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Abstract

The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform
DNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that
DNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding
but surprisingly find that DNp73 may also stimulate the expression of TGF-b signaling targets. Promoter-reporter analysis
indicated that the presence of Smad Binding Elements (SBE) in the promoter is sufficient for stimulation of gene expression
by DNp73. TGF-b signaling was less efficient in DNp73 downregulated cells, whereas tetracycline induced DNp73 increased
expression of endogenous TGF-b regulated genes PAI-1 and Col1a1. Pull-down assays with SBE DNA suggest that DNp73
enhances smad3/4 binding to SBEs, thereby stimulating TGF-b signaling. Chromatin immunoprecipitation assays confirmed
a direct interaction between DNp73 and SBE. Given the role of TGF-b signaling in carcinogenesis, tumor invasion and
metastasis via targets like PAI-1 and Col1a1, our data suggest a model on how this effect of DNp73 could be a contributing
factor in cancer progression.
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Introduction

The role of p53 homolog and family member p73 in

carcinogenesis is not completely clear [1–3]. P53 is established

as a transcription factor that functions as tumor suppressor.

Mutations in the p53 gene occur in over 50% of tumors and play a

major role in oncogenic transformation [2,4,5]. P73 has many

transcriptional targets in common with p53 but its role in

carcinogenesis is much more complex. This is partially due to

the presence of multiple p73 variants as a result of multiple

promoter usage and alternative splicing. Several variants (TAp73)

are transcriptionally active but also inactive isoforms (DNp73) that

lack the N-terminal transactivation domain may be expressed.

TAp73 isoforms act as transcription factors and usually behave

similar to p53 [1]. In contrast, DNp73 usually acts as inhibitor of

transactivation competent p53 and TAp73, either by inactivating

complexes containing active p53 family members or by competing

for promoter binding sites [1,6]. Mutations in the p73 gene are

rarely found in tumors, in contrast to p53. However, it has been

shown that changes in expression of specific p73 variants

influences the carcinogenic character of tumors [2,3]. P73 is

upregulated in many cancer types and multiple studies show that

high p73 expression correlates with poor patient survival [2]. The

upregulation of especially the DNp73 variant has been linked with

poor prognosis. Indeed, DNp73 is frequently overexpressed in

tumors of the lung, breast, brain, thymus, colon, prostate, skin,

ovary, muscle and other organs [3,7]. The inhibitory effect of

DNp73 on p53 and TAp73 variants has been suggested to be

responsible for the oncogenic effect of DNp73 [2,3]. The role for

p73 carcinogenesis appears to arise solely from an imbalance

between the isoforms since it was not observed in mice lacking p73

[6]. However p73 knockout mice did show growth defects,

hippocampal dysgenesis and neurological, inflammatory and

pheromonal deficiencies [6], thus emphasizing its role in

development. Indeed unexpected biological effects (in for example

neurogenesis) were discovered in p73-isoform specific mice [8–11]

indicating that the interplay between the main p73 isoforms and

the resulting biological impact may be much more complex than

previously anticipated.

Multiple genes are regulated by a cooperation between p53

family members and TGF-b signaling, together inducing syner-

gistic transcriptional activation [12,13]. Interestingly, it has been

hypothesized that like p53, p73 could also interact with TGF-b
signaling [12,14,15] albeit through unknown mechanisms. As for

p73, the TGF-b signaling pathway is essential for development. It

is crucial for differentiation of embryonic tissue and morphogen-

esis of organs and is required for tissue homeostasis [16]. TGF-b
signaling has both tumor suppressing and promoting activities

[17–21]. During tissue homeostasis tumor suppressor activities of

TGF-b dominate, whereas during tumorigenesis an increase in

TGF-b signaling intensity may promote tumor progression

[20,21]. Although TGF-b signaling controls many different actions

in many different cell types, the diversity of its response is

generated by reacting in divergent ways to essentially the same
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signaling cascade. After binding of TGF-b or its homologs to the

TGF-b receptors, Smad2 and/or Smad3 are activated, bind

Smad4 and translocate to the nucleus where they bind and

activate promoters with Smad Binding Elements (SBE). Because

the DNA binding capacity of Smads alone is very low, additional

site-specific transcription factors are required for a full TGF-b
response [18,22]. As such p53 can bind a promoter’s p53 Binding

Element and together with TGF-b cooperatively enhance

expression of specific genes [12]. Considering the similar roles of

p73 and TGF-b signaling, a connection between these two could

have strong implications for the understanding of both develop-

ment and carcinogenesis. Next to these, also the PAI-1 gene has

roles in many biological processes including development and

carcinogenesis [23–25] as it is a key negative regulator of the

plasmin system of extracellular matrix proteases. Interestingly,

PAI-1 expression is regulated by both TGF-b and p53 [12,26,27].

Therefore we started to investigate a possible connection between

p73 and TGF-b signaling by using PAI-1 reporter constructs

available in our lab previously used to study TGF-b signaling, p53

and their cooperation [26,27]. In the present study, we report that

several p73 isoforms, like p53, indeed can modulate TGF-b
signaling. Unexpectedly, however, the DNp73 variant that

normally antagonizes p53/p73 effects had the largest boosting

effect on TGF-b mediated target activation. Our results indicate

that DNp73 may directly increase the transactivation of TGF-b
signaling targets in a non-canonical manner, potentially by

forming a complex with Smads on Smad Binding Elements.

Materials and Methods

Plasmids
The PAI-luc, PAI p53-M luc and SBE-luc reporter constructs

and pcDNAp53 were described previously in Hageman et al. [26].

The P21Waf-Luc reporter construct was described in [28]

pcDNASmad3 and pcDNASmad4 were kindly provided by Dr.

B. Eggen (Haren, The Netherlands). pcDNASmad7 plasmid [29]

was a kind gift of Dr. C-H. Heldin (Uppsala, Sweden). Plasmids

containing p73 splice variants [30,31] were kindly provided by Dr.

Gerry Melino (Rome, Italy). pcDNA3.1+ was purchased from

Invitrogen. Smad2 expression was done with pGFPSmad2, which

was constructed by ligating a XhoI-EcoRI digested PCR product

of primers 59- CGCACTCGAGGGATGTCGTCCATCTTGC-

CATTCAC and 59-CGCGAATTCTTATGACATGCTTGAG-

CAACGCAC into the EcoRI-XhoI digested pEGFP-C1 plasmid

(Clontech). pYFPSmad4 was constructed by ligating an EcoRI-

XhoI digested PCR product of primers: 59-GCGCTCGAGG-

GATGGACAATATGTCTATTACGAATACACC and 59-

GCGGAATTCTTCAGTCTAAAGGTTGTGGGTCTG into

EcoRI-XhoI digested pEYFP-C1 plasmid (clontech). The

pV5Smad3 plasmid was created by first creating pCFPSmad3

by ligating a XhoI-EcoRI digested PCR product of 59-

GCGCTCGAGGGATGTCGTCCAT CCTGCCTTTCA and

59-CGCGAATTCTAAGACACACTGGAACAGCG into the

XhoI-EcoRI sites of pECFP-C1 (Clontech). To create pV5Smad3,

pCFPSmad3 was digested with NheI-XhoI (Cuts out ECFP) and

the gap was filled up with a linker of a duplex of 59- CTA-

GTATGGGTAAGCCTATCCCTAACCCTCTCCTCGGTCT-

CGATTCTACGCATCATCACCATCACCATGC (upper oligo)

and TCGAGCATGGTGATGGTGATGATGCGTAGAATCGA-

GACCGAGGAGAGGGTTAGGGATAGGCTTACCCATA.

pcDNA5 FRT TO DNp73a was constructed by ligating the

HindIII-XhoI DNp73a fragment of pcDNAHADNp73a into

pcDNA5 FRT TO (Invitrogen) digested with HindIII-XhoI. All

newly constructed plasmids were verified by sequencing.

Cell culture and construction of tetracycline regulated
DNp73 cell line

Hep3B cells (ATCC) were described to be p53 and p73 negative

[32] and were cultured as described [26]. Smad4 deficient MDA-

MB-468 cells were cultured as described in [33]. Transfections

were done with lipofectamine (Invitrogen) in 24 wells plates that

were 60% confluent at the time of transfection, the method was

basically as described [26]. Hek293 cells used were Flp-In T-Rex

HEK293 cells purchased from Invitrogen. The Hek293DNp73 cell

line was constructed as suggested by the manufacturer, using the

pcDNA5 FRT TO DNp73a plasmid. Unless mentioned otherwise

Hep3B cells were used.

Immunoblotting
Sample preparation and blotting was following standard

procedures as described [28]. Membranes were reacted with the

following primary antibodies: a-V5 (Invitrogen) for V5-tagged

Smad3, a-HA (Covance) for HA-tagged p73, PAN-p73 IMG-

259A (Imgenex), a-GFP (Santa Cruz) for tagged Smad4, and a-

Smad3 clone 2C12 (Sigma-Aldrich) for endogenous Smad3,

followed by the appropriate HRP-conjugated secondary antibody

and ECL detection.

Luciferase assays
Luciferase assays were performed as described [26]. Cells grown

on 24-wells plates were co-transfected using lipofectamine

(Invitrogen) with 0.5 mg reporter plasmid per well and 10 ng (or

other where indicated) empty vector or p53/73 expression

plasmid. For Figures 1b and c, 0,5 mg reporter plasmid (PAI-luc

or p21-luc) was co-transfected with 4 ng pHATAp73a and 0, 2, 4,

8 and 16 ng pHADNp73a, total plasmid amounts and volumes

were equalized in every experiment by adding pcDNA3.1+. In all

assays where only TAp73 or DNp73 is mentioned, the a splice-

variants were used. Unless stated otherwise, luciferase assays were

performed in Hep3B cells.

DNA Affinity Immunoprecipitation (DNAP)
For DNAP experiments with transfected cells, 50% confluent

Hek293 cells on 6 cm dishes were transfected with the indicated

plasmids using lipofectamine (invitrogen). 24 hours post transfec-

tion TGF-b1 (1 ng/ml) was added to some of the dishes. 24 hours

later, cells were trypsinized, washed once with cold PBS and the

pellet was taken up in 600 ml cold DNAP buffer (10 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40)

with 1 mM sodium Vanadate, 0.4 mM PMSF, 50 mM NaF and

complete protease inhibitors (Boehringer). Cells were passed

through a 26 GA needle several times and lysates were centrifuged

at 4C for 15 minutes in an Eppendorf centrifuge at maximum

speed. 550 ml supernatant was transferred to a new tube. 50 ml was

transferred to another new tube, 50 ml 26 protein sample buffer

was added and these samples were boiled for 5 minutes to obtain

input fractions. To the remaining 500 ml lysate, 5 mg Poly(dI-dC)

(Sigma-Aldrich) was added and lysates were tumbled slowly (10

RPM) for 30 minutes. 500 pmol of biotinylated oligo duplexes

with the sequences 59-AGACAGACAGACAGACAGACAGA-

CAGACAGAC and 59-GTCTGTCTGTCTGTCTGTCTGT-

CTGTCTGTCT (Smad Binding Elements) were added and

lysates were tumbled again for 30 minutes. 50 ml of 6% conjugated

Streptavidin-agarose bead slurry (Pierce) was added and lysates

were tumbled for another 4 hours. Beads were collected by

centrifugation for 30 seconds at 6500RPM in an Eppendorf

centrifuge and washed 4 times with 1 ml DNAP buffer each wash,

after this the oligos were either incubated with another cell lysate
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or buffer or processed immediately. After the last wash 50 ml fluid

was left on the beads and 50 ml 26 sample buffer was added,

samples were boiled for 5 minutes. 10 ml of input or beads was

separated on a PAGE gel and transferred to nitrocellulose

membrane.

QPCR
Quantitative PCR for PAI-1 was performed as described in [26]

using the same primersets. Col1a1 was detected using the same

method with primers: fwd 59-CAATGCTGCCCTTTCTG-

CTCCTTT and reverse: 59- CACTTGGGTGTTTGAG-

CATTGCCT.

Figure 1. DNp73 enhances promoter activity via Smad Binding Elements in Hep3B cells that lack expression of endogenous p73
and p53 a) Induction of PAI-1-luc by p53 or p73 variants and/or TGF-b1 after transfection. control = empty vector. b) Induction of p21-luc
by TAp73a and its inhibition by co-expression of increasing amounts of DNp73. c) Induction of PAI-1-luc by TAp73a and its enhancement by co-
expression of increasing amounts of DNp73. d) Activation of the PAI-1-luc promoter with a mutated p53 Binding Element: induction of promoter
activity by p53 and TAp73 depends on an intact p53 binding element in the promoter, whilst DNp73 shows activity even if the p53 binding element
is lacking. Transfected cells were cultured in the presence of 1 ng/ml TGF-b1 for 24 hours where indicated (right). e) Induction of Smad Binding
Elements by p53 or p73 variants and/or TGF-b. Only DNp73 shows activity. Transfected cells were cultured in the presence of 1 ng/ml TGF-b1 for
24 hours. control = empty vector. TAp73c and d forms are shown only in Figure 1a and were omitted in the rest of the figures for simplicity; they
always showed similar results as TAp73.
doi:10.1371/journal.pone.0050815.g001
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Chromatin immunoprecipitation (ChIP)
Hep3B cells were transiently transfected with pcDNA5 FRT

TO DNp73a plasmid at a concentration of 1 mg/ml in 10 cm

dishes using Lipofectamine (Invitrogen) according to the manu-

facturer’s protocol. The media was supplemented with TGF-b1

(1 ng/ml) 24 h after transfection. A further 24 h later, the cells

were fixed by replacing the culture media with 1% formaldehyde

in PBS and incubated for 10 minutes at room temperature.

Fixation was stopped by the addition of glycine (0.125 M final) for

5 minutes. Fixed cells were washed once with PBS and harvested

in SDS Buffer (50 mM Tris pH 8.1, 0.5% SDS, 100 mM NaCl,

5 mM EDTA, 0.02 % NaN3 and protease inhibitors). Cells were

centrifuged at 1000 RPM for 5 minutes and the cell pellets were

resuspended in 3 mL IP buffer (100 mM Tris pH 8.6, 0.3 % SDS,

1.7 % Triton X-100, 0.02 % NaN3 and 5 mM EDTA). Sonication

was performed using a Branson Sonifier B-12, yielding genomic

DNA of a bulk size of 200–1000 bp. For each immunoprecipi-

tation, 0.5 mL of lysate was precleared by the addition of 15 ml of

Protein A/G beads (Santa Cruz). Immunoprecipitation was

performed by incubating overnight at 4uC with antibodies for

HA-tag (Covance) and mouse control IgG ChIP Grade (Abcam;

ab18413) at final concentrations of 4 mg/mL on a rotator.

Antibody bound samples were recovered with 20 ml protein A/

G beads incubated at 4uC on rotating wheel for 4 hours. Beads

were washed with successive washes of Mixed Micelle Buffer

(150 mM NaCl, 20 mM Tris-Cl pH 8.1, 5 mM EDTA pH 8.0,

5.2% w/v sucrose, 0.02% NaN3, 1% Triton X-100, 0.2% SDS),

Buffer 500 (0.1% w/v deoxycholic acid, 1 mM EDTA pH 8.0,

50 mM Hepes pH 7.5, 1% Triton X-100, 0.02% NaN3), LiCl

Detergent Wash Buffer (0.5% w/v deoxycholic acid, 1 mM

EDTA pH 8.0, 250 mM LiCl, 0.5% NP-40, 10 mM Tris-Cl

pH 8.0, 0.02% NaN3) and TE Buffer. Complexes were eluted in

Elution Buffer (1% SDS, 0.1 M sodium bicarbonate) at 65uC in a

shaking incubator for 2 hours followed by reversal of the cross-

links by overnight incubation at 65uC. DNA was isolated using

Nucleic Acid and Protein Purification kit (Macherey-Nagel)

following the manufacturer’s instructions and resuspended in

60 ml elution buffer and further diluted to 280 ml with TE Buffer.

Quantitative PCR was performed using the following primer

sets for PAI-1: fwd 59-CCTCCAACCTCAGCCAGACAAG and

rev 59-CCCAGCCCAACAGCCACA, p21: fwd 59-ACTTG-

TCCCTAGGAAAATCC and rev 59-GAAAACGGAGAGT-

GAGTTTG, and Col1a1 fwd 59-CAGAGCTGCGAAGAGG-

GGA and rev 59-AGACTCTTTGTGGCTGGGGAG. Primers

specific for the promoter region of PTEN were used as a positive

control for the assay and their sequences were fwd 59-ATG-

TGGCGGGACTCTTTATG and rev 59-CGCGCTCAACTCT-

CAAACTT.

Results

DNp73 oppositely affects PAI-1 and p21WAF promoter
activation

To examine a potential cooperation between different p73

variants and TGF-b signaling, we used Hep3B cells that do not

express endogenous p53 or p73 (Figure S1 and [26,32]) and

express modest levels of ectopic DNA (Figure S2A). First, we

transfected a PAI1 promoter-luciferase construct (PAI1-luc) and

studied the induction of the PAI-1 gene, a gene that plays an

important role in development and carcinogenesis [23–25,34] and

which is known to respond to both p53 and TGF-b [12,26,27].

This PAI-1 promoter contains a p53 binding-element and several

Smad Binding Elements [12,26,35]. As expected [12,26,27], co-

transfection of PAI1-luc with a low concentration of a plasmid

expressing p53 strongly increased luciferase activity (Figure 1A,

left). Similarly, also the transactivation competent p73 isoforms

TAp73a, TAp73c and TAp73d induced PAI-1 reporter gene

expression (Figure 1A, left). Surprisingly, the DNp73 form

normally acting as inhibitor of p53 and TAp73 [1,6], also

increased luciferase activity indicative of activation of the PAI-1

promoter. In the presence of TGF-b1, known to cooperate with

p53 in PAI-1 transactivation [26,27], luciferase activity was even

further enhanced (Figure 1A, right). In contrast, luciferase activity

induced by the other TAp73 variants was not further enhanced by

TGF-b1.

To check whether our DNp73 construct was capable to perform

its described inhibitory activity, we investigated the ability of

DNp73 to antagonize TAp73a induced activation of the p21WAF

promoter, a well characterized target of the p53 family [1,31,36].

In agreement with reports by others [31,37,38], DNp73 dose-

dependently reduced TAp73a induced activation of a p21WAF

promoter reporter gene (Figure 1B). However, the reverse effect

was seen for the PAI-1 promotor reporter gene, where DNp73

clearly increased promoter activation (Figure 1C) in line with the

results presented in Figure 1A. In these experiments, cells were

transfected with very small amounts of p53 family members and

expression levels of ectopic p73 in Hep3B cells appeared not to be

exceptionally high under the experimental conditions used (Figure

S2A). Since these assays rely on ectopic expression of DNp73, one

could argue that they may therefore not reflect physiological

conditions. However, high local levels of DNp73 have been

observed in specific parts of the mouse brain during early

development [6] and DNp73 expression levels of up to 150 fold

of that of normal tissue have been observed in aggressive tumors

indicating biological relevance of our data (reviewed in [38]).

DNp73 activity does not depend on the p53 Binding
Element but on Smad Binding elements

Next we investigated whether the effect of DNp73 on PAI-1

expression was dependent on the binding to the p53 binding

element in the PAI-1 promotor. Indeed. as expected transfection

of p53 and TAp73 did not increase activation of a PAI-1 promoter

luciferase construct with a mutated p53 binding element

(Figure 1D) [26]. Interestingly, DNp73 still could activate the

promoter lacking p53BE (Figure 1D). This implies that induction

of PAI-1 expression by DNp73 must be due to effects on regulatory

elements other than the p53BE. The PAI-1 promoter also contains

binding elements for the transcription factors AP-1, SP-1, CRE

and three Smad binding elements [26]. Since our previous work

indicates that AP-1, SP-1 and CRE sites are not involved in the

p53 or TGF-b induced stimulation of PAI-1 [26,27], we

hypothesized that the mechanism by which DNp73 induces

expression of PAI-1 could depend on Smad signaling. To test this

we used a promoter comprised exclusively of repeats of Smad

Binding Elements (SBE-luc), which is routinely used to directly

study TGF-b responses because there is no interference of non-

TGF-b signaling regulated transcription factors [26,39]. DNp73

could clearly induce this construct (Figure 1E), indicating that

DNp73 might indeed affect TGF-b signaling whereas p53 or

TAp73 did not. Hep3B cells under normal conditions do not

express DNp73 (Figure S1) but do still have functional TGF-b
signaling. Therefore, our observations indicate that DNp73 might

act as an enhancer of basal TGF-b signaling, but is not absolutely

required for TGF-b signaling.
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DNp73 stimulation of TGF-b signaling is cell type
independent

It could be that the observed effects of DNp73 on TGF-b
signaling are limited to Hep3B cells without p53 and p73

expressing moderate levels of transfected DNA. Therefore we

tested Hek293 cells which express high levels of endogenous p53

and p73 variants (Figure S1) and efficiently express high levels of

proteins from transfected DNA (Figure S2B and S3). Indeed also

Hek293 cells showed a clear increase in SBE-luc activation after

transfection with DNp73 as well as an additional increase in

combination with TGF-b1 (Figure 2A), similar to Hep3B cells.

These results indicate that DNp73 induced increase of TGF-b
signaling is not cell-type restricted.

Although the common view is that the dominant-negative

function on p53 dependent activities is the main function of DN

p53 family members [40], positive effects of DN p53 family

members on target gene expression have also been described [41–

43]. Especially for DNp63 it is clear that it can act as positive

regulator of target genes [41,42]. However, for DNp73 it remains

an enigma how it could activate the SBE-driven promoter. We

hypothesized that it may enhance the activity of Smad proteins,

the classical TGF-b-induced transcription factors [18,22]. A

central element in the TGF-b signaling routes is the Smad4

protein [18]. To test whether the increase of TGF-b signaling

targets by DNp73 indeed depends on Smad signaling, we used a

cell line that lacks the expression of Smad4 (MDA-MB-468 cells)

and therefore is completely deficient for core TGF-b signaling

[44,45]. Because plasmid uptake was extremely low in these cells

during transfection (Figure S2), the SBE-luc reporter could not be

used. We therefore used the PAI1-luc reporter to detect a TGF-b
signaling response. This promoter has a much higher read-out

because it contains a comprehensive promoter with many

transcription factor binding-elements [26,46] in contrast to the

SBE-luc promoter which consists simply of a stretch of SBE

elements [26,39]. Neither DNp73 nor TGF-b1 alone were capable

of increasing PAI-1 induction in the MDA-MB-468 cells

(Figure 2B), as would be expected when the activity of DNp73

would be SMAD dependent. Yet, TAp73 still could activate the

PAI-1 promoter (Figure 2B), indicating that even with low

transfection efficiencies our model works in this cell line. When

Smad4 was reintroduced in MDA-MB-468 cells by transfection,

PAI-1 induction was highly significantly increased by DNp73 only.

The effect was further enhanced after addition of TGF-b1

(Figure 2C). It must be stated that the magnitude of effects seen

were relatively small, but this is likely due to an only partial TGF-b
signaling restoration related to the low transfection efficiency in

these cells, which yield only low expression levels of Smad4 to a

level far below the endogenous Smad4 levels of Hek293 cells

(Figure S4). Nevertheless, even in these partially TGF-b signaling

restored cells, the response to DNp73 was already highly

significant (Figure 2C), suggesting biological significance.

To get an indication whether the DNp73 induced increase in

TGF-b signaling might also be relevant under normal cellular

conditions, endogenous DNp73 was down regulated in Hek293

cells that express DNp73 endogenously (Figure 2D), by shRNA

designed to the DN specific sequence of DNp73. Because the DN

specific part of DNp73, required for specific downregulation is

very small, choices for shRNA were limited. Yet two target

sequences partially down regulated DNp73 (Figure 2D). However,

even with these limitations, the partial down regulation of DNp73

resulted in a significant decrease in SBE-luc promoter activity

(Figure 2E). This indicates that at least some biological effect of

DNp73 can be expected in influencing TGF-b signaling under

normal cell conditions in Hek293 cells.

To mimic the high expression levels in aggressive tumors [38]

and developing mouse brain [6], we investigated whether

tetracycline-induced DNp73 (Figure S5) was capable of inducing

the expression of endogenous target genes in Hek293 cells. Indeed,

tetracycline-induced DNp73 expression increased endogenous

PAI-1 mRNA in these cells (Figure 2F). Also the mRNA levels

of another endogenous TGF-b signaling target gene, Col1a1 is a

collagen component which has been shown to play a significant

role in carcinogenesis [47–49] and that has a promoter containing

validated SBEs [50] was significantly increased by DNp73

(Figure 2G). The induction of Col1a1 by DNp73 was verified by

qPCR (data not shown). Together these data suggest that DNp73

expression can induce more than one endogenous TGF-b
signaling target and that suggest that this mechanism works in

different cell types.

DNp73 and Smads cooperate in TGF-b signaling
To further study the possible cooperation between Smad

proteins and DNp73 in enhancing TGF-b signaling, DNp73 was

expressed ectopically in combination with Smad2 or 3 and Smad4

in (TGF-b1 treated) Hep3B cells. When using a combination of

either Smad2 or Smad3 together with Smad4, the activation of the

SBE-luc construct was significantly enhanced, but when DNp73

was added, the SBE activity increased to extremely high levels

(Figure 3A and B, note the fold increase of around 100 fold after

TGF-b1 treatment) as occurs in human tumors [38]. In line with

the hypothesis that Smad2/3 signaling is responsible for the

induction of SBE containing promoters by DNp73, Smad7 which

inhibits Smad2 and Smad3 activation [17], already at a very low

concentration effectively prevented the DNp73 stimulated increase

in TGF-b signaling in Hep3B cells (Figure 3C). This further

Figure 2. Stimulation of TGF-b signaling by DNp73 in Hep3B, Hek293 and MDA-MB-468 cells. a) Luciferase assays comparing the effect of
DNp73 on Hep3B cells versus Hek293 cells using SBE-luc as reporter, cotransfected with either empty vector or 10 ng/well DNp73, and/or treated
with 1 ng/ml TGF-b1. b) Luciferase assay of MDA-MB-468 cells (deficient for Smad4) transfected with 400 ng/well PAI1-luc, 100 ng/well empty vector
(to compensate for Smad4 plasmid in Figure 2c) and either 10 ng/well empty vector (control), TAp73 or DNp73. Cells were grown with or without
TGF-b1. c) Luciferase assay of MDA-MB-468 cells (deficient for Smad4) transfected with 400 ng/well SBE-luc, 100 ng/well Smad4 and 10 ng/well of
either empty vector (control) or DNp73. Cells were grown in the presence of TGF-b1 where indicated. ** p,0.05 and *p,0.10 in a two-tailed T-test. d)
Immunoblot analysis using a PAN-p73 specific antibody using lysates of Hek293 cells transfected with either empty pSuper vector as control (C1 or
C2) or pSuper vectors expressing shRNA directed to the DN specific part of DNp73, a lysate of Hek293 cells transfected with a plasmid expressing HA-
tagged DNp73a was used to serve as marker for the height of DNp73a. The bands corresponding to this height are shown additionally with a light
balance appropriate for this band. Two DN p73 targeting sequences were used: DN1 and DN2. The PAN-p73 antibody detected multiple bands
including the DNp73a variant. However, only a few specific bands, including a band with the height of DNp73a, were reduced whereas other bands
were not affected, indicating that DNp73 variants were specifically downregulated. e) Luciferase assays of Hek293 cells transfected with SBE-luc and
either pSuper empty vector control or pSuper DN1 and DN2 (combination), showing that (partial) DNp73 specific downregulation significantly
decreases TGF-b signaling. ** p,0.05 in a two-tailed T-test. f) QPCR analysis of PAI-1 mRNA in tetracycline regulated DNp73 expressing cells, left
untreated or after induction of DNp73. g) QPCR analysis of Col1a1 mRNA in tetracycline regulated DNp73 expressing cells left untreated or after
induction of DNp73. ** p,0.05 in a two-tailed T-test.
doi:10.1371/journal.pone.0050815.g002
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suggests that DNp73 enhanced the core TGF-b pathway and

required signaling by Smad proteins in our model.

DNp73 and Smads form a complex with SBEs in vitro
To study if direct binding of Smad4 and/or Smad3 to the Smad

binding elements might be involved, we determined the effect of

DNp73 on the efficiency of binding of (tagged) Smad3 and Smad4

to oligos consisting of Smad Binding Elements. Using the DNA

Affinity Precipitation (DNAP) assay, biotin-labeled oligos consist-

ing of SBE repeats were incubated with protein extracts of

untreated or TGF-b1 treated Hek293 cells. These cells ectopically

expressed tagged Smad 3 and 4 proteins in combination with

Figure 4. DNp73 and Smads form a complex with SBEs in vitro. A) DNA Affinity Precipitation assay (DNAP) of SBE DNA duplexes with extracts
of cells left untreated or treated with TGF-b1 after triple transfection with YFP-tagged Smad4, V5-tagged Smad3 and either empty vector control (c),
HA-tagged DNp73 (DN) or HA-tagged TAp73a (TA). B) Relative binding of V5Smad3 to SBE oligos, quantification and normalization for input values of
the V5Smad3 results from Figure 3D. C) Relative binding of YFPSmad4 binding to SBE oligos, quantification and normalization for input values of the
YFPSmad4 results from Figure 3D. D) Pull-down of SBE oligo incubated with a cell lysate containing HA-DNp73 (extract 1) or with a cell-lysate
containing V5Smad3 and YFPSmad4 (extract 2) or incubated first with extract 1, washed and incubated with extract 2 (1+2). E) Immunoprecipitation
(IP) with a-HA of HA-DNp73 induced cells (tetracycline) detecting endogenous Smad3.
doi:10.1371/journal.pone.0050815.g004

Figure 3. DNp73 and Smads cooperate in TGF-b signaling. A) Activation of the SBE-luc promoter by a Smad2+Smad4 combination (pink
edged bars) and/or DNp73 (Black bars) and/or TGF-b1 (right panel). c = empty vector control. B) Activation of the SBE-luc promoter by a
Smad3+Smad4 combination (red edged bars) and/or DNp73 (black bars) and/or TGF-b1 (right panel). C) Luciferase assay of cells transfected with SBE-
luc reporter and DNp73 in combination with increasing amounts of (inhibitory) Smad7. Cells in the right panel were also treated with 1 ng/ml TGF-b1.
doi:10.1371/journal.pone.0050815.g003
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DNp73, TAp73 or without p73. We used Hek293 cells because

they express high levels of transfected protein (Figure S2B), which

is required for efficient DNAP. Extracts of unstimulated cells

showed increased binding of Smad3 and Smad4 to DNA in the

presence of DNp73. Adding TGF-b1 further increased Smad

binding (Figure 4A). In contrast the presence of TAp73 did not

increase Smad binding nor did it change the relative binding

compared to control and TAp73 transfected cells in TGF-b
treated cells (Figure 4 A, B and C). Intriguingly, DNp73 itself was

also detected in large amounts in the DNA precipitate (Figure 4A).

Therefore it potentially could be part of the Smad-SBE DNA

complex. In line with the effects with ectopically co-expressed

Smads, DNp73 also enhanced SBE binding of endogenous Smad3

(Figure 4E). However, interactions between DNp73 and endoge-

nous Smad3 proteins in extracts of soluble proteins were not

detected in the absence of DNA (Figure S6). In a subsequent

DNAP experiment, protein extracts from DNp73 expressing cells

or buffer were incubated with SBE oligos. The same oligos and

bound proteins were next incubated with either buffer or a protein

extract of TGF-b1 treated cells ectopically expressing both V5-

tagged Smad3 and GFP tagged Smad4 (lysate 2) and pulled-down.

As expected, Smad3 and Smad4 bound the SBE oligo (Figure 4D,

beads 2). DNp73 itself was also pulled-down with the SBE DNA

duplexes (Figure 4D, beads 2). It is unclear if this initial DNp73

binding occurs directly or through binding of endogenous Smads.

However, pre-incubation of SBE oligos with extracts of DNp73

expressing cells bound more ectopic Smad3 and Smad4 than

control SBE oligos (Figure 4D, beads compare 1+2 to 2). Inversely,

DNp73 pull-down was more efficient with Smad3 and Smad4

incubated SBE oligos (Figure 4D, beads, compare 1+2 and 1)

suggesting that Smad3/Smad4 and DNp73 mutually facilitate or

stabilize each other’s binding to the SBE DNA. DNp73 might bind

to endogenous promoter DNA as seen for the PTEN promoter

[51].

DNp73 directly interacts with DNA at the Smad Binding
Elements

While the DNAP assay demonstrated a direct interaction

between DNp73 and TGF-b target promoters in vitro, we sought

to determine whether this interaction also occurs in vivo. To this

end, chromatin immunoprecipitation (ChIP) was performed in

TGF- b stimulated Hep3B cells transiently overexpressing

recombinant HA tagged DNp73. An antibody against HA was

used, as the PAN-p73 antibody interaction was insufficient to

demonstrate direct binding. Following pulldown with the HA

antibody, the interacting DNA was quantitated with qPCR using

primers specific for the promoter region of PTEN, PAI-1, p21 and

Col1a1 and compared to IgG as background. PTEN serves as a

positive control as a previous study [51] has demonstrated that

DNp73 binds directly to its promoter region. Indeed PTEN

showed a 4.3560.97 (p = 0.0048; Figure 5D) fold enrichment

compared to IgG. Further we observed, a significant in vivo

interaction of DNp73 with the SBE in PAI-1 (9.0564.56;

p = 0.038; Figure 5A) and Col1a1 (3.1960.58; p = 0.003;

Figure 5B). P21 showed the highest enrichment, however this

was just not significant (21.52613.74; p = 0.06, Figure 5C).

Binding of DNp73 was not observed in unstimulated Hep3B cells

suggesting that the interaction is indeed TGF- b mediated (data

not shown).

Discussion

High expression levels of DNp73 have been shown to strongly

correlate with poor survival of cancer patients and DNp73 positive

tumors show a reduced response to chemotherapy and irradiation

(reviewed in [2]).

Whereas we confirmed that DNp73 inhibits transactivation

activities of p53/p73 on p53 binding element sequences in a

dominant-negative fashion as described previously [1–3,6,31,38],

our results indicate that its action on TGF-b target genes is non-

canonical and does not reduce but rather enhance target gene

expression. Our data suggest that the latter transactivation

activities may require interaction with Smad proteins on Smad

Binding Elements (SBEs). DNp73 was found to enhance the

interaction possibly through binding of Smads to SBEs (and vice

versa). This provokes the speculation that induction of TGF-b
signaling targets by DNp73 could potentially be mediated by the

formation of a tertiary DNp73-Smad complex at the SBEs that

seems to be more efficient in transactivation than a complex of

Smads and SBE DNA alone.

Our data combined with previous data by others indicates that

further studies are warranted on the role that DNp73 might play a

role in two major biological processes through which carcinogen-

esis could be supported. Its inhibition of p53 signaling may prevent

apoptosis and cell cycle arrest, supporting growth and survival of

cells with increased genetic instability [2,6,38]. Its potential

concomitant stimulation of TGF-b signaling, which may support

invasiveness and metastatic potential of these increasingly more

Figure 5. DNp73 interacts directly with SBEs in vivo. Chromatin
Immunoprecipitation (ChIP) of DNp73 binding with SBE. The relative
amount of DNp73 associated DNA as pulled down with an antibody
directed against HA, is represented as a fold enrichment compared to
pull-down with IgG (background). Gene enrichment was quantified by
qPCR using primers specific for the promoter regions of A) PAI-1, B)
Col1a1 and C) p21WAF within the SBEs. Primers specific for PTEN (D)
were used as a positive control. Pulldown antibody is shown on the x-
axis, with y-axis showing fold enrichment 6 SEM. * represents p-
value.0.05.
doi:10.1371/journal.pone.0050815.g005
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aggressive tumor cells [20]. This may be suggested by the two

TGF-b target genes PAI-1 and Col1a1 of which the expression

was enhanced by DNp73 and which are both directly associated

with development and carcinogenesis [23–25,34,47–49]. Together

these two mechanistically distinct actions of DNp73 would explain

the exceptionally strong correlation between high DNp73 expres-

sion in tumors and poor patient survival [2,52,53]. This suggests

that DNp73 may have additional functions that could play a role

not only at high/pathological levels of DNp73 in cancer therapy

resistance and/or tumor aggressiveness but also in development by

stimulating expression of TGF-b signaling targets via a novel, non-

canonical pathway.

The assumption that DNp73 can enhance the expression of

specific TGF-b signaling targets was supported by a number of

independent observations in three different cell-lines, using four

different luciferase reporters, and a direct interaction determined

by ChIP. Whereas all complement each other and together

generate a comprehensive picture (explained in detail in Text S1),

we are aware that some of the effects although highly significant

are small. In all, we do not show proof that any of this may

translate to biologically relevant effects in vivo. Therefore, the in

vivo importance of this cooperation remains to be explored.

However, since the combined data are highly congruent it is not

unlikely that if these small effect chronically persist in vivo, they

may exert biological effects. Although this is beyond the scope of

this report, crossing recently published DNp73 specific mice [9,11]

with mice deficient in core TGF-b signaling components may help

to further establish the exact biological importance of DNp73 in

TGF-b signaling.

Supporting Information

Figure S1 Expression of p53 and p73 in Hep3B, Hek293
and MDA-MB-468 cells. Cells were seeded, left untreated or

treated with 1 ng/ml TGF-b1. 24 hours after treatment, cells were

lysed. Lysates were immunoblotted for p53, PAN-p73 and c-

tubulin as loading control. Hek293 cells show high expression of

p53 and p73, MDA-MB-468 show moderate expression of p53

and p73 and no expression of p53 and p73 was observed in Hep3B

cells. Identification of the DNp73a band was done by comparing

the band pattern on this blot to HADNp73a transfected cells

(similar to main figure 2D). No differences in p53 or p73

expression were observed after TGF-b1 treatment.

(PDF)

Figure S2 Expression of transfected DNp73 in Hep3b,
Hek293 and MDA-MB-468 cells. Cells were seeded, trans-

fected with the indicated amount of DNp73 and further left

untreated or treated with 1 ng/ml TGF-b1. 24 hours after TGF-

b1 treatment, cells were lysed. Lysates were immunoblotted with

a-HA to detect transfected DNp73 and c-tubulin as loading

control. A) Hep3B cells show moderate expression of transfected

DNp73. B) Hek293 cells show very high expression of transfected

DNp73, which can even be detected at the very low concentrations

used under experimental conditions (10 ng/well). C) MDA-MB-

468 cells show very low expression of transfected DNp73, it can

barely be detected between background bands in 500 ng/well

transfected cells in long exposed blots. Note that in figure B, a blot

that was clean enough to enhance the signal of a-HA to a level that

MDA-MB-468 cells transfected with 500 ng HADNp73 do show a

clear band, showing that these cells do expess some transfected

DNA. (we speculate that Hek293 blots are particularly clean

because transfected Hek293 cells express a lot of HADNp73,

which ensures specific binding and thereby may prevent non-

specific bands). No differences in p53 or p73 expression were

observed after TGF-b1 treatment.

(PDF)

Figure S3 Expression of p73 and p53 after transfection
of DNp73 and TAp73 in Hep3b, Hek293 and MDA-MB-
468 cells under experimental conditions. Cells were seeded

at 60% confluence in 24 wells plates, transfected with 10 ng/well

DNp73 or TAp73 and further left untreated or treated with 1 ng/

ml TGF-b1. 24 hours after TGF-b1 treatment, cells were lysed.

Lysates were immunoblotted with a-PANp73 to detect all p73, a-

HA to detect transfected p73 and c-tubulin as loading control.

Transfected p73 was not detected in Hep3B cells or MDA-MB-

468 cells transfected with 10 ng/well (experimental amount). Both

transfected DNp73 or TAp73 was detected in similar amounts in

Hek293 cells. No differences in p53 or p73 expression were

observed after TGF-b1 treatment.

(PDF)

Figure S4 Expression of Smad4 in Hep3b, Hek293 and
MDA-MB-468 cells under experimental conditions. Cells

were seeded at 60% confluence in 24 wells plates, transfected with

400 ng/well Luciferase reporter plasmid, 100 ng/well empty

vector or Smad4 expressing vector and further left untreated or

treated with 1 ng/ml TGF-b1. 24 hours after TGF-b1 treatment,

cells were lysed. Lysates were immunoblotted with a-Smad4 to

detect all Smad4 (endogenous and transfected) and c-tubulin as

loading control. Transfected Smad4 was clearly detected in

Hek293 cells, after long exposure Hek293 also show an

endogenous Smad4 band in a high exposed blot. Smad4 was

barely detected in transfected Hep3b cells (not visible in these

exposures) and no Smad4 was observed in MDA-MB-468 showing

that Smad4 expression in transfected MDA-MB-468 cells is lower

than endogenous Smad4 in Hek293 cells. No differences were

observed after TGF-b1 treatment.

(PDF)

Figure S5 Tetracycline inducible HADNp73a Hek293
cells. Tetracycline inducible HADNp73a Hek293 cells cells were

generated. Cells were seeded at 60% confluence in 6- wells plates,

half was left untreated and half was treated with 1 mg/ml

tetracycline for 24 hours after which cells were lysed. Lysates

were immunoblotted with a-HA to detect induction of DNp73 and

with a-GAPDH as loading control.

(PDF)

Figure S6 No interactions between DNp73 and endoge-
nous Smad3 proteins in extracts of soluble proteins in
the absence of DNA. Immunoprecipitation of Endogenous

Smad3 with a-HA antibody in Hek293DNp73 cells, left untreated,

treated with 1 ng/ml TGF-b1, DNp73 induced (+1 mg/ml

tetracycline) or both. Extracts of input and of Ip were reacted

with a-HA or a-Smad3 antibody. The band in IP samples with

Smad3 antibody are non-specific bands which run lower than the

Smad3 specific band (visible only in the input samples).

Endogenous Smad3 was not detected in IP samples.

(PDF)

Text S1 Used cell lines and reporter constructs.

(PDF)
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