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Two‑dimensional biocompatible 
plasmonic contact lenses for color 
blindness correction
N. Roostaei & S. M. Hamidi*

Color blindness, or color vision deficiency (CVD), is an ocular disease that suppresses the recognition 
of different colors. Recently, tinted glasses and lenses have been studied as hopeful devices for 
color blindness correction. In this study, 2D biocompatible and flexible plasmonic contact lenses 
were fabricated using polydimethylsiloxane (PDMS) and a low-cost, and simple design based on the 
soft nano-lithography method and investigated for correction of red–green (deuteranomaly) color 
blindness. In addition, the stability test of the fabricated plasmonic contact lenses was investigated 
into the phosphate buffered saline (PBS) solution and the proposed lens offers an excellent stability 
into the PBS solution. The plasmonic contact lens proposed herein is based on the plasmonic surface 
lattice resonance (SLR) phenomenon and offers a good color filter for color blindness correction. The 
biocompatibility, low cost, stability, and simple fabrication of these contact lenses can offer new 
insights for applications of color blindness correction.

Human color vision originates from three types of cone-shaped photoreceptors, i.e. short (S), medium (M), and 
long cones (L) which are responsible for perceiving blue, green, and red colors with spectral sensitivity peaks 
around the 430, 530, and 560 nm, respectively1.

Color blindness, or color vision deficiency (CVD), is an ocular disease that prevents the recognition and per-
ception of specific colors by three photoreceptors which, in normal vision, are all present and function according 
to their spectral sensitivity peaks. This ocular disorder can be either acquired or congenital and is caused by the 
lack of or a deficiency in the cone-shaped photoreceptors2.

There are three different types of color blindness: dichromacy, monochromacy, and anomalous trichromacy3. 
Dichromacy occurs when one of the cone-shaped photoreceptors is completely missing and is categorized as 
protanopia (missing red cone cells), deuteranopia (missing green cone cells), or tritanopia (missing blue cone 
cells). Monochromacy is the rarest type of color blindness in which at least two cone-shaped photoreceptors 
are missing. Monochromat people are completely colorblind (achromatopsia) or have only blue cone-shaped 
photoreceptors. As the third classification, anomalous trichromacy occurs when one of the cone-shaped photo-
receptors is defective. Depending on which cone-shaped photoreceptor is defective, anomalous trichromacy is 
divided into three categories: protanomaly (defective red cone cells), deuteranomaly (defective green cone cells), 
and tritanomaly (defective blue cone cells).

The most common types of color blindness are protans (protanopia and protanomaly) and deutans (deu-
teranopia and deuteranomaly), which are known as red-green color blindness4. The spectral sensitivity peak 
of the red cones is blue-shifted in protanomaly, while the sensitivity peak of the green cones is red-shifted in 
deuteranomaly. Thus, patients cannot distinguish different colors due to overlapping in the spectral sensitivity 
of green and red cones.

Despite a lot of useful research into a certain cure for color blindness based on different medical routes of 
this disease, important changes in lifestyle remain an open question. These beneficial and useful studies com-
prised subjects such as gene therapy5–9, tinted glasses10–13, lenses14–17, optical filters18, optoelectronic glasses, 
and advanced features on smartphones and computers19–22. Tinted glasses with color filters for color blindness 
correction have been widely investigated and are even commercially available10–13,23. While these glasses are 
effective for improving the color perception of color-blind people, they also have limitations such as high cost, 
bulkiness, and incompatibility with other vision correction glasses.

Recently, contact lenses based on chemical dyes24–26, plasmonic metasurfaces27, and plasmonic 
nanoparticles28,29 have been investigated for color blindness correction. However, these contact lenses face 
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challenges such as non-biocompatibility, short time usability, low stability, high cost, and the complexity of the 
fabrication process.

In the current study, 2D biocompatible and flexible plasmonic contact lenses based on polydimethylsilox-
ane (PDMS) are proposed for color blindness correction, and specific consideration is given deuteranomaly 
(red–green) color blindness, which is the most common type of color blindness. PDMS is a biocompatible, 
flexible, and transparent material which can be a good candidate for fabricating contact lenses. This nontoxic 
and biocompatible material has attracted many applications in fields such as biology30–34, medicine35,36, and 
chemistry37. In this work, a 2D flexible and biocompatible PDMS-based lens was successfully fabricated using a 
low-cost, and simple design based on the soft nano-lithography method and investigated for correction of red-
green color blindness. Also, the stability test of the fabricated plasmonic contact lenses was investigated into the 
phosphate buffered saline (PBS) solution and the proposed lenes offers an excellent stability into the PBS solution. 
The biocompatibility, low cost, stability, and simple fabrication of these contact lens can offer new insights into 
applications for color blindness correction.

Experimental method
The PDMS-based lenses and also two dimensional biocompatible plasmonic contact lenses proposed herein 
were fabricated as two separate lenses with poly-dimethylsiloxane (PDMS) (SYLGARD 184 DOW CORNING). 
First, the proposed lenses were fabricated according to the schematic diagram shown in Fig. 1a. Firstly, PDMS 
was prepared by combining it with a curing agent at a weight ratio of 10:1. After mixing, these two parts by DC 
mixer for 5 min to achieve a homogenous mixture, which was poured onto the lens mold. For degassing, the 
mold was placed in a vacuum chamber for 15 min. Afterward, the sample was placed on a heater and cured with 
gradual increases in temperature from 50 to 100 °C over 1 h. After 24 h, the PDMS-based lens was peeled off from 
the mold, and thus, a biocompatible PDMS-based lens was successfully produced (Fig. 1b). In the next step, the 
fabricated PDMS-based lenses were immersed into 0.01 M gold solution (HAuCl4·3H2O gold chloride trihydrate) 
at different incubation times of 12, 18, 24, and 36 h (Fig. 1c) and then investigated for color blindness correction.

The PDMS crosslinking is originated from the reaction between silicon hydride (Si–H) groups in the curing 
agent and vinyl groups (Si–CHLCH2) in the monomer. After curing the PDMS, some of the Si–H groups remain 
which is the main factor for Au NPs production in a self-assembled method38,39.

As the second proposed structure, the 2D biocompatible plasmonic contact lenses were fabricated using 
the soft nano-lithography method and investigated for correction of red-green color blindness. Contact lenses 
should be curved due to the natural curvature of the cornea, and conventional lithography methods are only 
applicable for flat and planar substrates. In this research, the simple, and low-cost technique based on soft 
nano-lithography method was suggested to create a two-dimensional plasmonic nanostructure onto the curved 
surface of the lens. In this method, the charge-coupled device (CCD) of a camera was extracted and utilized as a 
stamp. The CCD camera had a two-dimensional periodic square pattern with a periodicity of 2.5 μm. The CCD 
stamp was placed into the central part of the lens mold, and a mixture of PDMS and curing agent was poured 
onto it (Fig. 2a). After degassing as mentioned in the previous step, the lens mold was placed on a heater and 
cured with gradual increases in temperature from 50 to 100 ℃ over a period of 1 h. Finally, the PDMS-based lens 

Figure 1.   (a) A schematic array of the fabrication process of the proposed PDMS-based lenses, (b) the image of 
the fabricated PDMS-based lenses, and (c) immersing the PDMS-based lenses into HAuCl4·3H2O gold solution 
for different incubation times.
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was separated from the mold after 24 h, and the 2D PDMS-based lens was gently peeled off of the CCD stamp. 
A gold layer with a thickness of 35 nm was deposited onto the patterned central part of the PDMS-based lens 
using the PVD technique.

In this way, a 2D flexible and biocompatible lens was successfully fabricated with a low-cost, and simple design 
method compared to the other costly and complex methods, such as the electron beam lithography technique. 
An image of the actual fabricated 2D biocompatible plasmonic contact lenses is shown in Fig. 2b.

Simulation modeling
The fabricated two-dimensional plasmonic contact lens was simulated using the finite-difference time-domain 
(FDTD) method and optical electric field distribution was calculated for the proposed structure. The simulated 
structure consists of the 2D periodic arrays, which were arranged on the bulge part of the PDMS-based lens 
(Fig. 3). The lattice constant of the periodic array was considered to be 2500 nm, which was approved by scanning 
electron microscopy (SEM) image in Fig. 5a. The curvature radius of the simulated lens was also set at 6.9 mm, 
and the thickness of the thin gold layer is assumed to be 35 nm according to the experimental part.

In addition, the mesh size in the x, y and z directions was considered to be 3.5 nm and the refractive index 
of the PDMS and Au materials were considered from the presented data by Schneider et al. and Rakić et al. 
respectively40.

Results and discussion
An image of the actual fabricated plasmonic PDMS-based contact lenses with different immersion times into 
HAuCl4·3H2O gold solution is shown in Fig. 4a. As shown, the color of the lenses changed with increases in 
immersion time, which corresponds to increases in the Au NPs content of the PDMS-based lenses. The absorp-
tion spectra of the proposed lenses with different immersion times were measured using a UV–Vis spectrometer 
and are shown in Fig. 4b. As can be seen, the value of the absorption peak was enhanced with increases in immer-
sion time, which corresponds to increases in the percentage of Au NPs in the PDMS-based lenses. In addition, 
absorption peaks due to plasmonic resonances were observed at λ = 532, 533, 535, 542, 543 nm for lenses with 

Figure 2.   (a) A schematic of the fabrication process of the proposed 2D plasmonic contact lenses based on 
PDMS, and (b) the real image of the fabricated 2D flexible plasmonic contact lens.

Figure 3.   A schematic array of the simulated 2D plasmonic contact lens based on PDMS.
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Figure 4.   (a) The real image of the fabricated plasmonic PDMS-based contact lenses for different incubation 
times of 12, 18, 24, 36 and 72 h, (b) measured absorption spectra of the proposed plasmonic contact lenses with 
different incubation times of 12, 18, 24, 36 and 72 h, (c) Absorption spectra of the PDMS-based lenses which 
immersed into the HAuCl4·3H2O gold solutions with concentration of 10 and 25 mM for 36 h, and (d) stability 
test of the fabricated lens (with an incubation time of 36 h) into the PBS solution for different times of 1, 2, 3, 4 h 
and 1 day.

Figure 5.   The SEM images and size distribution of the Au NPs embedded into the fabricated lenses with an 
incubation time of (a) 12 h, and (b) 72 h.
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immersion times of 12, 18, 24, 36, and 72 h, respectively. Therefore, the absorption resonance peak has a red shift 
of about 11 nm with increasing the immersion time from 12 to 72 h.

Also, the plasmonic resonance peak only has a red shift of 1 nm with increasing incubation time from 36 to 
72 h, and no significant change in the wavelength location of the resonance response was observed. This effect 
indicates the stabilization of the AuNPs trapped inside the PDMS-based lens after an incubation time of 36 h; 
therefore, the optimum immersion time is 36 h.

The proposed plasmonic contact lens is based on the tunable localized surface plasmon resonance (LSPR) 
phenomenon. Plasmonic Au NPs embedded in the fabricated PDMS-based lens offer a good color filter for color 
blindness correction. In addition, the optical LSPR properties of gold NPs can be adjusted by controlling their 
morphology, including size, shape, and solvent.

The wavelength range of 540–580 nm (problematic wavelength range) must be filtered to correct deuter-
anomaly (red–green) color blindness, so the resonance peak must occur at the wavelength of about 560 nm. 
For this purpose, the concentration of the HAuCl4·3H2O gold solution was increased from 10 to 25 mM, and a 
PDMS-based lens was immersed in the 25 mM gold solution (HAuCl4·3H2O gold chloride trihydrate) for 36 h. 
For better comparison, the absorption spectra of the lenses that were immersed in the 10- and 25-mM gold solu-
tions are given in Fig. 4c. As seen, the plasmon resonance peak has a red shift of about 11 nm with increasing 
the concentration of the HAuCl4·3H2O gold solution from 10 to 25 mM, and plasmonic resonance occurred at 
λ = 553 nm. In fact, the size of the Au NPs increased with increases in concentration, so the resonance wavelength 
had a red shift. Furthermore, the value of the absorption peak was enhanced with increases in the concentration 
of the HAuCl4·3H2O gold solution.

The stability test of the proposed plasmonic contact lens (with the incubation time of 36 h) into the phos-
phate buffered saline (PBS) solution was investigated for different times of 1, 2, 3, 4 h and 1 day (Fig. 4d). As 
seen, no change in the wavelength location of the absorption resonance peak was observed after immersion the 
lens into the PBS solution and the profile of the absorption spectra was fully preserved. Therefore, the proposed 
plasmonic contact lenses offer an excellent stability into the PBS solution and Au NPs are trapped inside the 
PDMS-based lens.

The SEM images of the fabricated PDMS-based lenses with an incubation time of 12 h and 72 h were recorded 
and shown in Fig. 5a,b, respectively. In addition, the size distribution of the Au NPs embedded into the fabricated 
lenses was extracted for the lenses with the incubation time of 12 h, and 72 h (Fig. 5).

The uniform distribution of the nanoparticle size with an average size of 199.12 nm was obtained for the 
fabricated lens with an incubation time of 12 h, while the average particle size of 347.03 nm was achieved for the 
lens with an incubation time of 72 h. So, the size of the nanoparticles increased with increasing time from 12 to 
72 h, and the nanoparticles were agglomerated. As mentioned above, the incubation time of 36 h was considered 
as an optimum incubation time, and the nanoparticles were not agglomerated for this incubation time.

The scanning electron microscopy (SEM) image of the fabricated 2D plasmonic contact lens is given in 
Fig. 6a. As can be seen, the proposed 2D plasmonic lens has a two-dimensional periodic square pattern with 

Figure 6.   (a) The SEM image of the proposed 2D plasmonic PDMS-based contact lens, (b) measured 
absorption and transmission spectra of the fabricated 2D plasmonic contact lens, and (c) stability test of the 
fabricated 2D lens into the PBS solution for different times of 1, 2, 3, 4 h and 1 day.
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high resolution. Additionally, the absorption and transmission spectra of the fabricated 2D plasmonic contact 
lens was measured using a UV–Vis spectrometer and is shown in Fig. 6b.

Metallic nanoparticles arranged in a periodic array can exhibit extremely narrow and strong excitations 
known as plasmonic surface lattice resonance (SLR)41–43. This phenomenon is a result of the coupling between 
the diffracted order (DO) waves in a periodic structure and the localized surface plasmon resonances (LSPRs) 
coming from nanowires at the corners of each unit cell. The proposed 2D plasmonic contact lens is composed of 
a two-dimensional array of Au NWs and can support the sharp diffracted order (DO) waves and LSPR modes. As 
seen in Fig. 6b, the absorption peak occurred at λ = 560 nm, which corresponds to the plasmonic surface lattice 
resonances (SLR) caused by plasmonic 2D array of the lens, and this proposed lens offers a good color filter for 
the correction of deuteranomaly color blindness.

In addition, the stability test of the fabricated 2D plasmonic contact lens into the phosphate buffered saline 
(PBS) solution was investigated for different times of 1, 2, 3, 4 h and 1 day (Fig. 6c). As seen, no change in the 
wavelength location of the plasmonic resonance peak was observed after immersion the 2D lens into the PBS 
solution and the shape of the absorption spectra was fully preserved. Therefore, the proposed 2D lens offers an 
excellent stability into the PBS solution.

The refractive index profile of each unit cells of the simulated 2D lens and the optical electric field distribution 
at the absorption resonance peak (λres = 560 nm) are shown in Fig. 7a–f. As seen, electric filed localization was 
occurred around the gold grating at the absorption resonance peak, which is duo to surface lattice resonances 
(SLRs) caused by 2D plasmonic array. Furthermore, electric field enhancement was observed at the sharp edges 
of the unit cell (Fig. 7e,f), which indicates the strong plasmonic resonances was occurred in these regions.

Conclusion
In this study, 2D biocompatible and flexible plasmonic contact lenses based on polydimethylsiloxane (PDMS) 
were fabricated with a low-cost, and simple design based on the soft nano-lithography method and investigated 
for correction of red–green color blindness. PDMS, a biocompatible, nontoxic, flexible, and transparent material, 
was used to fabricate the lens. This proposed plasmonic contact lens is based on the plasmonic surface lattice 
resonance (SLR) effect and can be utilized as a good color filter for the correction of deuteranomaly color blind-
ness. The stability test of the fabricated plasmonic contact lenses was investigated into the phosphate buffered 
saline (PBS) solution and the proposed lenes offers an excellent stability into the PBS solution. Furthermore, the 
proposed lens offers excellent properties such as biocompatibility, stability, and flexibility, which can be useful 
for applications of color blindness correction.

Received: 29 November 2021; Accepted: 24 January 2022

Figure 7.   (a) The refractive index profile of each unit cells of the simulated structure. (b–d) Electric field 
distribution of the first three modes at λres = 560 nm, respectively, and (e,f) the other orders of the electric field 
distribution which indicate electric field localization at the sharp edges of the unit cell.
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