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A B S T R A C T   

Influential investigations of postmortem human brain tissue showed regional differences in tissue properties at 
early phases of development, such as between prefrontal and primary sensory cortical regions. Large-scale 
neuroimaging studies enable characterization of age-related trajectories with much denser sampling of cortical 
regions, assessment ages, and demographic variables than postmortem tissue analyses, but no single imaging 
measure perfectly captures what is measured with histology. Using publicly available data from the Pediatric 
Imaging, Neurocognition, and Genetics (PING) study, including 951 participants with ages ranging from 3 to 21 
years, we characterized cortical regional variability in developmental trajectories of multimodal brain imaging 
measures. Multivariate analyses integrated morphometric and microstructural cortical surface measures. To 
replicate foundational histological work showing delayed synapse elimination in middle frontal gyrus relative to 
primary sensory areas, we tested whether developmental trajectories differ between prefrontal and visual or 
auditory cortex. We extended this to a whole-cortex analysis of interregional differences, producing cortical 
parcellations with maximally different developmental trajectories. Consistent with the general conclusions of 
postmortem analyses, our imaging results suggest that prefrontal regions show a protracted period of greater 
developmental change; however, they also illustrate the challenges of drawing conclusions about the relative 
maturational phases of different brain regions.   

1. Introduction 

Over the course of human development, from the embryo, into 
childhood, and through adolescence, the brain is constantly changing, 
engaged in maturational processes driven and shaped by factors related 
to genetics, environment, and experience. Foundational knowledge 
about these processes in humans has been gained through morphometric 
and histochemical studies of postmortem brain tissue (Huttenlocher, 
1990; Huttenlocher and Dabholkar, 1997). Not simply a unitary phe
nomenon, brain maturation involves multiple processes, including 

dendritic and axonal growth, myelination, synaptogenesis, and synapse 
elimination, each with distinct developmental trajectories. Available 
evidence also indicates that the onset and time course of these processes 
vary substantially across the cortex (Barkovich, 1990; Becker et al., 
1984; Schade and van Groenigen, 1961; Yakovlev and Lecours, 1967). 
Axonal growth and elongation begins in the fetus and continues through 
infancy (Haynes et al., 2005). The onset of myelination ranges from 20 
to 24 post-conception (PC) weeks in the spinal cord and brainstem 
(Tanaka et al., 1995) to 25–37 PC weeks in the cerebrum (Hasegawa 
et al., 1992). The age at which myelin basic protein expression reaches 
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“mature” levels also varies regionally, with estimates ranging from 34 
PC weeks (Tanaka et al., 1995) to as late as 1 postnatal (PN) year 
(Haynes et al., 2005). Despite stabilization of protein expression pat
terns, myelination of subcortical white matter continues throughout 
childhood (Yakovlev and Lecours, 1967). Dendritic elongation occurs 
primarily during the first few years of postnatal life, with dendritic 
lengths reaching adult values earlier in visual and auditory cortex than 
in middle frontal gyrus (Becker et al., 1984; Huttenlocher and Dabhol
kar, 1997; Schade and van Groenigen, 1961). Synaptogenesis 
throughout the cerebral cortex begins in the fetus and exhibits a sharp 
increase within the first few years of postnatal life. Synapse elimination 
later leads to a gradual reduction in synaptic density, which reaches 
adult levels in late childhood or adolescence. In primary sensory areas 
such as visual and auditory cortex, peak synaptic density is achieved by 
age three months, with the reduction to adult levels complete around 
age 12 years. In contrast, a prefrontal cortical region, middle frontal 
gyrus, reaches peak synaptic density at about age 3.5, with adult levels 
not realized until age 16, according to limited postmortem human data 
(Huttenlocher, 1990; Huttenlocher and Dabholkar, 1997). 

These types of morphometric and histochemical analyses in post
mortem tissue are extremely valuable because they provide direct 
measures of tangible quantities such as dendritic length, synaptic den
sity, and myelination, none of which can be obtained from noninvasive 
human brain imaging. Data of this type is relatively sparse, however, 
both in terms of the number of samples per study as well as the number 
of cortical regions that have been directly compared. For example, in his 
highly cited study of dendritic growth and synaptic density across age, 
Huttenlocher made measurements in just 13 individuals spanning the 
ages of 28 weeks gestational age to 71 years, comparing only striate 
cortex to frontal cortex (Huttenlocher, 1990). Medical conditions and 
causes of death are not detailed for these individuals, but the author 
states that samples may be affected by “agonal illness on the tissue and 
postmortem changes.” These limitations are due to the rarity of the 
postmortem samples in the immature brain, and perhaps also the 
painstaking nature of this type of work. These studies are also likely to 
include tissue from brains that may not be the most representative of 
typical development, since some involve clinical samples. 

One reason for the lasting influence of these limited older studies 
continues to be the notable lack of more recent such empirical obser
vations being made in human postmortem tissue across different ages 
during child development. For example, studies of synaptic density 
using several methods have been conducted in typically developing 
young and older adults, adults with neuropsychiatric illness, and adults 
with HIV and epilepsy (Alonso-Nanclares et al., 2008; Everall et al., 
2006; Finnema et al., 2016; Hahn et al., 2009). One more recent study 
examined synaptic density in 42 subjects from 18 weeks gestation to 25 
years and found early childhood increases in density through early 
childhood and decreases beginning in early adolescence, similar to 
Huttenlocher (Glantz et al., 2007). However, this study only made 
measurements in prefrontal cortex, so no inter-regional differences in 
developmental trajectories could be examined. Courchesne et al. 
examined postmortem neuron numbers and sizes in seven individuals 
with autism, compared with six typically developing children, all be
tween two and 16 years old, but similarly made no comparisons with 
measures that were outside prefrontal cortex (Courchesne et al., 2011). 
Weir and colleagues characterized neural soma size, number of den
drites, and dendritic length in postmortem amygdala tissue from 16 
typically developing individuals and 16 with autism aged seven to 44 
years and modeled linear developmental increases for these morpho
logical features (Weir et al., 2018). 

Imaging-based morphometric and diffusion analyses have been 
increasingly used to probe the time course of maturational processes, 
albeit in a much more indirect way. It is assumed that maturational 
processes such as synapse elimination or myelination have effects on 
brain morphology and microstructure that are measurable using struc
tural and diffusion magnetic resonance imaging (sMRI and dMRI, 

respectively), although our understanding of the linkage between spe
cific imaging-derived measures and neurobiological variables like syn
aptic density or myelination is not direct, precise, or complete. For 
example, though fractional anisotropy (FA) is affected by myelination 
and is often used as an imaging marker of myelination, other factors, 
such as axon diameter, neurite density, or the presence of crossing fibers, 
also contribute to variation in FA. Each imaging-derived measure likely 
reflects a unique mixture of maturing neurobiological processes. 

Changes observed in human imaging, such as the apparent pro
gressive thinning of cortical gray matter or increases in FA of white 
matter are unlikely to reflect a single, unitary neurobiological mecha
nism of maturation, so the use of individual measures (e.g., cortical 
thickness, FA, T2-weighted signal intensity) likely provides an incom
plete picture of the maturational processes in a given brain region. 
Indeed, when examined in isolation, the measures that can be derived 
from sMRI and dMRI for various subcortical and cortical regions of in
terest (ROIs) display variable rates of change over the course of devel
opment, with different measures and regions explaining the greatest 
variability in developmental phase at different periods of development 
(Brown et al., 2012; Fjell et al., 2012; Giedd and Rapoport, 2010; Mills 
et al., 2016; Tamnes et al., 2010; Walhovd et al., 2012; Westlye et al., 
2010; Wierenga et al., 2018). For example, total cortical surface area 
increases during early childhood and then gradually declines 
throughout adolescence. In contrast, average cortical thickness mono
tonically decreases throughout both periods (Brown et al., 2012; Wier
enga et al., 2014). In fact, even imaging measures that seem relatively 
straightforward to interpret and relate to the underlying neurobiology, 
such as cortical thickness, have been shown to be highly inconsistent 
and unreliable in their purported developmental trajectories, under
scoring the need to continue to validate findings from imaging with 
other non-imaging neuroscientific measures and methods (Walhovd 
et al., 2016). Diffusion-derived measures in long-range white matter 
tracts also undergo great changes during this time, with FA generally 
increasing and mean diffusivity (MD) generally decreasing with age 
(Barkovich, 1990; Dubois et al., 2014; Lebel and Deoni, 2018; Lebel 
et al., 2019; Salamon, 1990; Wolpar and Barnes, 1992). In contrast to the 
long-range white matter tracts, less is known about the developmental 
changes in the short-range U-fibers that underlie cortical gray matter, 
often referred to as pericortical white matter. Differences among 
imaging-derived measures in the shapes of developmental trajectories 
within these areas presumably reflect the contributions of multiple 
maturational processes, such as myelination, dendritic arborization, and 
synaptic pruning. Studies that quantitatively aggregate across multiple 
imaging measures, thereby capturing these different types of signals in 
the changing neurobiology, should provide a more complete metric of 
developmental differences and trajectories across different regions, 
allowing a fairer comparison with these classic, highly cited histological 
studies. Given how influential even these older studies still are in the 
field, it is important that their specific findings and interpretations be 
evaluated by modern means. For example, Huttenlocher and Dabhol
kar’s study from 1997 has been cited 3413 times since its original 
publication and was cited 197 times in 2021 (Google Scholar metrics), 

Based on the relatively prolonged maturation of behavioral measures 
of executive functions through adolescence, and multiple lines and types 
of evidence showing the central role of prefrontal cortex in executive 
cognitive processes, prefrontal cortex is commonly thought to complete 
its development later than posterior cortical regions (Akshoomoff et al., 
2018; Klenberg et al., 2001; Korkman et al., 2001, 2013; Welsh et al., 
1991; Willoughby et al., 2012). Direct, non-imaging evidence of delayed 
neuronal maturation in human prefrontal regions comes from the work 
of Huttenlocher and colleagues, who showed that onsets of both syn
aptogenesis and synapse elimination are delayed in specific areas of the 
middle frontal gyrus (MFG) relative to primary sensory areas visual and 
auditory cortex (Huttenlocher, 1990; Huttenlocher and Dabholkar, 
1997). In light of this and other work, one would expect to find differ
ences in the developmental trajectories of MRI-derived measures for 
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these specific regions within prefrontal cortex relative to either primary 
visual or primary auditory cortex. Guided anatomically by these most 
direct available measures of human neuronal developmental differ
ences, we wanted to use an aggregate collection of imaging measures 
derived from currently available modalities and types to examine the 
same areas within prefrontal and primary sensory cortex and test 
whether, with these measures, they exhibit different rates of maturation 
across early childhood. Specifically, we wanted to test whether pre
frontal regions show delayed development relative to sensory areas, as 
was the primary interpretation of the histological studies, using the 
histological results and locations as the starting point for imaging 
comparisons. A major goal was to use these multiple sources of infor
mation about features and tissue properties to get past the limitations of 
plotting trajectories using only individual imaging measures, as the vast 
majority of previous studies have done. Such a comparison would serve 
as an informative, targeted validation of some of the most highly 
influential papers in developmental cognitive neuroscience, despite 
being based on such limited data sets. Comparisons in developmental 
trajectories guided by localized cellular results also might have greater 
neurobiological interpretive leverage than if locations were based on 
imaging studies alone. For example, developmentally accelerated 
apparent cortical gray matter thinning during adolescence in these re
gions may be driven at least in part by synapse elimination. In general, 
inter-regional differences in the shapes of the developmental trajectories 
of MRI-derived measures are likely to be manifestations of variation in 
the time course of maturational processes. 

Certainly, some of the advantages of imaging studies over postmor
tem histological studies are the potential for much larger sample sizes, 
data from across the entire brain for comprehensive inter-regional 
comparisons, and the availability of spatially aligned cortical surface- 
based mapping approaches. Using publicly available data from the Pe
diatric Imaging, Neurocognition, and Genetics (PING) study, we 
implemented this approach and examined cortical, inter-regional vari
ation in developmental trajectories of measures derived from multi
modal brain imaging (Jernigan et al., 2016). These data were acquired 
from healthy children between the ages of 3 and 21, and developmental 
trajectories are inferred from cross-sectional analyses of the entire 
sample, controlling for key demographic variables. Measures derived 
from sMRI included cortical thickness, cortical surface area, sulcal 
depth, and T1-weighted signal intensity (T1w). Measures derived from 
dMRI included FA, MD, longitudinal diffusivity (LD), transverse diffu
sivity (TD), and T2-weighted signal (T2w), each sampled onto the 
cortical gray matter and pericortical white matter. Using this multi
modal, multidimensional imaging approach, we established a test for 
aggregate variability across cortical regions in developmental trajec
tories. We tested main hypotheses derived from the well-known post
mortem studies about maturational differences between specific regions 
(e.g., primary sensory cortex and middle frontal gyrus), and we pro
duced new empirically derived whole-cortex maps of interregional 
similarity and difference based on the trajectories of development. 

Maturational processes occurring at the cellular level in cerebral 
cortex, such as changes in synaptic or axonal density, are presumably 
reflected to varying degrees in the developmental trajectories of 
imaging-derived measures related to cortical morphology and micro
structure. An examination of regional variability of these putative 
maturational biomarkers, using several available imaging measures 
altogether instead of just one, could reveal whether some cortical re
gions reach a relatively mature aggregate state at an earlier age, such as 
in early adolescence, while others such as prefrontal cortex continue to 
mature into adulthood, as is commonly believed. The ability to examine 
developmental trajectories as multimodal statistical aggregates may 
help to get around the limitations of using only individual imaging 
measures in seeking to verify cell-level developmental differences, as 
most previous imaging studies have done. If prefrontal cortex matures 
relatively late, as the prolonged maturation of executive functions in 
adolescence strongly suggests and as a handful of human histochemical 

studies suggest, measures of prefrontal tissue properties from multi
modal neuroimaging should support this contention, as compared to 
other brain regions. 

2. Materials and methods 

2.1. PING data repository 

Data used for this study were obtained from the PING repository 
(https://www.nitrc.org/projects/ping), a publicly shared data resource 
comprising standardized assessments of behavioral, neuroimaging and 
genetic variables in typically developing children, adolescents and 
young adults (Jernigan et al., 2016). A code repository containing R and 
matlab code used in analyses described below has been made publicly 
available (https://github.com/djhagler/multivar-devel). 

Data were collected at nine sites across the United States, with a total 
of 1493 participants with ages ranging from 3 to 21 years. Adult par
ticipants gave informed consent, and parental informed consent and 
subject assent, when appropriate, were obtained for participants under 
age 18. The human research protections programs and institutional re
view boards at participating institutions approved all experimental and 
consenting procedures. Participants were excluded based on medical 
conditions affecting development, including neurological disorders, 
head trauma, preterm birth (less than 36 weeks gestational age), severe 
psychiatric diagnosis (autism spectrum, schizophrenia, or bipolar dis
orders), mental retardation, or daily illicit drug use of the mother during 
pregnancy. Participants were also excluded if MRI was not indicated; for 
example, metallic or electronic implants, claustrophobia, or pregnancy. 
Complete sample characteristics and screening methods are described in 
Jernigan et al. (2016). Of the 1493 participants available in the PING 
repository, data from 951 were included in the currently described an
alyses (461 females, mean age = 12.0 years, SD = 4.9; ages 3–6: n = 112, 
ages 6–9: n = 179, ages 9–12: n = 206, ages 12–15: n = 156, ages 15–17: 
n = 148, ages 18–21: n = 150), after excluding participants lacking 
either sMRI or dMRI data (207 participants), that were unable to be fully 
processed1 (98 participants), that did not pass post-processing quality 
control for either modality (122 participants), or were lacking values 
used as covariates (115 participants without age, sex, socio-economic 
status, or genetic ancestry factors). 

2.2. Imaging data acquisition 

A standardized multimodal MRI data acquisition protocol was used 
on 12 different 3 T scanners (GE, Siemens, and Philips) across the 9 sites, 
details of which have been described previously (Jernigan et al., 2016). 
Briefly, imaging sessions included 3D T1-weighted (T1w) and a high 
angular resolution diffusion imaging (HARDI) dMRI scan. Important 
features of the PING MRI protocol included prospective motion correc
tion (PROMO) for structural scans (Brown et al., 2010; Kuperman et al., 
2011; White et al., 2010), and calibration scans to map B0 distortion 
fields for dMRI scans (Holland et al., 2010). The sagittal T1w scans had 
voxel sizes of 1 × 1×1.2 mm. The axial 2D EPI dMRI scans had voxel 
sizes of 2.5 × 2.5 × 2.5 mm, a single b= 0 vol, and 30 (for GE and 
Siemens scanners) or 32 (for Philips scanners) diffusion gradient di
rections with b= 1000 s/mm2. T1w and dMRI scans were collected for 
1286 participants. Additional scans collected for most PING partici
pants, but not used in the current study, were resting-state fMRI and 3D 
T2-weighted scans (n = 823 participants with fMRI and n = 970 with 3D 
T2-weighted). 

1 In these 98 imaging sessions, slightly different slice prescriptions were used 
for the pair of field map scans used to correct B0 distortion in dMRI data and 
processing was aborted to prevent invalid distortion correction due to mis
matched slices prescriptions. 
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2.3. Data processing 

Image processing for the PING MRI dataset has been described pre
viously (Jernigan et al., 2016). Standard processing and analysis steps 
relevant to the current study will be briefly summarized. Structural MRI 
preprocessing included gradient nonlinearity distortion correction 
(Jovicich et al., 2006), non-uniform intensity normalization (Sled et al., 
1998), and resampling into alignment with an atlas brain with 1 mm 
isotropic voxels. Cortical surface reconstructions were created using 
FreeSurfer version 5.3.0 (Fischl, 2012), a process involving skull strip
ping (Segonne et al., 2004), non-uniformity correction (Sled et al., 
1998), white matter segmentation, initial mesh creation (Dale et al., 
1999), correction of topological defects (Segonne et al., 2007), and 
generation of optimal white and pial surfaces (Dale et al., 1999; Dale and 
Sereno, 1993; Fischl et al., 1999). 

Measures extracted from the cortical surface reconstructions 
included cortical thickness (Dale et al., 2000), cortical area (Chen et al., 
2012), and sulcal depth (Fischl et al., 1999). Cortical area was calculated 
from the white matter surface; i.e., the surface mesh reconstructing the 
boundary between cortical white and gray matter. Normalized T1w 
intensity values were derived from the “nu.mgz” volume produced by 
FreeSurfer, which is the result of non-uniformity correction and global 
normalization so that white matter intensity values are ~110, on a scale 
from 0 to 255. For convenience, intensity values were again normalized 
to range from 0 to 1 by dividing values by 255. The normalized T1w 
intensity values were resampled into the same voxel-space as the dMRI 
data and then sampled to the cortical surface as described below for 
dMRI-derived measures. 

Diffusion MRI preprocessing included B0 distortion correction using 
the reversing gradient method (Holland et al., 2010), gradient nonlin
earity distortion correction (Jovicich et al., 2006), eddy current distor
tion correction (Hagler et al., 2009; Zhuang et al., 2006), motion 
correction (Hagler et al., 2009), and resampling into rigid-body align
ment with an atlas brain with 2 mm isotropic voxels (Hagler et al., 
2009). Diffusion tensor imaging (DTI) methods were used to calculate 
measures related to microstructural tissue properties (Basser et al., 
1994; Basser and Pierpaoli, 1996), including fractional anisotropy (FA), 
and mean, longitudinal, and transverse diffusivity (MD, LD, and TD). 
Rather than use the 3D T2-weighted images, which were collected in 
about 75% of the participants with T1w and dMRI scans, T2-weighted 
intensity (T2w) was calculated from the average of the dMRI b= 0 im
ages. To account for intensity variation due to scanner gain settings, T2w 
images were normalized for each subject. The slope between MD and 
b= 0 intensity values, estimated using all brain voxels, was used to scale 
the T2w images (Jernigan et al., 2016), with an additional multiplica
tion factor of 1000, resulting in brain voxel values around 1, with units 
of 10− 3 mm2/s. DTI-derived measures were sampled onto the 
FreeSurfer-derived cortical surface mesh in order to make maps of 
diffusion properties for cortical gray matter and white matter adjacent to 
the cortex (Govindan et al., 2013; Kang et al., 2012). Values were 
sampled perpendicular to the gray/white boundary surface in 0.2 mm 
increments, ranging from 0.8 mm to 2 mm in both directions. White and 
gray matter values were calculated by combining samples within type 
using a weighted average based on the proportion of white or gray 
matter in each voxel (Elman et al., 2017). The same approach was used 
to sample T1w and T2w intensity values to the cortical surface, with 
T1w intensity volumes being first resampled into the same voxel-space 
as the DTI measures. 

2.4. Quality control 

Quality control (QC) procedures for the PING MRI dataset have been 
described in detail previously (Jernigan et al., 2016). Images were 
automatically checked for completeness and protocol compliance after 
upload to the PING Neuroimaging Core from the imaging sites. Within 
24 h, unprocessed images were visually inspected and given quality 

ratings to indicate usability. T1-weighted images were examined for 
signs of excessive motion, such as severe ghosting, blurring, or ringing 
that would make accurate brain segmentation impossible. 
Diffusion-weighted images were examined for poor image quality or 
other artifacts (e.g., severe magnetic susceptibility artifact). dMRI ac
quisitions with five or more slices exhibiting significant motion-related 
artifacts (e.g., loss of signal) were rated as unacceptable. If imaging data 
were rated as unacceptable, subjects were rescanned if possible and 
excluded from further analysis if rescanning was not possible (n = 1294 
participants with imaging data acquired, n = 1291 participants with 
acceptable T1w data, n = 1288 participants with acceptable dMRI data, 
n = 3 participants with no acceptable imaging data). Processed imaging 
data were also reviewed for each participant, including subcortical 
volumetric segmentations, cortical areal parcellations, and white and 
pial surface reconstructions. Each segmentation type was inspected and 
rated as acceptable or not. DTI-derived FA images were reviewed for 
accuracy of registration to the T1w volume and image quality issues (e. 
g., high noise, motion artifacts, warping, etc.). No manual interventions, 
such as editing of white matter segmentation or manual registration of 
DTI to T1w, were performed. Only participants with acceptable cortical 
surface reconstructions (n = 1252 of 1290, or 97%) and DTI results (n =
1093 of 1187 fully processed, or 92%) were included in the current 
analyses (see Supp. Fig. 1 for a flow-chart depiction of QC-related 
exclusions). 

2.5. Regions of interest analysis 

We selected cortical regions that, based on the cellular histochemical 
work of Huttenlocher and colleagues, are predicted to exhibit large 
differences in the developmental trajectories of cortical maturation. 
Cortical regions of interest (ROIs) were specified using FreeSurfer’s 
atlas-based, cortical parcellation (Desikan et al., 2006; Fig. 1A). ROIs 
included primary visual cortex (pericalcarine) and primary auditory 
cortex (Heshl’s gyrus), two sensory areas sampled in cellular studies and 
thought to mature early, as compared with middle frontal gyrus areas in 
the same studies. Because the standard FreeSurfer cortical parcellation 
includes caudal and rostral subdivisions of the middle frontal gyrus, and 
the cellular reported results without a coordinate system, we included 
both ROIs in separate analyses. For each ROI, we calculated averages of 
several cortical surface-based, neuroimaging measures derived from 
morphometric and microstructural analyses. 

2.6. Univariate regressions 

We used linear regression analyses to investigate differences in 
developmental trajectories between each pair of ROIs and between all 
pairs of points on the cortical surface. We calculated within-subject 
differences between locations for each of several sMRI- and dMRI- 
derived, cortical surface-based measures. Specific sMRI measures 
included cortical surface area, thickness, sulcal depth, and T1w sampled 
in both cortical gray and pericortical white matter. dMRI measures, 
sampled in gray and white matter, included FA, MD, LD, TD, and T2w. 

Separately for each measure, we modeled quadratic functions of age 
for the pairwise differences between locations using the lm function 
(linear model) in R version 2.1.5 (Team, 2012). A likelihood ratio test 
was performed using the anova function (analysis of variance) in R to 
compare baseline vs. full models (Neyman and Pearson, 1933). The 
baseline model included scanner, sex, household income, parental ed
ucation, and genetic ancestry factors (GAF) –genetically derived mea
sures of ethnic ancestry (Jernigan et al., 2016). The full model included 
those baseline regressors plus age and age-squared, with age defined as 
age in years relative (by subtraction) to the minimum age of the sample 
(three years). F-statistics were reported as measures of the dissimilarity 
between the two cortical locations, for a given cortical measure, in the 
relationship with age expressed as a quadratic function. 

The p-values reported in Supp. Tables 1, 2, 5, and 6 were corrected 
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for multiple comparisons using the Bonferroni method (Bonferroni, 
1936) in which the p-value is multiplied by the number of tests (set to 1 
if greater than 1). Since we report p-values for both intercept and “trend” 
(age + age2), we corrected for the total number of tests in each set of 
inter-regional comparisons (i.e., 2 x number of ROI-ROI pairs x number 
of measures). With N = 951, the degrees of freedom for the F statistic of 
the full linear mixed effects models were 23 and 928. 

2.7. Multivariate regression 

Multivariate regression was used to test for differences in multimodal 
developmental trajectories between all pairs of ROIs and all pairs of 
points on the cortical surface. Multivariate regression allows for simul
taneous estimation of the effects of independent variables on multiple 
outcome variables. Here, the multiple outcomes were the pairwise dif
ferences between each location’s multimodal assessments (see Univari
ate Regressions). MD was excluded from the multivariate analysis 

because it is a linear combination of LD and TD. We tested nested 
multivariate regression models using the manova function (multivariate 
analysis of variance) in R. A likelihood ratio test was performed using 
the anova function in R to compare the two models. As with the uni
variate analyses described above, the baseline model included scanner, 
sex, household income, parental education, and GAF. The full model 
included these baseline regressors as well as age and age-squared 
(relative to age 3). The F-statistic associated with the Pillai’s trace 
(Pillai, 1955) was reported as a measure of the dissimilarity between the 
two cortical locations in their multivariate relationship with age 
expressed as a quadratic function. The p-values reported in Table 3 and 
Supp. Table 7 were corrected for multiple comparisons using the Bon
ferroni method, with the number of tests equal to the number of ROI-ROI 
comparisons. 

Fig. 1. Developmental trajectories of imaging-derived measures in anatomically defined cortical regions. A. Selected cortical regions of interest are labeled on 
inflated surfaces of right hemisphere; medial view on left, lateral view on right. B - G. Spline fits and 95% confidence intervals for each ROI, plotted relative to values 
at age 3. B. cortical thickness (mm). C. area (mm2 / vertex). D. sulcal depth (unitless). E. T1w in pericortical white matter (wm) (arbitrary units: AU). F. T1w in 
cortical gray matter (gm; AU). G. T2w wm (10− 3 mm2/s). H. T2w gm (10− 3 mm2/s). I. FA wm (unitless). J. FA gm (unitless). K. LD wm (mm2/s). L. LD gm (mm2/s). 
M. TD wm (mm2/s). N. TD gm (mm2/s). Sulcal depth and FA are unitless ratios that range from 0 to 1 by definition. T1w intensity values were normalized for each 
participant to remove scan-specific, whole brain intensity variation, resulting in arbitrary intensity units ranging from 0 to 1. T2w intensity values were normalized 
using a global fit between b= 0 intensities and MD values in the brain and multiplied by 1000, resulting in wm values around 1. 
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2.8. Cortical parcellation with fuzzy clusters 

Surface-based maps for each measure were sampled to the FreeSurfer 
atlas (Fischl et al., 1999) and smoothed along the cortical surface with a 
smoothing kernel equivalent to 40 mm full width half max (FWHM) 
(Hagler et al., 2006). The univariate and multivariate regression 
methods described above were then performed for each pair-wise 
combination of cortical surface vertices. To reduce the computational 
burden, surface maps were down-sampled (after smoothing) to a mesh 
with 2562 vertices per hemisphere (rather than 163842), resulting in 
~7 mm spacing between vertices. For either a single measure or mul
tiple measures, we computed F-statistics for the combined effect of age 
and age squared of the within-subject differences between each pair of 
points. The F-statistics were arranged into a square matrix with the 
number of rows equal to the number of vertices across both hemi
spheres, excluding vertices not labeled as cortex (4661). This forms a 
cortico-cortical “distance” matrix, representing either the univariate or 
multivariate dissimilarity in developmental trajectories. This distance 
matrix was used as input to a fuzzy clustering algorithm (Kaufman and 
Rousseeuw, 1990) – implemented in the fanny function in the R cluster 
package (Maechler et al., 2012) – that produced cluster membership 
scores for each vertex. Cluster membership scores were resampled back 
to the high-resolution mesh for display purposes, with 10 steps of sparse 
smoothing followed by 10 steps of conventional iterative smoothing. To 
determine the appropriate number of clusters, silhouette values were 
calculated after forming different numbers of fuzzy clusters, ranging 
from 2 to 10 clusters. Higher silhouette values are associated with 
greater differences between clusters than within clusters (Rousseeuw, 
1987). An additional parameter of the fuzzy clustering algorithm, called 
the membership exponent (ME), determines the degree of overlap be
tween clusters. ME values are required to be a number between 1 and 2. 
Sub-optimal values may prevent convergence of the algorithm for some 
numbers of clusters, so an array of values between 1 and 2 at 0.05 in
crements were tested; the ME value was chosen from those that provided 
solutions for each number of clusters between 2 and 10. For univariate 
clustering, ME was 1.25, and for multivariate clustering, ME was 1.2. 

2.9. Smooth curve fitting 

Imaging-derived measures, averaged within predefined ROIs or 
within the data-driven fuzzy cluster ROIs, were plotted as a smooth 
function of age. B-splines basis functions were used within the fda 
package of R (version 3.3.1) to smooth the ROI-averaged, imaging- 
derived measures across age (Ramsay et al., 2014). B-splines basis 
functions are piecewise-polynomial functions of bounded range, often 
used for smoothing non-periodic data. Each fit was comprised of four 
fifth-order B-splines. 95% confidence intervals were calculated through 
bootstrapping (1000 samples with replacement). Spline fits were 
calculated as a function of age, after regressing out covariates scanner, 
sex, household income, parental education, and GAF (Jernigan et al., 
2016). 

3. Results 

3.1. Multimodal developmental trajectories in regions from histology 
studies 

We visualized the cross-sectionally derived developmental trajec
tories (i.e., inferred trajectories) for each ROI and measure as a smooth 
function of age, using B-spline fits and bootstrap resampling to calculate 
95% confidence intervals for the estimated age-dependent mean 
(Fig. 1B–N). To highlight differences in the sampled age range, the value 
of the spline fit at age 3 was subtracted from the values plotted; how
ever, there were large differences between regions for several measures 
at that age (Supp. Fig. 2). In general, we observed marked differences 
among ROIs in the age-dependent spline fits. For example, whereas in 

primary visual cortex, cortical thickness decreased rapidly between ages 
3 and 7 and then decreased more slowly between ages 10 and 21, caudal 
middle frontal gyrus (cMFG) exhibited slow cortical thinning in early 
childhood and then accelerated thinning during adolescence (Fig. 1B). 
For both primary auditory cortex and rostral middle frontal gyrus 
(rMFG), thickness decreased at an intermediate rate in early childhood 
and an accelerated rate in adolescence. Visual cortex also differed 
strongly from cMFG and rMFG in the developmental trends of LD, TD, 
and T2w in both gray matter and underlying white matter (Fig. 1G-H, K- 
N). 

As a statistical test of the difference between two ROIs for a given 
measure, we calculated within-subject, pairwise differences for each 
combination of ROIs, and then used univariate linear regression to fit a 
quadratic function of age to those pairwise differences. We derived es
timates of the differences at age 3 (intercept) and the combined effect of 
age and age-squared (between ages 3 and 21; Tables 1 and 2, Supp. 
Tables 1 and 2, Supp. Fig. 3; see Univariate Regressions). To test for 
aggregate differences between each pair of ROIs, we used multivariate 
regression on the pairwise differences between ROIs, producing F-sta
tistics that reflect how different two regions of cortex are from each 
other with respect to age-related, developmental trajectories across 
multiple measures (Table 3; see Multivariate Regression). Using this 
approach, we found statistically significant differences between each 
pair combination of the four ROIs. 

3.2. Cortical parcellation based on vertex-wise multimodal developmental 
trajectories 

We then extended the analyses of developmental trajectories within 
specific prefrontal regions, as compared to primary visual and auditory 
cortex, that were driven by studies of direct neuronal measures to an 
empirical analysis of inter-regional variability in trajectories across the 
entire cortical surface, using parcellations from a data-driven, fuzzy 
clustering approach (see Cortical Parcellation with Fuzzy Clusters). Cluster 
membership was determined so as to minimize differences within clus
ters while maximizing differences in developmental trajectories be
tween clusters. For single measures and the combination of multiple 
measures, we generated fuzzy cluster solutions for varying numbers of 
clusters, ranging from 2 to 10, and we used the corresponding silhouette 
values to determine the number of clusters supported by the data. The 
shape of the silhouette plots varied between the individual measures 
(Fig. 2). For thickness, the silhouette value was highest for three clusters 
(Fig. 2A). For all other measures, peak silhouette value was highest for 
two clusters. In general, cluster membership was remarkably symmetric 

Table 1 
Effect sizes (Cohen’s d) of the intercepts of inter-regional differences in imaging 
measures (at age 3) for selected anatomically defined cortical regions. * in
dicates inter-regional differences with p < 0.05, with Bonferroni correction for 
multiple comparisons.  

ROI A VC VC VC cMFG cMFG rMFG 

ROI B cMFG rMFG AC rMFG AC AC 

FA gm -0.1 -0.1 -0.2 * -0.1 -0.1 * -0.1 
FA wm -0.4 * -0.4 * -0.2 * 0.1 0.1 0.0 
MD gm 0.0 0.0 -0.1 0.0 -0.1 -0.1 
MD wm 0.0 0.0 0.0 0.0 0.0 0.0 
LD gm 0.0 0.0 -0.1 0.0 -0.1 * -0.1 
LD wm -0.2 * -0.2 * -0.1 0.0 0.1 0.1 
TD gm 0.0 0.0 0.0 0.1 -0.1 -0.1 
TD wm 0.1 0.1 0.1 0.0 0.0 0.0 
T1w gm 0.5 * 0.3 * -0.4 * -0.2 * -1.0 * -0.6 * 
T1w wm 0.0 0.1 -0.3 * 0.1 -0.4 * -0.4 * 
T2w gm -0.2 * -0.2 * -0.3 * -0.1 -0.1 0.0 
T2w wm -0.1 -0.1 -0.2 * -0.1 * -0.2 * -0.1 
area 0.1 0.0 0.2 * -0.1 * 0.2 * 0.3 * 
thickness -0.4 * -0.5 * -0.6 * -0.2 * -0.3 * -0.2 * 
sulcal depth 0.0 0.4 * -0.5 * 0.5 * -0.7 * -1.1 *  
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across hemispheres. Despite similarity of the two-cluster solutions for 
some of the measures, there was not a strong consensus overall in the 
cortical subdivisions across measures (Fig. 2B–M). 

For clusters derived from multivariate analysis, silhouette values 
were maximal for six clusters, with another local maximum for two 
clusters (Fig. 3A). The distributed nature of the six-cluster solution 
makes it difficult to assign them names that are both succinct and 
anatomically accurate, so we have instead given them arbitrary cluster 
numbers. These clusters can be described anatomically as follows: 1) 
medial prefrontal cortex and frontal pole; 2) cingulate cortex and 
anterior medial occipital cortex; 3) prefrontal, superior temporal, infe
rior parietal, and medial parietal cortex; 4) central sulcus, precentral 
sulcus, and medial superior frontal cortex; 5) occipital and parietal 
cortex; and 6) temporal cortex. For the two-cluster solution, the first 
cluster had substantial overlap with clusters 1, 3, and 6 from the six- 
cluster solution, and the second cluster overlapped with clusters 2, 4, 
and 5 (Fig. 3B, C). To validate the generalizability of the six-cluster 
solution, we randomly split the sample into two halves and repeated 
the distance matrix calculations and determination of cluster member
ship. The two independent solutions were nearly identical (Supp. 
Fig. 2A, B). The split-half analysis was carried out for ten iterations, and 
the similarity of the six-cluster solutions for the randomly split two 
halves was assessed by calculating the adjusted Rand index (ARI), a 
corrected-for-chance measure of similarity between parcellations 
(Hubert and Arabie, 1985; Rand, 1971). ARI values greater than 0 imply 
better-than-chance similarity. Values close to 1 (the maximum possible 
ARI), imply highly consistent parcellations. Across the ten iterations, 
ARI ranged from 0.56 to 0.82, with a mean value of 0.73 and a standard 
deviation of 0.09. We conducted a similar analysis with the subsets of 

male and female participants, and again the cluster solutions were very 
similar (Supp. Fig. 2C, D), with an ARI of 0.73. 

3.3. Multimodal developmental trajectories of data-driven fuzzy clusters 

We characterized how the developmental trajectories of the various 
imaging-derived measures differed between these distributed, fuzzy 
clusters. Within each subject, and for each cluster, we calculated 
weighted averages (weighted by the fuzzy cluster membership values, 
which range from 0 to 1) of each imaging-derived measure. We used 
univariate regression to estimate the intercept of the differences and the 
combined effect of age and age squared (between ages 3 and 21). In 
general, there were several significant differences between clusters in a 
number of imaging-derived measures for both intercept and age-related 
trajectories (Supp. Tables 3–7). Differences in age-dependent means 
were expected, given that the parcellation method was driven by a 
multivariate regression of age-related differences. To visualize these 
differences, we plotted the cluster-wise average values as a function of 
age for the two-cluster (Fig. 4 with age 3 adjusted values, Supp. Fig. 5 
with unadjusted values) and six-cluster solutions (Fig. 5 with age 3 
adjusted values, Supp. Fig. 6 with unadjusted values). We used smooth 
spline fits to describe the cross-sectional, developmental trajectories and 
bootstrap resampling to calculate 95% confidence intervals for the 
estimated mean as a function of age. To provide a simplified view of 
these results, we also plotted a summary of the cross-sectional changes 
for each cluster of the two- and six-cluster solutions (Supp. Fig. 7). 

We found striking differences between the six clusters in the cross- 
sectional, developmental trajectories of measures derived from 
morphometric analysis of sMRI data as well as dMRI-derived and sMRI 
intensity measures for both pericortical white matter and cortical gray 
matter (Fig. 5). Cluster 1 differed noticeably from the others based on 
the trajectories of multiple measures. Cortical thickness appeared to 
decrease sharply in early childhood and adolescence, contrasting with 
more gradual decreases in the other clusters. Cluster 1 exhibited a slight 
increase in cortical surface area in early childhood that reversed direc
tion later, whereas clusters 4 and 5 both had a steeper surface area 
decrease across the age range. Trajectories for cluster 1 also differed for 
FA and TD in white matter, with very gradual increases or decreases, 
respectively, across the age range. In contrast, clusters 4 and 5 had 
steeper, more nonlinear increases in FA and decreases in TD. In general, 
trajectories of white matter diffusivity varied between clusters, but in 
ways that were not consistent between LD and TD. For example, whereas 
cluster 1 had the shallowest decrease in TD and cluster 4 had the 
steepest, their trajectories for LD were relatively similar. In gray matter, 
LD and TD trajectories were very similar to each other. The develop
mental trajectories of cluster 5 were most distinct, being relatively flat 
until about age 12, after which there was a steep increase in both LD and 
TD. The other clusters, in contrast, exhibited slight decreases in gray 
matter diffusivity before age 12 with modest increases thereafter. Gray 
matter T2w also differed between clusters, with the steepest decrease for 
cluster 6 and shallowest decrease for cluster 5. To illustrate the variation 
of trajectories within clusters, we also plotted trajectories for individual 
vertices within each cluster (Supp. Fig. 8). 

The cortico-cortical “distance” metric used to inform the fuzzy 
clustering algorithm was based solely on the multivariate relationship 
with age, and not the static, age-independent differences between 
cortical locations. Nonetheless, there were substantial differences be
tween regions at the youngest ages sampled for several measures, 
including thickness, sulcal depth, white matter and gray matter FA, and 
white matter LD (Supp. Fig. 6, Supp. Table 3). For example, initial 
cortical thickness was greatest for clusters 1 and 6 and least for cluster 5. 
There did not appear to be a consistent relationship between sulcal 
depth and cortical thickness. For example, clusters 5 and 6 had similar 
sulcal depth values but maximally-different thickness values at age 3. 
Initial values of white matter LD and TD varied between clusters, but in 
ways that were not consistent between LD and TD. For example, cluster 

Table 2 
F-statistics for the trend of inter-regional differences in imaging measures with 
respect to age and age squared for selected anatomically defined cortical re
gions. * indicates inter-regional differences with p < 0.05, with Bonferroni 
correction for multiple comparisons.  

ROI A VC VC VC cMFG cMFG rMFG 

ROI B cMFG rMFG AC rMFG AC AC 

FA gm 2.6 15.2 * 0.6 14.3 * 4.6 13.9 * 
FA wm 14.6 * 10.8 * 5.1 80.5 * 3.4 18.3 * 
MD gm 90.2 * 22.9 * 36.7 * 94.7 * 18.5 * 12.4 * 
MD wm 131.3 * 39.2 * 86.5 * 111.7 * 10.4 * 24.5 * 
LD gm 114.3 * 31.3 * 46.4 * 44.8 * 20.9 * 7.1 
LD wm 108.3 * 63.7 * 56.3 * 29.3 * 5.2 6.7 
TD gm 73.9 * 16.7 * 30.2 * 115.7 * 15.4 * 14.4 * 
TD wm 117.7 * 21.7 * 61.9 * 143.7 * 7.4 25.6 * 
T1w gm 75.2 * 0.6 18.9 * 60.1 * 9.1 * 10.2 * 
T1w wm 6.3 12.4 * 2.0 3.1 1.9 4.6 
T2w gm 71.7 * 28.6 * 34.0 * 34.9 * 15.0 * 7.5 
T2w wm 78.7 * 56.3 * 109.8 * 10.8 * 0.6 5.8 
area 1.6 2.8 0.1 18.7 * 1.3 3.9 
thickness 37.7 * 62.1 * 12.9 * 239.0 * 25.1 * 16.9 * 
sulcal depth 7.9 6.0 38.5 * 11.2 * 30.0 * 61.6 *  

Table 3 
Multivariate statistics for the trend of inter-regional differences in imaging 
measures with respect to age and age squared for selected anatomically defined 
cortical regions. F-statistic associated with Pillai’s trace from likelihood ratio 
test of MANOVAs (with 951 participants and 13 imaging measures). p-values 
corrected for multiple comparisons with Bonferroni method, with the number of 
tests equal to the number of ROI-ROI comparisons (i.e., 6).  

ROI A ROI B F-statistic p-value 

VC cMFG  23.9 2.7E-108 
VC rMFG  19.9 3.4E-90 
VC AC  19.0 1.3E-85 
cMFG rMFG  34.3 8.7E-153 
cMFG AC  12.9 3.1E-56 
rMFG AC  16.0 1.1E-71  
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Fig. 2. Fuzzy cluster parcellations derived 
from univariate inter-regional differences 
in developmental trajectories. Silhouette 
values for a given imaging-derived mea
sure, plotted as a function of the number of 
clusters, are shown next to inflated surfaces 
of left and right hemispheres, with lateral 
views above and medial views below. A. 
cortical thickness. B. cortical area. C. sulcal 
depth. D. T1w in pericortical white matter 
(wm). E. T1w in cortical gray matter (gm). 
F. T2w wm. G. T2w gm. H. FA wm. I. FA 
gm. J. LD wm. K. LD gm. L. TD wm. M. TD 
gm.   
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Fig. 3. Fuzzy cluster parcellations derived from multivariate inter-regional differences in developmental trajectories. A. Silhouette values plotted as a function of the 
number of clusters for multivariate analysis. B. Two-cluster multivariate parcellation. C. Six-cluster multivariate parcellation. 

Fig. 4. Developmental trajectories of imaging-derived measures for two-cluster multivariate parcellation. A. Two cortical regions are shown on inflated surface of 
right hemisphere; medial view on left, lateral view on right. B - G. Spline fits and 95% confidence intervals for each ROI, plotted relative to values at age 3 (i.e., the 
fitted value at age 3 was subtracted from each point along the displayed trajectory). B. cortical thickness (mm). C. area (mm2 / vertex). D. sulcal depth (unitless). E. 
T1w in pericortical white matter (wm) (arbitrary units: AU). F. T1w in cortical gray matter (gm) (AU). G. T2w wm (10− 3 mm2/s). H. T2w gm (10− 3 mm2/s). I. FA wm 
(unitless). J. FA gm (unitless). K. LD wm (mm2/s). L. LD gm (mm2/s). M. TD wm (mm2/s). N. TD gm (mm2/s). 
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2 had one of the top three LD values at age 3, but the lowest TD. There 
were also differences between clusters in the age 3 FA values in gray and 
white matter, but the ordering was not consistent. For example, for 
white matter FA, cluster 6 was ranked in the bottom three, whereas for 
gray matter FA, cluster 6 was in the top two. 

4. Discussion 

The current results demonstrate that the nonlinear developmental 
trajectories of cortical surface-based measures derived from a combi
nation of structural imaging modalities do indeed vary regionally, and 
they show which individual brain measures seem to contribute most 
strongly to changes at different developmental phases. These observa
tions are consistent with the differences in synaptic density observed in 
early post-mortem histological studies between early sensory areas and 
prefrontal cortex, such as in studies by Huttenlocher and colleagues (e. 
g., Huttenlocher and Dabholkar, 1997). Our broader analysis provides a 
more complicated picture of inter-regional variation, however. For 
example, differences in developmental trends observed between two 

early sensory regions and between two adjacent prefrontal cortical re
gions demonstrated a surprising degree of heterogeneity within the 
cortex, even in regions close to one another or related in overall func
tion. Furthermore, the developmental trajectories of the cortical mea
sures differed from one another and demonstrated distinct 
spatiotemporal patterns of differences across age. Whereas cortical 
thickness in visual cortex reached near-mature levels by early adoles
cence, other measures, such as cortical surface area or diffusivity in 
cortical gray matter continue changing in late adolescence. 

The developmental trajectories of estimated cortical thickness are 
presumably influenced by changes in synaptic density, but other cellular 
changes, such as iron deposition, could potentially alter T1-weighted 
intensities so as to slightly bias the placement of the gray-white 
boundary (Drayer et al., 1986; Hallgren and Sourander, 1958). The 
other measures tested in this study, including morphometric measures 
cortical area and sulcal depth, microstructural measures diffusivity and 
anisotropy, and image intensity measures, may also be influenced by 
these or other cellular changes that occur during childhood and 
adolescence. Based on the differences between imaging measures in 

Fig. 5. Developmental trajectories of imaging-derived measures for six-cluster multivariate parcellation. A. Six cortical regions are shown on inflated surface of right 
hemisphere; medial view on left, lateral view on right. B - G. Spline fits and 95% confidence intervals for each ROI, plotted relative to values at age 3. B. cortical 
thickness (mm). C. area (mm2 / vertex). D. sulcal depth (unitless). E. T1w in pericortical white matter (wm) (arbitrary units: AU). F. T1w in cortical gray matter (gm) 
(AU). G. T2w wm (10− 3 mm2/s). H. T2w gm (10− 3 mm2/s). I. FA wm (unitless). J. FA gm (unitless). K. LD wm (mm2/s). L. LD gm (mm2/s). M. TD wm (mm2/s). N. TD 
gm (mm2/s). 
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trajectories and clustering results, it appears that there are multiple 
neurobiological features that unequally influence the developmental 
trajectories of the individual imaging measures. If attempting to assess 
the maturity of a given cortical region relative to other cortical regions, 
reliance on a single imaging-derived measure provides an incomplete 
picture of the developmental changes taking place. Our findings build 
upon much previous work examining developmental regional differ
ences in cortical neuroanatomy that have used both univariate (Fjell 
et al., 2018, 2012; Giedd et al., 1999; Gogtay et al., 2002; Lebel and 
Beaulieu, 2011; Sowell et al., 2003) and multivariate (Brown et al., 
2012) approaches for delineating age trajectories in typically developing 
preschoolers, school-age children, adolescents, and young adults. The 
advantage of the current multivariate approach is that it uses the 
aggregate of all available measures, producing probabilistic estimates of 
similarities and differences to inform interregional comparisons of 
developmental trajectories across all of these age groups. 

Consistent with the general conclusions of classic and highly influ
ential histological studies, our results suggest that primary sensory 
cortical areas can be distinguished from transmodal association areas by 
the trajectory characteristics of both their morphology and tissue 
properties and that prefrontal regions show a protracted period of 
greater developmental change relative to sensory regions for at least 
some imaging measures. Given the unexpected heterogeneity we found 
of some close-lying prefrontal cortex regions and across the cortex in 
general, questions about the spatial patterns of inter-regional differences 
and similarities may require a data-driven, cortex-wide approach like we 
have used here. Using vertex-wise analyses to examine developmental 
differences across the entire cortical surface, cluster maps revealed 
empirically derived divisions of the cortex that show significantly 
different developmental trajectories, using either single measures of 
morphology or diffusion properties, or a multivariate combination of all 
measures. Maps derived from univariate measures varied in the number 
of clusters produced based on their silhouette values. A three-cluster 
solution was optimal for cortical thickness, and a two-cluster solution 
was optimal for all other measures. The two-cluster maps varied 
considerably from one another, dividing roughly along either dorsal/ 
ventral, caudal/rostral, or pre-/post-central dimensions, depending on 
the measure. 

Analyses of vertex-wise developmental trajectory differences using 
the multivariate combination of all measures generated two maps with 
the highest silhouette values, one with two regional divisions and 
another with six divisions. Both maps showed strong similarities be
tween left and right cerebral hemispheres. The two-cluster map yielded 
a strong difference between dorsal and ventral cortical regions, which 
divided primary sensory, tertiary, and primary motor areas (visual, 
extrastriate, auditory, somatosensory, motor and premotor cortex) from 
transmodal association areas of the lateral parietal, temporal, and pre
frontal lobes, including anterior portions of the medial temporal and 
prefrontal cortex. The dorsal cluster showed relatively greater change 
from preschool through adolescence in cortical surface area and similar 
change in cortical thickness as compared to the ventral cluster. The 
ventral cluster showed greater developmental change than the dorsal 
cluster in sulcal depth over this age range. For measures of diffusivity 
within pericortical white matter, the dorsal cortical cluster showed 
greater changes with age in FA. All diffusion measures within cortical 
gray matter showed relatively greater age changes within the dorsal 
cluster as compared to the ventral cluster. Across all measures except 
sulcal depth and thickness, the dorsal developmental division showed 
relatively greater age-related changes than the ventral division between 
3 and 21 years of age. These results provide an interesting multimodal, 
multidimensional characterization of the cerebral “what” and “where” 
pathways, suggesting at least broadly that the former systems show less 
maturational change anatomically than the latter, at least across the 
ages we studied here and according to this specific collection of mea
sures (de Haan and Cowey, 2011; Freud et al., 2016; Goodale and Mil
ner, 1992; Mishkin and Ungerleider, 1982; Schneider, 1969). The 

six-cluster developmental parcellation made further subdivisions of 
the two-cluster dorsal and ventral regions, separating each into smaller 
sub-regions with maximally divergent developmental trajectories. 

While reproducing some findings on regional variability in the cor
tex, and producing some novel results based on a developmental tra
jectory clustering method, our study also helps to demonstrate some of 
the challenges inherent in attempting to characterize and make con
clusions about the relative maturational rates and phases of different 
brain regions. By delineating and quantifying developmental slopes, we 
can estimate whether trajectories differ. But conclusions about whether 
a particular brain region “has matured” (i.e., has reached a biological 
state of maturity or has crossed some likely arbitrary threshold of 
maturity) or that one brain region matures faster and earlier or slower 
and later than another is still not entirely straightforward precisely 
because of the arbitrariness in operationally defining maturity as an end 
state. For example, our approach shows that although primary sensory 
cortex has a shallower slope than prefrontal cortex it is, nevertheless, 
still changing across the ages examined here and likely continues to 
change throughout adulthood, albeit in subtler fashion. So, at what age 
is visual cortex “mature”? As evidence from lifespan studies strongly 
suggests, questions about brain development framed in this way are 
likely simplistic and misleading, given the inconstant nature of the brain 
(Lebel et al., 2012; Sowell et al., 2003; Tamnes et al., 2013; Walhovd 
et al., 2016; Ziegler et al., 2012). We suggest caution in the use and 
potential oversimplification of these terms and concepts in the 
literature. 

Individual variability in rates and trajectories of brain development 
also need to be considered and examined when looking at character
izations based on group averages. The individual differences variability 
for most brain measures at a given age is relatively large compared to the 
developmental phase variability across age for the same measure (e.g., 
Brown et al., 2012). This reality makes the characterization of trends, 
rates, phases, timing, maturational endpoints, and trajectories difficult 
to fully convey with metrics based solely on central tendency. Longi
tudinal studies will be particularly useful for characterizing how 
inter-individual variability relates to change in specific brain measures 
over time (Mills et al., 2021). 

One approach that has been used previously in developmental im
aging research to determine the age of maturity or the relative matu
ration order between different brain regions has been to compare the age 
peaks of quadratic trend fits for a given measure (Giedd et al., 1999, 
2010; Shaw et al., 2006; Sowell et al., 2003). This practice may lead to 
misleading conclusions for several reasons: it artificially forces a peak to 
be placed at a particular age where one might not exist (Fjell et al., 
2010), many measures likely have no single or obvious peak (i.e., are 
monotonic), and as we have shown here when using data-driven spline 
fits, many measures simply do not stop changing with age and 
development. 

One of the primary limitations of our study is that we computed 
developmental trajectories based on cross-sectional data, inferring age 
change from what are really age differences. Cross-sectional analyses 
can produce misleading results if, for example, there are significant 
differences across age in subject characteristics that may relate to the 
dependent measures. For this reason, we controlled all trajectory ana
lyses for variables known or suspected to have such effects (e.g., socio
economic status, sex, genetically determined ethnic ancestry; Fan et al., 
2015; Lenroot and Giedd, 2010; Noble et al., 2015). Similarly, small but 
significant variation between scanners is unavoidable, and between 
scanner manufacturers even more so. Because of that, we also included 
regressors to account for the variation of the means across scanner in
stances (Brown et al., 2012). It is also worth noting that we were guided 
by developmental differences observed in histochemical, postmortem 
studies that were also performed cross-sectionally. Nevertheless, the use 
of longitudinal imaging measures would provide a more direct assess
ment of differences in developmental changes across different cortical 
regions, and the recent availability of longitudinal data sets are making 
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this more possible (e.g., Fjell et al., 2018). For example, the large 
Adolescent Brain Cognitive Development (ABCD) Study is ongoing and 
will eventually span ages 9–20 (Casey et al., 2018; Hagler et al., 2019). 
Note that in order to test the questions across the age range we’ve 
addressed here using cross-sectional data, a longitudinal data set 
following preschoolers for 17 years would be required. 

Cortical parcellation methods and mapping are becoming more 
commonplace, but the use of multivariate statistical analyses of devel
opmental trajectories is relatively rare, especially using measures inte
grated from different modalities (e.g., diffusion, morphometry). 
Multivariate nonlinear developmental modeling has been shown to 
provide significant advantages over univariate approaches for assessing 
developmental phase changes in features known to have complex, 
multifactorial neurobiological contributors and high individual differ
ences variability in any single measure at any given age (Brown et al., 
2012; Dosenbach et al., 2010). By examining developmental trajectories 
cross-sectionally in a relatively large sample spanning the preschool to 
adolescent ages, using an integrated multimodal, multivariate, 
nonlinear trajectory approach, our study provides new evidence that 
corroborates some limited but highly influential early histological work 
and suggests new directions for continuing to develop methods for 
characterizing human brain development. 
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