length, 50 UTR length, 30 UTR

length, average intron length, duplicability, and essentiality. All

analyses were restricted to the 11,593 genes for which data

were available for all these variables. The first model explained

18.37% of thevariabilityofx (fig.2A), consistentwithprevious

multivariate analyses in complex eukaryotes (Ingvarsson 2007;

Yang and Gaut 2011). The first, second, and third PCs

explained, respectively, 5.48%, 5.39%, and 2.91% of the var-

iability of x. The first PC is composed 41.71% of network cen-

trality parameters (number of interactions: 17.85%,

betweenness: 5.83%, closeness: 18.03%), 43.41% of expres-

sion parameters (mRNA abundance: 14.28%, mRNA breadth:

14.09%, protein abundance: 1.48%, protein breath: 10.16%,

CAI: 3.40%), 5.99% of compactness parameters (protein

length: 2.01%, 50 UTR length: 0.03%, 30 UTR length: 1.11%,

average intron length:2.84%),and8.89% ofotherparameters

(duplicability:2.72%,essentiality:6.18%)(supplementarytable

S4,SupplementaryMaterialonline).ThesecondPCiscomposed

17.12% ofnetworkparameters, 39.67% ofexpressionparam-

eters, 31.88% of compactness parameters, and 11.33% of

other parameters. The third PC is composed 9.60% of network

parameters, 17.85% of expression parameters, 45.61% of

compactness parameters, and 26.95% of other parameters.

For each variable or kind of variable (network, expression,

compactness, and other), we applied the following formula:

Xi ¼
X14

j¼1

pjcij

where i is the variable or group of variables, pj is the percent of

the response variable explained by PC j, and cij is the

Table 1

Spearman’s Correlations between x and 14 Parameters in the Human

Protein–Protein Interaction Network

N q P Value

Network parameters

Physical protein–protein

interactions

13,576 �0.257 1.57 � 10�203***

Betweenness 13,549 �0.237 3.17 � 10�172***

Closeness 13,549 �0.260 1.19 � 10�207***

Expression parameters

mRNA abundance (mean for 32

tissues)

13,576 �0.188 1.39 � 10�107***

mRNA expression breadth 13,576 �0.169 5.07 � 10�88***

Protein abundance (whole body) 12,396 �0.189 2.20 � 10�100***

Protein expression breadth 13,576 �0.158 2.35 � 10�76***

Codon Adaptation Index 13,576 �0.192 2.58 � 10�113***

Compactness parameters

Protein length 13,576 0.024 0.005**

50 UTR length 13,576 �0.104 3.24 � 10�34***

30 UTR length 13,576 �0.157 7.84 � 10�76***

Average intron length 13,576 �0.058 1.57 � 10�11***

Other parameters

Duplicability 13,576 �0.160 6.87 � 10�79***

Essentiality 13,038 �0.182 6.70 � 10�98***

*P< 0.05, **P<0.01, ***P< 0.001.
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contribution of the variable or group of variables i to PC j. X is

the surface of figure 2A–C occupied by each variable or group

of variables, and can be taken as an approximation of their

explanatory power. X was 4.06% for network parameters,

6.66% for expression parameters, 5.14% for compactness

parameters, and 2.51% for other parameters. That is, 4.06/

18.37¼ 22.08% of the surface of figure 2A is occupied by

network parameters, 6.66/18.37¼ 36.28% by expression

parameters, 5.14/18.37¼ 27.98% by compactness parame-

ters and 13.66% by other parameters. Among network

parameters, X was 1.33% for the number of interactions,

1.39% for betweenness and 1.33% for closeness.

The second model explained 17.33% of the variability of

dN (fig. 2B), also consistent with previous analyses (Yang and

Gaut 2011). The first, second, third, fourth, and fifth PCs

explained, respectively, 7.43%, 3.68%, 1.64%, 1.63%, and

1.36% of the variability of dN. Each of the other PCs explained

<1% of this variability. The first PC was composed 46.92% of

network parameters, 36.58% of expression parameters,

6.53% of compactness parameters, and 9.98% of other

FIG. 1.—Relationship between rates of protein evolution and a number of factors in the human protein–protein interaction network. In panel A, proteins

with>500 interactions are not shown. In panel B, proteins with a betweenness higher than 0.1 are not shown. In panels A–C, E–H, and J–N, lines represent

regression lines. In panels E and F, outliers are not represented.
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parameters. The second PC was composed 1.12% by net-

work parameters, 26.77% of expression parameters,

52.92% of compactness parameters, and 19.18% of other

parameters. The third PC was composed 8.93% of network

parameters, 40.42% of expression parameters, 46.63% of

compactness parameters, and 4.02% of other parameters.

X was 4.65% for network parameters, 6.22% for expression

parameters, 4.22% for compactness parameters, and 2.25%

for other parameters. Among network parameters, X was

1.63% for the number of interactions, 1.38% for between-

ness, and 1.64% for closeness.

In summary, PCR analyses on x and dN indicate that the

impact of network centralities on rates of protein evolution is

far from negligible, and is comparable to that of expression

parameters. The third PCR analysis explained only 0.60% of

the variability of dS, consistent with previous analyses (Yang

and Gaut 2011). The results of this analysis are summarized in

figure 2C and supplementary table S4, Supplementary

Material online.

Our Findings Are Not a By-Product of Network Biases

Interactomic data sets are subjected to inspection (or study)

bias and technical biases. Inspection bias is due to the fact

that, within any proteome, certain proteins (e.g., those of

particular biomedical interest) have been better studied than

others, and as a result, a higher number of protein–protein

interactions involving these proteins has been described (Rual

et al. 2005). Indeed, there is a positive correlation between

the number of publications mentioning a gene and the num-

ber of described interactions involving the encoded products

of that gene (Schaefer et al. 2015; Chakraborty and Alvarez-

Ponce 2016). Our results might be affected by this kind of bias

if 1) more interactions were known for better studied genes,

and 2) better studied genes tended to exhibit slower rates of

evolution. We found that the number of scientific publications

mentioning a certain gene strongly correlates with measures

of network centrality (number of physical interactions:

q¼ 0.511, P< 10�300; betweenness: q¼ 0.509, P< 10�300;

closeness: q¼ 0.458, P< 10�300), indicating strong inspec-

tion bias. In addition, a strong correlation was detected be-

tween proteins’ rates of evolution and the number of

publications mentioning them (q¼�0.197,

P¼ 5.83� 10�119). However, partial correlation analysis

shows that the correlations between centrality measures

and x is not affected by the number of publications (number

of physical interactions: q¼�0.185, P¼ 9.69� 10�107; be-

tweenness: q¼�0.162, P¼ 4.79� 10�81; closeness:

q¼�0.194, P¼ 1.70� 10�117), indicating that our observa-

tions are not due to inspection bias.

Another known source of bias is the fact that membrane

and secreted proteins are underrepresented in interactomic

data sets, due to the technical difficulties that entails working

with such proteins (Rual et al. 2005; Wright et al. 2010; Brito

and Andrews 2011). It is conceivable that this bias, combined

with the fact that membrane and secreted proteins tend to

evolve fast (Julenius and Pedersen 2006; Cui et al. 2009; Liao

et al. 2010; Nogueira et al. 2012), might be inflating the re-

lationship between centrality and rates of evolution observed

here. In addition, the expression level–evolutionary rate anti-

correlation is reduced among secreted proteins (Feyertag et al.

2017), which might also be affecting our results. To discard

these possibilities, we repeated our correlation and PCR anal-

yses after removing membrane and extracellular proteins. The

correlations between x and network centrality parameters

were not affected (number of interactions: q¼�0.281,

P¼ 5.86� 10�151; betweenness: q¼�0.266, P¼ 4.39�
10�135; closeness: q¼�0.282, P¼ 2.47� 10�152), and the

results of the PCR analysis were also similar (supplementary

table S5, Supplementary Material online).

Finally, tandem affinity purification followed by mass spec-

trometry (TAP/MS), one of the most used techniques to infer

protein interactions, tends to detect more interactions for

highly abundant proteins (von Mering et al. 2002;

FIG. 2.—Principal component regression analysis on the human protein–protein interaction network. For each principal component (PC), the size of the

bar represents the percent of the variability of the response variable explained by the PC. The composition of each component is represented in colors.

Network parameters are highlighted within black boxes. This analysis was restricted to the 11,593 genes for which data were available for all variables.
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Björklund et al. 2008; Ivanic et al. 2009). It is conceivable that

this bias, combined with the fact that highly abundant pro-

teins tend to evolve slowly (Duret and Mouchiroud 2000; P�al

et al. 2001; Drummond et al. 2005), may be affecting our

results. However, our partial correlation and PCR analyses

show that the relationship between x and centrality is inde-

pendent from protein abundance (supplementary table S2

Supplementary Material online).

Our Findings Are Not a By-Product of the Poor Quality of
the Interactomic Data Set: Analysis of a Manually Curated
Signal Transduction Network

Large-scale interactomic data sets, such as the one used so

far, are known to suffer from very high rates of false positives

and false negatives (Bader et al. 2004; Deeds et al. 2006;

Hakes et al. 2008; Kelly and Stumpf 2012; Alvarez-Ponce

2017). As a result, our centrality estimates are subjected to

a certain amount of noise, which is known to interfere with

partial correlation analyses (Drummond et al. 2006). In order

to demonstrate that our results are not affected by this noise,

we performed two additional analyses. First, we repeated our

correlation, partial correlation and PCR analyses after remov-

ing 15% of genes randomly chosen, with equivalent results

(supplementary tables S6–S8, Supplementary Material

online).

Second, we repeated our analyses using a network data set

of exceptionally high quality: the human signal transduction

network assembled by Cui et al. (2007). This data set was

generated by combining multiple manually curated data

sets, and by extensive additional manual curation.

Therefore, the data set is expected to be virtually free from

false positives. The data set is restricted to proteins involved in

signal transduction, and contains both physical, direct

protein–protein interactions, and other kinds of interactions,

including transcriptional activation repression by transcription

factors (Cui et al. 2007). After filtering (see Methods), the

network consisted of 1,551 genes/proteins and 4,350 non-

redundant interactions, including 1,623 physical and 2,727

nonphysical interactions. We restricted our analyses to the

1,443 genes for which mouse orthologs could be identified.

We first evaluated the correlation between x and 16

parameters, including five measures of network centrality

(number of physical protein–protein interactions, number of

nonphysical protein interactions, total number of interactions,

betweenness, and closeness), and the five expression param-

eters, four compactness parameters and two other parame-

ters listed above. Results were similar to those for the entire

protein–protein interaction network: all parameters exhibit

significant negative correlations with x, except protein

length, for which the correlation was not significant (fig. 3

and table 2; supplementary table S9, Supplementary Material

online). In general, expression parameters are stronger corre-

lates of x (�0.171� q��0.183) than network parameters

(�0.065� q��0.136; fig. 1 and table 2). However, correla-

tion coefficients are somehow comparable between network

and expression parameters.

We divided proteins into four groups according to the

number of physical interactions (group 1: 1–10 interactions;

group 2: 11–20 interactions; group 3: 21–30 interactions;

group 4:>30 interactions). The median x steadily decreases

as the number of interaction increases (group 1: 0.065, group

2: 0.050, group 3: 0.039, group 4: 0.0046; fig. 3E). A similar

trend was observed when proteins were classified according

to their number of nonphysical interactions (group 1: 0.065,

group 2: 0.050, group 3: 0.036, group 4: 0.010; fig. 3F).

The correlation between x and the number of interactions,

number of nonphysical interactions, betweenness, and close-

ness remains significant when controlling for any of the other

11 variables separately (supplementary table S10,

Supplementary Material online). The correlation between x
and the number of physical interactions vanished when con-

trolling for mRNA abundance, mRNA expression breadth, or

essentiality, but not when controlling for the other variables

(supplementary table S10, Supplementary Material online).

When we evaluated the partial correlations between network

centralities and x controlling simultaneously for all 11 non-

network parameters, the correlation remained significant for

the number of nonphysical interactions and closeness, but not

for the number of physical protein–protein interactions, total

number of interactions, or betweenness. Nonetheless, corre-

lation coefficients remained negative in all cases (supplemen-

tary table S10, Supplementary Material online).

Proteins’ measures of network centrality strongly correlate

with the number of scientific publications mentioning them

(number of physical interactions: q¼ 0.427,

P¼ 6.70� 10�65; number of nonphysical interactions:

q¼ 0.138, P¼ 1.33� 10�7; betweenness: q¼ 0.340,

P¼ 1.41� 10�39; closeness: q¼ 0.180, P¼ 9.16� 10�12),

indicating strong inspection bias. However, no correlation

was detected between proteins’ rates of evolution and the

number of publications mentioning them (q¼�0.013,

P¼ 0.630), and partial correlation analysis shows that the

correlations between centrality measures and x are not af-

fected by the number of publications (number of physical

interactions: q¼�0.066, P¼ 0.012; number of nonphysical

interactions: q¼�0.129, P¼ 7.87� 10�7; betweenness:

q¼�0.081, P¼ 0.002; closeness: q¼�0.134,

P¼ 3.34� 10�7), indicating that our observations are not

due to inspection bias.

Our PCR analyses explained 23.55% of the variability of x
(fig. 4A), and 23.32% of the variability of dN (fig. 4B). In the x
analysis, X¼ 7.58% for network parameters, 8.63% for ex-

pression parameters, 4.24% for compactness parameters, and

3.09% for other parameters. In the dN analysis, X¼ 7.47% for

network parameters, 8.70% for expression parameters,

4.22% for compactness parameters, and 2.94% for

other parameters (fig. 4; supplementary table S11,
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FIG. 3.—Relationship between rates of protein evolution and a number of factors in the human signal transduction network. In panels A–D, G–J, and

L–P, lines represent regression lines. In panels E and F, outliers are not represented.
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Supplementary Material online). Similar results were obtained

when membrane and extracellular proteins were removed

from the PCR analyses (supplementary table S12,

Supplementary Material online).

It is in principle conceivable that the correlation between

protein rates and evolution and network centralities is partic-

ularly strong for signaling proteins, thus biasing the results

presented in this section. Indeed, in signal transduction path-

ways and networks, the relative importance of each protein

(and as a result, its rate of evolution) may be particularly linked

to its relative position within the network (e.g., Riley et al.

2003; Alvarez-Ponce et al. 2009; Alvarez-Ponce 2012; Song

et al. 2012). In order to discard this possibility, we computed

the x-degree, x-betweenness, and x-closeness correlations

in the entire protein–protein interaction network, separately

for signaling proteins (n¼ 1397) and for the rest of the pro-

teins (n¼ 12,179). No significant differences were detected

between the correlations within each group (supplementary

table S13, Supplementary Material online), thus allowing us to

discard this possibility.

Analysis of the Drosophila melanogaster, Caenorhabditis
elegans, and Saccharomyces cerevisiae Interactomes

We next performed correlation, partial correlation and PCR

analyses to ascertain the determinants of rates of protein evo-

lution in the fly Drosophila melanogaster, the worm

Caenorhabditis elegans and the yeast Saccharomyces cerevi-

siae. For each gene, orthologs were identified in Drosophila

yakuba, Caenorhabditis briggsae, or Saccharomyces para-

doxus, respectively, and a dN, dS, as well as the x ratio was

computed. As synonymous sites are under considerable selec-

tion in these organisms (Akashi 2001; Hirsh et al. 2005), we

focused our analyses on dN rather than x (nonetheless, anal-

yses based on x are presented on supplementary tables S14–

S18, Supplementary Material online).

In D. melanogaster, all studied parameters exhibit a signif-

icant negative correlation with dN, except protein length (sup-

plementary tables S15 and S19, Supplementary Material

online). The same patterns were observed in S. cerevisiae,

except for the facts that protein length positively correlates

with dN and duplicability does not correlate with dN (supple-

mentary tables S15 and S19, Supplementary Material online).

Similar observations were also made in C. elegans, except for

the facts that protein length positively correlates with dN and

neither closeness nor the average intron length correlates

Table 2

Spearman’s Correlations between x and 16 Parameters in the Human

Signal Transduction Network

N q P Value

Network parameters

Number of interactions 1,443 �0.111 2.44 � 10�5***

Physical protein–protein

interactions

1,443 �0.065 0.013*

Nonphysical interactions 1,443 �0.130 7.90 � 10�7***

Betweenness 1,443 �0.083 0.002**

Closeness 1,443 �0.136 2.70 � 10�7***

Expression parameters

mRNA abundance (mean for

32 tissues)

1,443 �0.171 5.75 � 10�11***

mRNA expression breadth 1,443 �0.175 2.26 � 10�11***

Protein abundance (whole body) 1,347 �0.186 5.28 � 10�12***

Protein expression breadth 1,443 �0.175 2.26 � 10�11***

Codon Adaptation Index 1,443 �0.183 2.25 � 10�12***

Compactness parameters

Protein length 1,443 0.040 0.130

50 UTR length 1,443 �0.096 2.59 � 10�4***

30 UTR length 1,443 �0.132 5.31 � 10�7***

Average intron length 1,443 �0.002 0.002**

Other parameters

Duplicability 1,443 �0.223 9.36 � 10�18***

Essentiality 1,411 �0.142 7.76 � 10�8***

*P< 0.05, **P<0.01, ***P< 0.001.

FIG. 4.—Principal component regression analysis on the human signal transduction network. For each principal component (PC), the size of the bar

represents the percent of the variability of the response variable explained by the PC. The composition of each component is represented in colors. Network

parameters are highlighted within black boxes. This analysis was restricted to the 1,254 genes for which data were available for all variables.
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with dN (supplementary tables S15 and S19, Supplementary

Material online).

In all three species, expression parameters are better corre-

lates of dN than network centrality parameters (supplemen-

tary table S19, Supplementary Material online). However, our

PCR analyses in all three species indicate a comparable effect

of network and expression parameters on rates of protein

evolution (fig. 5). For D. melanogaster, X¼ 6.71% for net-

work parameters, 9.25% for expression parameters, 6.93%

for compactness parameters, and 3.07% for other parame-

ters (fig. 5; supplementary table S16, Supplementary Material

online). For S. cerevisiae, X¼ 8.48% for network parameters,

10.27% for expression parameters, 2.07% for compactness

parameters, and 3.16% for other parameters (fig. 5; supple-

mentary table S17, Supplementary Material online). For C.

elegans, X¼ 3.10% for network parameters, 5.74% for ex-

pression parameters, 7.21% for compactness parameters,

and 2.39% for other parameters (fig. 5; supplementary table

S18, Supplementary Material online). Both dN and dS are sim-

ilarly affected by the studied factors, which might explain why

our PCR analyses explain only a small fraction of the variability

of x (fig. 5).

FIG. 5.—Principal component regression analysis on the yeast, fly, and worm protein–protein interaction networks. For each principal component (PC),

the size of the bar represents the percent of the variability of the response variable explained by the PC. The composition of each component is represented in

colors. Network parameters are highlighted within black boxes. PCR analyses were restricted to the genes for which data were available for all variables

(2,429 for yeast, 3,880 for fly, and 608 for worm).
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Discussion

We have conducted a study of the determinants of the rates

of evolution of human proteins. For that purpose, we have

used two protein–protein interaction network data sets: the

entire set of known interactions among human proteins

(Chatr-Aryamontri et al. 2015), and a data set of exceptional

quality focused on signaling proteins (Cui et al. 2007).

Correlation, partial correlation and PCR analyses show that

measures of network centrality significantly impact rates of

protein evolution, with a contribution that is comparable to

that of gene expression, or even superior according to some

of our analyses. We show that the impact of network position

on rates of protein evolution is independent of a number of

confounding factors and network biases.

The fact that similar trends have been observed in the en-

tire network data set and in the manually curated one indi-

cates that our results are not affected by errors and false

positives in the network. It should be noted, however, that

the manually curated data set (as well as the entire interac-

tome) is expected to contain false negatives (i.e., it is incom-

plete), as new interactions continue to be discovered

constantly. The incompleteness of the network may be still

limiting our analyses. Therefore, the actual correlations be-

tween proteins’ centralities and rates of evolution are

expected to be even stronger than those observed here.

Our results sharply contrast with prior observations sug-

gesting that rates of protein evolution are dominantly deter-

mined by gene expression, and that network centrality plays

only a minor role, if any (Bloom and Adami 2003; Batada et al.

2006; Drummond et al. 2006; Ingvarsson 2007; Larracuente

et al. 2008). This might be due to the fact that prior results

have mostly relied on rudimentary interactomic and other “-

omic” data sets. Network data sets grow considerably every

year (Alvarez-Ponce 2017), and technological advancements

are expected to have reduced the error rates of the interac-

tions discovered in the last years. In addition, the human

interactome is, by far, the most complete (with more inter-

actions known, followed by the yeast one (Chatr-Aryamontri

et al. 2015). Therefore, the strong correlations reported here

may have been due to the particularly high quality and/or

completeness of the data sets used.

Our PCR analyses in S. cerevisiae and D. melanogaster re-

veal similar trends in these organisms, with the impact of

network and expression parameters on rates of protein evo-

lution being comparable. Therefore, our observations do not

represent a peculiarity of the human interactome. Similar

analyses in C. elegans suggest a stronger effect of expression

parameters, and an even stronger effect of compactness

parameters. It should be noted, however, that our knowledge

of the C. elegans interactome is far behind that for S. cerevi-

siae, D. melanogaster, or human. As a result, the number of

genes that could be included in our PCR analyses in C. elegans

represents just a small fraction of the worm genome (only 608

genes in worm, vs. 2,429 in yeast, 3,880 in fly, and 11,593 in

human), and our centrality measures are expected to be poor

estimates of the actual ones.

The fraction of the variability of dN explained by our PCR

analyses (23.98% in yeast, 25.42% in fly, 18.44% in worm;

fig. 5A, D, G) is in line with the results of prior multivariate

analyses in plants (Ingvarsson 2007; Yang and Gaut 2011),

but lower than that explained by prior PCR analyses in yeasts

(Drummond et al. 2006). It should be noted, however, that

the prior analyses were based on a very small fraction of the

yeast genome (568 genes; Drummond et al. 2006), and that

the quality of the data sets is expected to have increased

dramatically in the last decade (e.g., Alvarez-Ponce 2017).

Our analysis of the signal transduction network reveals an

unexpected pattern: among the network parameters consid-

ered, closeness was the best correlate of x, followed by the

number of nonphysical interactions, betweenness and the

number of physical interactions (table 2). Indeed, the correla-

tion between x and betweenness and particularly the corre-

lation between x and the number of physical interactions,

vanish once confounding factors are corrected for (supple-

mentary table S6, Supplementary Material online). These

observations suggest that rates of protein evolution are af-

fected by the global position of proteins within the network,

rather than by surface constraints imposed by physical

protein–protein interactions. However, our results contrast

with previous analyses of entire protein–protein interaction

networks showing that x correlates better with betweenness

than with closeness or degree (Hahn and Kern 2005; Alvarez-

Ponce and Fares 2012), and that high-betweenness proteins

tend to be essential (Yu et al. 2007). A node’s betweenness is

directly linked to its potential to connect parts of the network

that would otherwise be isolated from each other. In the sig-

nal transduction network, where different pathways tend to

cross-talk via shared elements (Zielinski et al. 2009; Levy et al.

2010), one would expect betweenness to strongly correlate

with protein sequence conservation. Our PCR analysis, none-

theless, suggests a similar effect of the different measures of

network centrality on the rates of protein evolution (fig. 4).

Whether or not, and to what extent, essentiality impacts

rates of protein evolution has been a source of controversy,

and the prevailing view is that it has a minor role (Hurst and

Smith 1999; P�al et al. 2003; Drummond et al. 2006; Wang

and Zhang 2009; Luisi et al. 2015) (but see Plotkin and Fraser

2007; Alvarez-Ponce et al. 2016). Our analyses, however, in-

dicate that essentiality has a considerable impact on rates of

protein evolution. For instance, our PCR analysis using x as

dependent variable shows that the first, second, and third PCs

are composed, respectively, 6.18%, 0.03%, and 11.53% by

essentiality. Similar results were obtained from our PCR anal-

ysis using dN as dependent variable. Other parameters also

seem to play an important role (fig. 2; supplementary table

S3, Supplementary Material online).
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In summary, our results contradict the prevailing view that

rates of protein evolution are almost exclusively determined

by gene expression. Instead, our results point out to a differ-

ent scenario, in which different factors, including both gene

expression and network centrality, have an independent im-

pact on rates of protein evolution.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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