
R E S E A R CH A R T I C L E

Early soft and flexible fusion of electroencephalography and
functional magnetic resonance imaging via double coupled
matrix tensor factorization for multisubject group analysis

Christos Chatzichristos1 | Eleftherios Kofidis2,3 | Wim Van Paesschen4 |

Lieven De Lathauwer1,5 | Sergios Theodoridis6,7 | Sabine Van Huffel1

1Department of Electrical Engineering (ESAT),

STADIUS Center for Dynamical Systems,

Signal Processing and Data Analytics, KU

Leuven, Leuven, Belgium

2Department of Statistics and Insurance

Science, University of Piraeus, Piraeus, Greece

3Computer Technology Institute and Press

“Diophantus" (CTI), Patras, Greece
4Department of Neurology, UZ Leuven,

Leuven, Belgium

5Engineering, Science and Technology, KU

Leuven Kulak, Kortrijk, Belgium

6Department of Informatics and

Telecommunications, National and

Kapodistrian University of Athens, Athens,

Greece

7Department of Electronic Systems, University

of Aalborg, Aalborg, Denmark

Correspondence

Christos Chatzichristos, Department of

Electrical Engineering (ESAT), STADIUS Center

for Dynamical Systems, Signal Processing and

Data Analytics, KU Leuven, Leuven, Belgium.

Email: cchatzic@esat.kuleuven.be

Funding information

The research leading to these results was

funded by the European Union's 7th

Framework Program under the ERC Advanced

Grant: BIOTENSORS (No. 339804).

Abstract

Data fusion refers to the joint analysis of multiple datasets that provide different

(e.g., complementary) views of the same task. In general, it can extract more informa-

tion than separate analyses can. Jointly analyzing electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) measurements has been proved to be

highly beneficial to the study of the brain function, mainly because these neuroimag-

ing modalities have complementary spatiotemporal resolution: EEG offers good tem-

poral resolution while fMRI is better in its spatial resolution. The EEG–fMRI fusion

methods that have been reported so far ignore the underlying multiway nature of the

data in at least one of the modalities and/or rely on very strong assumptions con-

cerning the relation of the respective datasets. For example, in multisubject analysis,

it is commonly assumed that the hemodynamic response function is a priori known

for all subjects and/or the coupling across corresponding modes is assumed to be

exact (hard). In this article, these two limitations are overcome by adopting tensor

models for both modalities and by following soft and flexible coupling approaches to

implement the multimodal fusion. The obtained results are compared against those

of parallel independent component analysis and hard coupling alternatives, with both

synthetic and real data (epilepsy and visual oddball paradigm). Our results demon-

strate the clear advantage of using soft and flexible coupled tensor decompositions

in scenarios that do not conform with the hard coupling assumption.
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1 | INTRODUCTION

To better understand a system as complex as the human brain, multi-

modal measurements can be beneficial since they are able to provide

information on complementary aspects of the same system. Through

jointly analyzing the data that result from different modalities, their

individual advantages may be exploited and at the same time some of

their disadvantages can be mitigated (Adalı, Levin-Schwarz, &

Calhoun, 2015a; Lahat, Adalı, & Jutten, 2015). In this way, a more

accurate localization of the activated brain areas can be achieved.

Two of the most commonly used neuroimaging modalities are the

electroencephalography (EEG) and functional magnetic resonance
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imaging (fMRI). fMRI is a noninvasive brain imaging technique, which

indirectly studies brain activity by measuring fluctuations of the

blood-oxygen-level-dependent (BOLD) signal (neurovascular coupling)

(Lindquist, 2008). The first BOLD fluctuation occurs roughly 2–3 s

after the onset of the neural activity, when the oxygen-rich (oxygen-

ated) blood starts displacing the oxygen-depleted (deoxygenated)

blood. This rises to a peak after 4–6 s, before falling back to the base-

line (and typically undershooting slightly). The BOLD poststimulus

neuronal response is consistent with brain processes that alter the

coupling between metabolism (need of oxygen) and blood flow

(Huster, Debener, Eichele, & Herrmann, 2012; Logothetis &

Pfeuffer, 2004). The time course of the BOLD signal corresponding to

a transient neural activity is called the hemodynamic response func-

tion (HRF). Although fMRI has a high spatial resolution, often at the

millimeter scale, it is both an indirect and a “delayed” measure of the

brain activity, with its temporal resolution being limited by the repeti-

tion time (TR) of the scanner, usually of the order of seconds

(Lindquist, 2008). Other than the resolution limitation, fMRI has been

reported to underestimate the cortical activity near the ischemic area

in patients with stroke, or in cases where the neurovascular coupling

has been affected due to pathological issues or due to some medica-

tion (pharmacological studies) (Vitali, Di Perri, Vaudano, Meletti, &

Villani, 2015).

EEG provides information about the neural electrical activity in

the brain as a function of time. This is done with the aid of multiple

electrodes that are placed at certain locations over the scalp or

(in rarer cases, in intracranial EEG) over the cortex under the skull.

The EEG signal results from the electrical measurement of the neuro-

nal activation, realized through the movement of charged ions at the

junction between the synapses of (the dendrites of) the neurons. This

provides a more direct measure of the neuronal activity compared to

fMRI and hence a better temporal resolution (sensitive to millisecond

changes in neural processing). However, EEG has poor spatial resolu-

tion, limited by the number of electrodes employed and the resistive

properties of the extracerebral tissues. Furthermore, due to the fact

that electrodes are more sensitive to neural activations that occur

closer to the scalp, determining the exact location of the activations

that take place in deeper areas is more challenging (Sanei &

Chambers, 2007; Vitali et al., 2015). For example, in epilepsy related

applications, the EEG signal is being used in order to identify the exact

time of occurrence of the seizure event while the higher spatial reso-

lution of fMRI data helps to delineate the seizure onset zone. The

complementary nature of their spatiotemporal resolution motivates

the fusion of EEG and fMRI toward a better (in both time and space)

localization of the brain activity (Karahan, Rojas-Lopés, Bringas-Vega,

Valdés-Hernandéz, & Valdes-Sosa, 2015; Levin-Schwartz, 2017).

The factorization or decomposition of data is a versatile instru-

ment for data fusion, which consists of factorizing all involved data

matrices (or tensors) so that one or more factors are shared (fully or

partially and in a hard or smooth sense) among them. We can couple

(fuse) those different decompositions by adding extra constraints on

the data. Fusing data is only meaningful in the presence of a common

representation that allows to exploit a relationship among the

different datasets. Decomposing the data can precisely offer such a

common representation or latent space (Lahat et al., 2015). The goal

of different types of decompositions is to estimate the different com-

ponents (“causes” or sources) that underlie and/or generate the data,

based only on the observations, that is, “blindly.” Hence, the localiza-

tion of the activated brain areas in the fusion of EEG and fMRI is a

challenging joint blind source separation (BSS) problem

(Theodoridis, 2020), in which the sources consist of a combination of

the activated areas (spatial maps in fMRI and topoplots in EEG) and

time courses.

BSS methods that use as input matrices are mostly based on inde-

pendent component analysis (ICA) (Calhoun, Liu, & Adalı, 2009;

Hunyadi, De Vos, Van Paesschen, & Van Huffel, 2015; Mijovi�c

et al., 2012; Swinnen, Hunyadi, Acar, Van Huffel, & De Vos, 2014) and

rely on the concatenation of different modes. They have been, up to

recently, the state of the art for jointly analyzing EEG and fMRI. ICA is

a powerful tool for separating a multivariate signal into additive com-

ponents based on the assumption that they are statistically indepen-

dent. However, by definition such methods fall short in exploiting the

inherently multiway nature of these data. fMRI and EEG datasets are

inherently multidimensional, comprising information in time and along

different voxels or channels, subjects, trials, etc. For EEG, in order to

unveil more of the latent information, the signal can be expanded

along additional modes. These extra modes can be used to represent

features from the frequency domain (e.g., via a wavelet transform) or

the repeated responses along a trial/event-related potential (ERP)

mode (ERP is the response immediately after a specific sensory, cogni-

tive, or motor stimulus) (Cong et al., 2015). This multidimensional

nature of the EEG and fMRI datasets points to the adoption of tensor

models instead of the matrix ones. Several tensor decomposition

models have been applied in fMRI and EEG BSS, including canonical

polyadic decomposition (CPD) or PARAllel FACtor analysis

(PARAFAC) (Acar, Aykut-Bingo, Bingol, Bro, & Yener, 2007;

Andersen & Rayens, 2004), and its generalizations known as PARA-

FAC2 (Chatzichristos, Kofidis, & Theodoridis, 2017; Spyrou, Parra, &

Escudero, 2019) and block term decomposition (BTD) (Chatzichristos,

Kofidis, Moreno, & Theodoridis, 2019; De Lathauwer, 2012).

The tensor decomposition models can (a) improve the ability of

extracting spatiotemporal patterns of interest (Andersen &

Rayens, 2004; Helwig & Hong, 2013; Stegeman, 2007), (b) facilitate

neurophysiologically meaningful interpretations (Andersen &

Rayens, 2004), and (c) produce unique (modulo scaling and permuta-

tion ambiguities) representations under mild conditions

(Sidiropoulos & Bro, 2000). Those mild conditions can, in general, be

more relaxed in the case of coupled tensor decompositions compared

to their single-tensor counterparts. It has been demonstrated that

coupling through one or more common modes, by sharing the

corresponding factors among the tensor decompositions, can ensure

uniqueness that is not possible when considering separate decompo-

sitions (Sørensen, Domanov, & De Lathauwer, 2015). Moreover,

tensorial methods are able to make predictions more robustly in the

presence of noise, compared to their two-way counterparts

(Andersen & Rayens, 2004; Chatzichristos, Kofidis, et al., 2019;
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Sidiropoulos et al., 2017). This is very important in view of the fact

that the biomedical data are usually highly corrupted by noise

(Andersen & Rayens, 2004).

In the context of fusion, the multiway nature of EEG has been

exploited in some earlier methods (Acar, Levin-Schwartz, Calhoun, &

Adalı, 2017a; Hunyadi, De Vos, Van Paesschen, & Van Huffel, 2016),

but it has been so far mostly neglected for fMRI. Furthermore, most

of the methods rely on preprocessing of the fMRI data in the general

linear model (GLM) framework. A spatial map of interest (areas of acti-

vation) per subject is extracted from the fMRI data and all the spatial

maps are vectorized and stacked in a matrix (space � subjects). That is

the spatial correlations and the extra dimension of time are discarded

and the analysis relies on features (instead of raw data) and coupled

matrix tensor factorization (CMTF) to solve the joint BSS problem. In

the GLM framework, a canonical HRF is assumed to be known (and

be invariant in space and among subjects), the expected signal

changes are defined as regressors of interest in a multiple linear

regression task and the estimated coefficients are tested against a null

hypothesis. The assumption of intrasubject and intersubject variability

of HRF is not accurate. It is known that HRF varies among different

areas, subjects, and even tasks (Aguirre, Zarahn, & D'Esposito, 1998;

Handweker, Ollinger, & Esposito, 2004; Van Eyndhoven, Hunyadi,

Dupont, Van Paesschen, & Van Huffel, 2019). Alternative methods

have been proposed for the fMRI analysis, which accommodate possi-

ble discrepancies between the assumed HRF and the actual one, and

cope with possible resulted distortions and inaccuracies, by the adop-

tion either of flexible dictionaries (Morante, 2020) or semiblind ICA

approaches (Calhoun, Stevens, Kiehl, & Pekar, 2005). The assumptions

used by GLM may introduce bias on the size of activation and on the

estimates of its variance, thus affecting test statistics, power, and false

positive rates, and so forth (Monti, 2011; Olszowy, Aston, Rua, &

Williams, 2019). Furthermore, as it has been reported in some studies

(Vitali et al., 2015), the neurovascular coupling could be also altered in

epileptic patients; hence, the commonly used assumptions for the

HRF may not be valid anymore.

The goal of this article is to demonstrate the gains from:

• Using raw data instead of features (early fusion), omitting any pos-

sible bias in the resulting estimates, as previously explained, in an

effort to fully exploit the information that underlies the raw data

(Lahat et al., 2015; Ramachandram & Taylor, 2017).

• Exploiting the multiway nature of both modalities.

• Using models that do not assume hard coupling among the differ-

ent modes of the modalities, in order to avoid problems due to

mismodeling.

Two different approaches that do not assume hard coupling will

be explored, namely flexible and soft coupling tensor models. In flexi-

ble coupling, the HRF is computed as part of the optimization, while

in soft coupling the HRF is constrained to be similar (but not identical)

to a reference model of it. Hence, we propose the use of soft coupled

tensor–tensor decomposition in analyses, where all the subjects are

expected (due to the experiment settings) to have similar time courses

and soft (or flexible) double CMTF (DCMTF) otherwise. In both

approaches, the existence of nonshared components is allowed in

order to model the possible existence of neural sources or artifacts

that are not reflected in both modalities. Furthermore, we propose a

lighter alternative model for the HRF (with fewer parameters), which

will be used as a reference in the flexible model, in an attempt to

decrease the computational cost of optimizing the HRF. We compare

the proposed methods with methods based on ICA, hard coupling and

uncoupled CPD per modality. A shorter version of this article appears

in Chatzichristos, Kofidis, De Lathauwer, Theodoridis, and Van

Huffel (2020). The soft coupled tensor–tensor decomposition

approach was first proposed in our earlier work (Chatzichristos,

Davies, Escudero, Kofidis, & Theodoridis, 2018), where the adoption

of tensor models for both modalities was proposed for the first time.

This article is organized as follows. The adopted notation is intro-

duced in the following subsection. In the next section, we will briefly

discuss the categorization of different fusion approaches and we will

provide a detailed overview of tensor-based approaches to the fusion

of EEG and fMRI. In Section 3, after introducing the reader to tensor

decomposition and the statistical methods used in the fusion of EEG

and fMRI (Sections 3.1 and 3.2), we will present the alternative model

for the HRF (Section 3.3). In the remaining subsections, the two differ-

ent approaches for the fusion of EEG and fMRI will be introduced,

namely soft coupled tensor–tensor decomposition and soft

(or flexible) DCMTF. In Section 4, we will present comparative results

with both simulated and real data (epilepsy and visual oddball para-

digm) analyzed. In the last part of this article, we will discuss our find-

ings and draw our conclusions.

1.1 | Notation

Vectors, matrices, and higher-order tensors are denoted by bold

lower-case, upper-case, and calligraphic upper-case letters, respec-

tively. For a matrix A, A> and A† denote its transpose and pseudo-

inverse, respectively. An entry of a vector a, a matrix A, or a (third-

order) tensor A is denoted by ai, ai,j, or ai, j, k, respectively. A:,1:j is used

to denote the columns 1 to j of a matrix A and ak,j denotes the jth col-

umn of Ak. The column-wise Khatri–Rao product of two matrices,

A�RI�R and B�RJ�R is denoted by A�B¼ a1�b1,a2�b2,…,aR�bR½ �,
with aj, bj being the jth columns of A, B, respectively and � denoting

the Kronecker product. The outer product of two tensors is denoted

by ∘. For an Nth-order tensor, A �RI1�I2�����IN , A nð Þ �RIn�I1 I2 ���In�1 Inþ1 ���IN

is its mode–n unfolded (matricized) version (whose rank is known as

mode–n rank), which results from mapping the tensor element with

indices (i1, i2, …, iN) to a matrix element (in, j), with j¼

1þPN
k¼1,k ≠ n ik�1ð ÞJk½ �, Jk ¼

1, for k¼1 or k¼2 and n¼1,Qk�1
m¼1,m≠ nIm, otherwise:

(
.

The Frobenius norm of the tensor is defined

as: Ak kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI1
i

PI2
j
…
PIN
k
a2i,j,…,k

s
.
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2 | DATA FUSION

2.1 | Categorization of data fusion approaches

EEG–fMRI fusion is only one of a multitude of examples of data

fusion. Data fusion generally refers to the analysis of several datasets

where they interact with and inform each other. Different types of

fusion can be realized (Karahan et al., 2015; Lahat et al., 2015;

Ramachandram & Taylor, 2017) but generally, the definition may dif-

fer with regard to the degree of generality and the specific research

areas (Cocchi, 2019). Various types of applications, involving diverse

sets of inter-related data, have emerged. These include metabolomics

(Acar, Bro, & Smilde, 2015), array processing (Sørensen & De

Lathauwer, 2013; Sørensen & De Lathauwer, 2017), sentiment analy-

sis (Zadeh, Chen, Poria, Cambria, & Morency, 2017), link prediction

(Ermiş, Acar, & Cemgil, 2013) and, of course, biomedical applications

(Adalı et al., 2015a; Adalı, Levin-Schwarz, & Calhoun, 2015b; Cal-

houn & Adalı, 2008; Karahan et al., 2015; Lahat et al., 2015;

Ramachandram & Taylor, 2017), among many others.

Data fusion approaches can be categorized in various ways.

The main categorizations are based on the (a) the level and (b) way

the fusion is performed (Figure 1). Two main levels and two sub-

levels have been defined and become a reference classification

(Llinas & Hall, 1998; Ramachandram & Taylor, 2017), namely,

“early”/low-level fusion and “late” fusion, which is subdivided into

mid-level fusion and high-level fusion. In “early”/low-level fusion

(or observational level), raw datasets are used. Late mid-level (fea-

ture level or state-vector level) fusion is considered when the data

fusion methods operate on features extracted from each dataset

separately, so, instead of using raw data for the problem at hand

(e.g., classification), features of the data are utilized. The late high-

level (decision/information level) fusion methods model each

dataset separately and only decisions (model outcome) from

processing of each data block are fused.

The categorization based on the way the fusion is performed is

twofold. The earliest approaches to EEG–fMRI fusion (and a large

number of recent ones, for example, (Ferdowsi, Abolghasemi, &

Sanei, 2015)) are essentially “integrative” (or “asymmetric” (Huster

et al., 2012)) in nature (Lahat et al., 2015). The rationale behind them

is to employ objective functions for the decomposition of the fMRI

signal with constraints based on information previously derived from

the EEG analysis (or vice versa), the so-called EEG-aided fMRI analysis

(or fMRI-aided EEG analysis, respectively). Recently, the emphasis has

been turned to “true” (or “symmetric”) fusion, for example, (Acar

et al., 2017a; Acar, Levin-Schwartz, Calhoun, & Adalı, 2017b; Hunyadi

et al., 2016; Karahan et al., 2015; Martínez-Montes, Valdés-Sosa,

Miwakeichi, Goldman, & Cohen, 2004; Van Eyndhoven, Hunyadi, De

Lathauwer, & Van Huffel, 2017), where the decomposition of the data

from each modality can influence the other using all the common

available information that may exist, and the decomposition of the

datasets is simultaneous, allowing full interactions with each other. In

order to fully exploit all the latent information that lies in multimodal

datasets, approaches that allow direct integration of information

across modalities in the context of true fusion (Huster et al., 2012) are

needed. The true fusion is realized through coupling of the data across

shared modes/ways. Detailed reviews of such methods can be found

in, for example, (Adalı et al., 2015a; De Lathauwer & Kofidis, 2017).

Coupling is realized in the corresponding optimization through impos-

ing constraints that relate the shared components/factors. A unifying

algorithmic framework that implements both hard and soft CMTF

approaches recently appeared in Schenker, Cohen, and Acar (2021).

2.2 | Fusion of EEG and fMRI

EEG–fMRI fusion has been employed in different applications. Pres-

urgical evaluation of epileptic patients is one of its first and main

applications, in search of an improved localization of the neural

F IGURE 1 Different types of data
fusion approaches

1234 CHATZICHRISTOS ET AL.



sources of epileptogenic activity (Adalı et al., 2015b; Hunyadi,

Dupont, Van Paesschen, & Van Huffel, 2017; Huster et al., 2012). Fur-

thermore, EEG and fMRI fusion has been used in order to address

research questions in cognitive neuroscience in the context of classi-

cal cognitive experiments, such as oddball paradigms (Walz

et al., 2013) or auditory detection tasks (Sadaghiani et al., 2010). Also,

fusion has been used for the accurate identification of the functional

connectivity or the default modes of the brain by assessing associa-

tions between spontaneous EEG oscillations and fluctuations of the

fMRI signal in resting state (Huang, Long, & Lei, 2019; Vitali

et al., 2015). Although fMRI is not commonly used for brain–computer

interface (BCI) applications, due to its immobility, recently fusion of

EEG–fMRI via tensor decompositions has also been used in a training

phase of a BCI (Deshpande, Rangaprakash, Oeding, Cichocki, &

Hu, 2017). Representational similarity analysis (Cichy, Pantazis, &

Oliva, 2014) is a type of late high-level fusion approach, which is being

studied lately for magnetoencephalography–fMRI and EEG–fMRI

fusion. In representational similarity analysis, the data from different

modalities are not necessarily obtained simultaneously. Representa-

tional dissimilarity matrices are extracted from the activity patterns of

each modality and are quantitatively related to each other by compar-

ing them in a late-fusion context (Hebart, Bankson, Harel, Baker, &

Cichy, 2018; Salmela, Salo, Salmi, & Alho, 2016).

Various ways to couple the two datasets have been proposed,

depending on the coupled mode: (a) coupling in the spatial domain

with the use of the so-called lead-field matrix, which summarizes the

volume conduction effects in the head (by transforming the 2D spatial

information of the EEG to the three-dimensional (3D) spatial informa-

tion of the fMRI) (Karahan et al., 2015); (b) coupling in the time

domain using the convolution of the EEG time course with an HRF

(Martínez-Montes et al., 2004); and (c) coupling in the subject domain,

using the assumption that the same neural processes are reflected in

both modalities with the same covariation (Calhoun, Adalı, Pearlson, &

Kiehl, 2006; Hunyadi et al., 2016; Swinnen et al., 2014).

For the single-subject case, the EEG dataset is most commonly

represented by a 3D or four-dimensional (4D) tensor with its modes

being space (channels) � time � frequency/ERP whereas the fMRI

signal is commonly represented as a matrix with its dimensions

corresponding to space (voxels) � time. In the multisubject case, usu-

ally features instead of the raw data are used and hence the time

mode can be replaced by a subjects mode (Hunyadi et al., 2016; Acar,

Kolda, & Dunlavy, 2011). Their fusion relies on the coupling of the

EEG tensor and the fMRI matrix along their common mode (space,

time, or subjects), employing CMTF. In EEG-aided fMRI analyses using

GLM, the EEG signal (or part of it) is used as the regressor of interest.

Intrasubject and intersubject variability of HRF is known to exist

(Handweker et al., 2004); hence, a possible misspecification of the

HRF may lead to biased estimates of widespread, delayed or elon-

gated activity in the brain (Lindquist, 2008; Handweker et al., 2004).

Moreover, the mismatch of the temporal resolution of EEG and fMRI

further limits the potential of the GLM analysis (Hunyadi et al., 2015).

The use of the spatial maps from GLM categorizes such CMTF-based

methods as late mid-level fusion (Ramachandram & Taylor, 2017).

In all of the approaches that were previously described, the cou-

pling across the corresponding modes is “hard,” meaning that the

shared factors are constrained to be equal (after any transformation

applied, e.g., convolution with an HRF). Such an assumption is very

restrictive, since it implies that the used transformation is valid for

every area of the brain and any subject. Moreover, there are cases

where the strong coupling between the two modalities is also violated

by the physiology of the activation. A stimulus, in rare cases, might

cause a significantly lower coupling ratio between the two modalities

by triggering neuronal activity with a detectable electrophysiological

response but with low metabolic influence in the blood flow, hence,

causing low activation detected in fMRI (Logothetis & Pfeuffer, 2004).

In order to alleviate such problems caused in the modeling by this con-

straint of hard coupling, a “softer” assumption of similarity (or with simi-

lar properties), that is, not necessarily a strong equality, can be adopted

instead (Seichepine, Essid, Fevotte, & Cappe, 2014; Farias, Cohen, &

Comon, 2016). Furthermore, different methods can be used to account

for a possible misspecification of the HRF. Constraining the HRF to a

class of “plausible” waveforms and estimating the optimal one from the

data itself has been proposed in Van Eyndhoven et al. (2017) for the

single-subject case. Such approaches will be called “flexible.”
In this work, we investigate early (Ramachandram &

Taylor, 2017) fusion of fMRI and EEG via soft or flexible coupling.

As explained previously, soft and flexible coupling are different

ways to accommodate for a possible mismodeling of the HRF. Their

main difference is that with soft coupling all the HRFs of the differ-

ent subjects are assumed to be similar (and not equal) with an a

priori known HRF, while in the flexible approach only the model of

the HRF is a priori known and the variables of the model, which

determine the exact shape of the HRF, are estimated through opti-

mization. In other words, the “soft” coupling assumes similarity and

not a strong/hard equality, the “flexible” coupling allows the varia-

tion of the HRF through space by the use of a data-driven HRF

model (which is to be also optimized) and the early fusion uses the

raw data instead of features. These are the basic ingredients of the

proposed approach, in addition, of course, to the adoption of tensor

models for both modalities.

3 | MATERIALS AND METHODS

3.1 | Canonical polyadic decomposition

CPD (or PARAFAC) (Sidiropoulos et al., 2017) approximates a third-

order tensor, T �RI1�I2�I3 (naturally extended to tensors of higher

order), by a sum of R (number of sources here) rank-1 tensors, namely

T ≈
XR
r¼1

ar�br
�cr : ð1Þ
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Equivalently, for the kth frontal slice of T ,

Tk ≈ADkB
> , k¼1,2,…, I3, ð2Þ

where A¼ a1,a2,…,aR½ �, B and C are similarly defined matrices, and Dk

is the diagonal matrix having the elements of the kth row of C on its

diagonal. The main advantage of the CPD, besides its simplicity, is the

fact that it is unique (up to permutation and scaling) under mild condi-

tions (Sidiropoulos et al., 2017). Uniqueness of CPD is crucial to its

application in BSS problems. Its performance is, however, largely

dependent on the correct estimation of the tensor rank, R.

3.2 | Coupled matrix tensor factorization

CMTF was first proposed in Acar et al. (2011), and later extended in

Acar, Rasmussen, Savorani, Naes, and Bro (2013). For a third-order

tensor T �RI1�I2�I3 and a matrix M�RI4�I2 , which are coupled across

their common mode, it can result from the following optimization

problem:

min
C,A,B, ~A

T �ADkB
>�� ��2

F þ M� ~AB >
��� ���2

F
: ð3Þ

The factor B, with columns br (r = 1, 2 … R), is shared between

the decomposition of the third order tensor, T , and the decomposi-

tion of the matrix, M. The matrices A and C correspond to the

nonshared modes of T . Furthermore, as in the previous subsection,

Dk is the diagonal matrix having the elements of the kth row of C on

its diagonal. The decomposition of T into low-rank factors “transfers”
its uniqueness properties via the factor matrix B to the matrix decom-

position, removing any ambiguities in ~A (provided that B is of full col-

umn rank) (De Lathauwer & Kofidis, 2017). In a more generic setting,

the datasets share some of the components in a common mode, but

possess individual variability as well. In such a case, a model in which

also unshared columns of factors are present is better suited. The so-

called advanced CMTF (ACMTF) (Acar et al., 2017a; Acar

et al., 2017b) model has also been proposed in order to allow the

presence of both shared and unshared components in the coupled

factor(s) and provides a way to automatically determine them.

One of the weaknesses of ACMTF is that it forces equality of

the coupled components, which may influence the result of the

decomposition in the presence of a model inaccuracy. In an attempt

to smear such effects, Relaxed ACMTF (RACMTF) properly mod-

ifies the ACMTF model, with the adoption of soft coupling (Rivet,

Duda, Guerin-Dugue, Jutten, & Comon, 2015). Following the same

rationale in order to remove the strict assumption of identical

shared components of ACMTF, another alternative approach is to

maximize the correlation between the shared components of the

tensor and the matrix in the common mode. This method is called

Correlated CMTF (Mosayebi & Hossein-Zadeh, 2020). A wide vari-

ety of constraints, loss functions and different linear couplings

(couplings with linear transformations) can be added in the CMTF

rationale (Schenker et al., 2021).

3.3 | Statistical methods

Classical approaches for jointly analyzing fMRI and EEG include joint

ICA (JICA) (using one (Calhoun et al., 2009; Calhoun et al., 2006) or

multiple (Swinnen et al., 2014) electrodes for EEG), linked ICA (LICA)

(Groves, Beckmann, Smith, & Woolrich, 2011), and parallel ICA (pICA)

(Calhoun et al., 2009; Hunyadi et al., 2015). LICA and pICA are late

fusion approaches. pICA first identifies components separately for

each modality, performing a temporal ICA in EEG and a spatial ICA in

fMRI. In a second step, the corresponding extracted components are

identified based on their correlation in the temporal domain. pICA can

be performed either at a single-subject level (Hunyadi et al., 2015) or

at a multisubject level using group ICA (GICA; Lei, Qiu, Xu, &

Yao, 2007). LICA uses a Bayesian framework which determines auto-

matically the optimal weighting of each modality, and can also detect

nonshared components, in case they exist.

JICA is a late mid-level fusion approach and jointly analyzes data

from the same subjects from both modalities simultaneously. To

achieve this, it uses the features derived from the first-level analysis

of fMRI (spatial maps) and the averaged ERP epochs of EEG, hence

JICA is also classified as a late fusion method. JICA assumes that a

stronger ERP yields a stronger BOLD fluctuation in the same area

(and vice versa), which supports the common assumption of having

the same linear mixing system in the two modalities (in the subject

domain). Furthermore, each pair of coupled components is assumed

to be dependent between the modalities and at the same time statisti-

cally independent of the rest of the components (Mijovi�c et al., 2012).

Other matrix-based methods that are also used in data fusion

include the family of partial least squares (Martínez-Montes

et al., 2004) methods that maximize the cross-covariance among the

datasets and canonical correlation analysis which aims to maximize

the correlation among datasets (Correa, Adalı, Li, & Calhoun, 2010).

Combinations are also common, either of the two types of methods

or with ICA (Adalı, Akhonda, & Calhoun, 2019; Akhonda, Levin-

Schwartz, Bhinge, Calhoun, & Adalı, 2018). Detailed reviews of such

matrix-based methods using statistical models for data fusion prob-

lems can be found, for example, in Adalı et al. (2015a) and Sui, Adalı,

Qijgbao, and Calhoun (2012).

3.4 | Modeling of the HRF

As mentioned in the introduction, it is the GLM framework that is

most commonly adopted in fMRI analysis. Analysis within the GLM is

rooted in the simple assumption that the variance in the fMRI BOLD

signal can be modeled by the convolution of an (assumed to be

known) HRF with a sequence of events/stimuli. The hemodynamic

response is a (strictly speaking nonlinear) function with complex

shape, resulting from the neuronal and vascular changes, and is known

to vary among different subjects as well as among different areas of

the same brain (intersubject and intrasubject variability) (Handweker

et al., 2004).

GLM-based methods explicitly need an estimate of the functional

shape of the HRF to infer the expected activation pattern from the
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experimental task. Among the different available models for the HRF,

the one that is more widely used is the model based on the two

gamma distributions (Lindquist, 2008; Handweker et al., 2004), usually

referred to as double gamma HRF model:

H t, zð Þ¼Γ�1 z 1ð Þ
� �

z
z 1ð Þ
2ð Þ t

z 1ð Þ�1e�z 2ð Þt� z 3ð ÞΓ�1 z 4ð Þ
� �

z
z 4ð Þ
5ð Þ t

z 4ð Þ�1e�z 5ð Þt, ð4Þ

where Γ(�) is the gamma function, Γ(�)�n = 1/Γ(�)n, and z(1,2,3,4,5) are

the parameters that control the functional shape of the HRF. The

values z(1) = 6, z 2ð Þ ¼1, z 3ð Þ ¼ 1
6 , z 4ð Þ ¼16, z 5ð Þ ¼1 are used to generate

the canonical HRF used in GLM (Lindquist, Loh, Atlas, &

Wager, 2009).1

Several other models have been proposed, such as those based

on the cosine function (Zarahn, 2002), radial bases (Riera

et al., 2004), and spectral basis function (Liao et al., 2002). Further-

more, neurophysiologically informed nonlinear models of the HRF

have been proposed. Those models are trying to describe the

dynamic changes in deoxyhemoglobin content as a function of

blood oxygenation and blood volume (Buxton, Wong, &

Frank, 1998; Buxton, Uluda�g, Dubowitz, & Liu, 2004), such as the

so-called “balloon” model.2 All proposed models differ both in cap-

turing (describing) the evoked changes in the BOLD signal as well

as in their number of parameters.

In this work, a new, lighter (in terms of its parameters) model for

the functional shape of the HRF will be tested, based on the Lennard-

Jones potential (Wikipedia, 2019a). The latter is used in physics to

model the repulsive and attractive forces among neutral atoms or mol-

ecules. Due to its computational simplicity, the Lennard-Jones poten-

tial is used extensively in computer simulations even though more

accurate potentials exist. This light model will be adopted in view of

the smaller number of parameters used and the smoother partial

derivatives which will be used in the optimization, under the data-

driven HRF flexible model.3 The Lennard-Jones HRF model (as it will

be henceforth referred to) is defined over the nonnegative real num-

bers and can be expressed as:

H t, zð Þ¼Γ�3 z 1ð Þt
� �� z 2ð ÞΓ�6 z 3ð Þt

� �
, ð5Þ

where z(1,2,3) are the parameters that control the functional shape of

the HRF. It has only three such parameters, compared to the five

parameters of the double gamma distribution model above. Its time

derivative can be obtained as follows:

∂H
∂t

¼�3z 1ð ÞΓ�3 z 1ð Þt
� �

ψ0 z 1ð Þt
� �þ6z 2ð Þz 3ð ÞΓ�6 z 3ð Þt

� �
ψ0 z 3ð Þt

� �
, ð6Þ

where ψ0 is the polygamma function (Wikipedia, 2019b) of order zero,

also called digamma function. Furthermore, the partial derivatives of

the function with respect to each of the parameters are given by:

Parameter z(1):

∂H
∂z 1ð Þ

¼�3tΓ�3 z 1ð Þt
� �

ψ0 z 1ð Þt
� �

: ð7Þ

Parameter z(2):

∂H
∂z 2ð Þ

¼�Γ�6 z 3ð Þt
� �

: ð8Þ

Parameter z(3):

∂H
∂z 3ð Þ

¼6z 2ð ÞtΓ�6 z 3ð Þt
� �

ψ0 z 3ð Þt
� �

: ð9Þ

Note that these derivatives, that will be used in optimizing the

HRF function,4 are easier to be computed than those of the double

gamma HRF model.

3.5 | Soft-coupled tensor–tensor decomposition

Coupling through equality (hard coupling), which has been used both

in CMTF-based methods (Acar et al., 2017a; Hunyadi et al., 2016;

Acar et al., 2017b) and in JICA (Mijovi�c et al., 2012; Swinnen

et al., 2014; Calhoun et al., 2006) approaches, arises from the assump-

tion that the neural sources are reflected, exactly with the same

power, in both modalities. However, this is restrictive. Even if the

exact equality and the independence assumptions, used by JICA, are

valid, still the result of the first-level GLM analysis of fMRI (used as an

initial step to compute the spatial maps—features (Mijovi�c et al., 2012;

Swinnen et al., 2014; Acar et al., 2017a; Hunyadi et al., 2016; Acar

et al., 2017b; Calhoun et al., 2006)) is not taking into account the com-

plementary information from EEG. Furthermore, as reported in

Mijovi�c et al. (2012), the result obtained with JICA is mostly

influenced by the quality (in terms of noise and artifacts) of the EEG

signal and less by the fMRI data. This could indicate that the

preprocessing of the fMRI with GLM and the use of features, instead

of raw data (as in the case of EEG), may fail to retrieve all the informa-

tion “hidden” in the raw fMRI data, due to the assumptions of GLM

(Lindquist, 2008).

We therefore propose a framework for early fusion of fMRI and

EEG using coupled CPD with soft coupling (Seichepine et al., 2014;

Farias et al., 2016), which implies similarity and not exact equality

(Figure 2). Fusion based on raw data, though potentially more chal-

lenging, may allow more accurate and insightful inference

(Ramachandram & Taylor, 2017). The coupling could be attempted in

any of the modes, depending on the problem at hand.

It is highly likely that the ranks of the two tensors (R and ~R, the

ranks of fMRI and EEG tensor, respectively) will not be the same (dif-

ferent number of artifacts in the two modalities, deep sources not

captured by EEG, etc.). Rc is the number of common components in

the coupled mode(s), so there are R � Rc and ~R�Rc distinct compo-

nents of fMRI and EEG, respectively. In this way, different model

orders can be assigned to the decompositions of the modalities as

long as the number of common components remains the same (with-

out loss of generality, in (10), we assume that the common compo-

nents are the first Rc ones).
5

CHATZICHRISTOS ET AL. 1237



Consider the third-order fMRI tensor, T �RIa�Ib�K (space � time

� subjects), and the fourth-order EEG tensor (distinguished from the

fMRI one with tilde), ~T �RIe�I~a�I~b�K (frequency � space � trials ampli-

tude � subjects). The rank-R CPD of the fMRI tensor can be written

as Tk ≈ ADkB
>, k =1, 2, …, K in terms of its frontal slices. A¼

a1,a2,…,aR½ � is a matrix that contains the weights of the R spatial com-

ponents (Ia voxels), B, C contain the associated time courses (Ib) and

subject activation levels of fMRI (K), respectively, and Dk is the diago-

nal matrix formed from the kth row of C. For the EEG case, with ~Tk 1ð Þ
being the mode-1 matricization of the kth subtensor, ~T k ¼ ~T : , : , : ,kð Þ
(Chatzichristos et al., 2017), we can similarly write a rank� ~R CPD
~Tk 1ð Þ ≈ E~Dk

~B�~A
� � >

, where the matrices E, ~A, ~B, ~C contain the weights

of the associated frequencies (Ie), electrodes I~að Þ, trials amplitude I~b
� �

and the subject activation levels of EEG (K), respectively, and ~Dk is the

diagonal matrix formed from the kth row of ~C. The proposed cost

function to be minimized is given by

XK
k¼1

Tk�ADkB
>�� ��2

F þ
XK
k¼1

~Tk 1ð Þ �E~Dk
~B�~A

� � >����
����2
F

þλA LA:,1:Rc � ~A:,1:Rc

��� ���2
F
þ λB B:,1:Rc �H~B:,1:Rc

��� ���2
F

þλC C:,1:Rc � ~C:,1:Rc

��� ���2
F
,

ð10Þ

with L being an a priori known lead-field matrix used for the EEG for-

ward problem and H standing for the matrix representing the convolu-

tion with the (a priori known) HRF and the down-sampling (due to the

different sampling rate of the two modalities) (Karahan et al., 2015).

The values of the λ's quantify the degree of coupling (and indirectly

tune the importance of the accuracy of the used HRF function or

lead-field matrix). A stochastic model with priors in all of the modes

can be potentially used, in which case the values of the λ's can be con-

nected to the SD of the prior of the coupled mode (Farias et al., 2016).

All coupled tensor decompositions are burdened by the task of the

selection of such hyperparameters. A similar burden exists in the

selection of the weights of regularizers that are being added either for

selecting the coupled components or for the soft coupling (Seichepine

et al., 2014; Acar, Schenker, Levin-Schwartz, Calhoun, & Adalı, 2019)

but also for quantifying the contribution of each modality. Note that

in our approach, the weights of the different modalities are set equal

to unity, due to the fact that they have been both normalized to unit

norm prior to the analysis (a really critical preprocessing step).6

3.6 | Double CMTF

In task-related fMRI, currently, two major classes of fMRI experimental

designs exist: block event designs and event-related designs

(Lindquist, 2008; Tie et al., 2009). In a block event design, a condition is

presented continuously for an extended time interval (block) to main-

tain cognitive engagement, with different task conditions usually alter-

nating in time. The time courses of the stimuli (both the sequence of

the stimuli and the time intervals) remain stable among subjects. In an

event-related design, discrete and short-duration events are presented

with randomized timing and order (both in scanning of a single subject

and among different subjects). Both designs have advantages and dis-

advantages. For example, the block event design provides more robust

activations, since relatively large BOLD signal changes with increased

statistical power are detected. Moreover, it is more straightforward to

analyze data from such designs, in the sense that the exact shape of

the HRF does not much influence the result of the analysis and hence

can be assumed to be the same per subject (equal to the canonical) with

smaller impact on the widespread activation in time. On the other hand,

the predictability of the block event design makes it inappropriate for

some cognitive tasks, such as in the “oddball” paradigm, where a reac-

tion to an unexpected stimulus is examined. Furthermore, it also

increases the chance of low-frequency artifacts. On the other hand, on

event-related design can detect transient variations in hemodynamic

response and allows for the analysis of individual responses to trials.

In event-related designs, the different subjects cannot be stacked

in the same tensor since the multilinearity assumption, required for

tensor decomposition models like CPD, will certainly not be valid.

One can note that the studies employing tensor decompositions in

multisubject fusion applications are using only block-event designs for

this reason (Chatzichristos et al., 2018; Jonmohamadi et al., 2020).

Despite the fact that in event-related designs no connection among

the time courses of the different subjects exist, similar areas are prob-

ably activated by similar stimuli. This is also the case for seizure events

from patients characterized by the same focal seizure type

(e.g., temporal or frontal). Hence, it is still beneficial to retain the

neighborhood information exploited by the tensor formulation. As it

can be understood, the different signals of the subjects cannot be sta-

cked in the same tensor (fourth-order for EEG and third-order for

fMRI). In order to retain the multiway structure (but still respect the

differences in time courses), we will employ a double coupling ratio-

nale (Gong, Lin, Cong, & De Lathauwer, 2018) and the formulation of

the problem will be transformed to a Double (in time between EEG

and fMRI and in space among subjects in fMRI) CMTF (DCMTF), as

shown in Figure 3, where the vectors with the same color (other than

the light blue-gray) are coupled.

F IGURE 2 Schematic representation of coupled canonical
polyadic decompositions (CPDs) with “soft” or “flexible” coupling
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In Figure 3, CPD factors of the third-order subject-specific EEG

tensor, ~T k �RIe�I~a�I~b , describe the variation over the spatial ~ak,rð Þ, the
temporal ~bk,r

� �
and the spectral (ek,r) modes, for K different subjects.

The decomposition of the corresponding fMRI matrix, Xk �RIa�Ib ,

shows the variation over the temporal (bk,r) and spatial (ak,r) modes.

The parameter sets {zk} describe the subject-specific HRF convolution

matrix, Hk, which will be optimized using either the double gamma

model (Van Eyndhoven et al., 2017) or the Lennard-Jones model or

any other appropriate model selected. The proposed cost function in

this approach is written as:

XK
k¼1

~T k�
XRc

r¼1

~ak,r
�~bk,r

�
ek,r

�����
�����
2

F

þ Xk�
XRc

r¼1

ak,r
� Hk t, zkf gð Þ~bk,r
� ������

�����
2

F

0
@ þλ1 Åk�A

�� ��2
FÞ,

ð11Þ
where the matrix Ak ¼ ak,1,ak,2,…,ak,Rc½ � comprises the weights of the

Rc spatial components of the kth subject, Åk is a matrix containing a

subset �R<Rc of the spatial components of the kth subject and A a

spatial map with which all the subject spatial maps (that belong to Åk)

are similar (this similarity being imposed through a regularization

term).7 The subset of the “common” spatial components is

predefined from the user based on the task at hand. For example, in

a visual oddball experiment, one will expect that the visual spatial

component will be similar among the subjects while any spatial com-

ponents representing artifacts will not. Similarly, in other task-

related fMRI experiments, the spatial components that are related

to the stimuli are expected to be similar among the different sub-

jects, whereas sources that are caused by artifacts, noise or any

other source of activation not connected to the task of interest, are

expected to have different spatial signatures. The selection of this

subset of spatial components that will be shared allows a higher

flexibility than a tensor representation in which all spatial compo-

nents are assumed to be shared among the subjects. For the cou-

pling in the time domain, instead of using the flexible approximation

with the subject-specific HRF, another soft coupling can be used

instead, with an extra regularizer. The cost function will then

become

F IGURE 3 Schematic
representations of double
coupled matrix tensor
factorization (DCMTF) for
K subjects. (a) The vectors with
the same color (other than the
light blue-gray) are coupled
(b) The coupling between the
electroencephalography (EEG)

and functional magnetic
resonance imaging (fMRI) can be
either soft or flexible
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XK
k¼1

~T k �
XRc

r¼1

~ak,r
�~bk,r

�
ek,r

�����
�����
2

F

þ Xk�
XRc

r¼1

ak,r
�bk,rð Þ

�����
�����
2

F

0
@ þλ1 Åk�A

�� ��2
F
þλ2 Bk�H~Bk

��� ���2
F
Þ:

ð12Þ

Of course, tuning two instead of one λ parameters is more diffi-

cult, but a decomposition of each subject separately can provide infor-

mation about the similarity of the spatial maps. A large value of λ1

means that the fMRI spatial maps of all subjects are very similar,

hence imposing the same constraint in the spatial domain as in Equa-

tion (10) (the assumption of the same spatial maps is implicitly made

by the tensor–tensor decomposition introduced in Section 3.5).

Despite the fact that matrices, not higher-order tensors, are consid-

ered here for fMRI, the coupling of the spatial components respects

the multiway nature of the multisubject fMRI case (keep in mind that

a three-way CPD can also be seen as the joint diagonalization of a set

of matrices hard-coupled across both of their modes (Sorber

et al., 2013)), so the multiway nature of the data is still exploited. It

must be noted that λ2 can be tuned similarly with λB of (10).

To sum up, the model proposed in Section 3.5 (Equation (10)) is

appropriate to be used whenever the subjects are expected to have

similar time courses (i.e., block event design experiments), while the

model proposed in Section 3.6 (Equations (11) and (12)) is to be used

in all other cases. In cases where multiple sessions per subject exist,

the different sessions (or different trials per subject) can be handled

as different subjects, which are hard-coupled in the spatial mode.

Hence, assuming that a subject has two sessions, the second session

can be handled as an extra subject, under the constraint that the asso-

ciated Åk matrices coincide.

4 | RESULTS

4.1 | Synthetic data

A simulated dataset similar to the one employed in Lei et al. (2007) and

Dong et al. (2014) has been used in our analysis. The brain has been

simulated as a single disc with 2,452 voxels (dipoles). In order to com-

pute the scalp signals in EEG, a concentric three-sphere model was set

to wrap the disc (as a simulation of the skull) and 128 electrodes with

their position and the corresponding lead-field matrix computed in

Dong et al. (2014) have been used (a detailed description and sche-

matic representations of the three-sphere model used can be viewed

in Lei et al. (2007) and Dong et al. (2014)). The temporal sampling rate

of EEG was 1 kHz while the number of frequency bins has been set

equal to 40. The fMRI spatial maps were simulated as 2D images of

70 � 70 voxels, with the aid of the SimTB (Erhardt, Allen, Wei,

Eichele, & Calhoun, 2012) toolbox. In comparison to Lei et al. (2007)

and Dong et al. (2014), the overlap in time for EEG and in space for

fMRI has been increased, so that we will make the problem more real-

istic and more difficult. In Figure 4, the neurophysiological sources can

be viewed, from left to right: “vision area” S1, “default mode network

(DMN)” S2, “auditory cortex” S3, “sensory networks” S4, “cognition
areas” S5 and “dorsal attention network” S6. The activity level at each

active voxel was randomly sampled from a Uniform [0.8,1.2] distribu-

tion for each replication of each simulation condition. These assumed

active neural sources (rows a, b) along with the assumed spectral pro-

files (row c) yield scalp distributions and single-trial images in EEG and

spatial maps and time courses of fMRI. Scalp potential distribution

maps (topoplots, row d) are computed by solving the forward problem

for each spatial map of row b. The fMRI BOLD signals (time courses,

row e) were computed as the convolution of the trial amplitude (row a)

with the canonical HRF. In all of the scenarios, we assume coupling of

fMRI and EEG in the time domain only, hence λA = λC = 0

(Equation (10)). Similar conclusions can be reached if the coupling is

assumed in one of the other modes. Coupling across multiple modes

increases the difficulty of tuning extra regularization parameters.

This section will be split in three subsections:

• We will exhibit the difference between the soft coupling approxi-

mation and the flexible approximation proposed in Van Eyndhoven

et al. (2017) through a comparative study (based on Pearson corre-

lation). Furthermore, in this subsection, we will investigate the tun-

ing of the λ value in the soft coupling method.

• Alternative methods will be tested in the case where all the sub-

jects have the same time course: pICA, uncoupled CPDs (sepa-

rately decomposing each tensor), hard and soft coupling in the

time domain with different λB values.

• The same methods will be tested also in the last subsection, but

different time courses per subject will be considered, in order to

point out the need of an alternative formulation of the problem in

such a case.

The proposed soft coupled decomposition and the DCMTF were

implemented with the aid of the structured data fusion framework

(Sorber, Van Barel, & De Lathauwer, 2015) of Tensorlab (Vervliet

et al., 2016) and nonlinear least squares (NLS) was adopted as the

optimization scheme. pICA was implemented (using GICA) as in

Hunyadi et al. (2015) and Lei et al. (2007), using Infomax (Bell &

Sejnowski, 1995) for the ICA step. All the experiments ran 30 times

(with different initialization and instance of noise) and the average

performance is presented.

In order to estimate Rc, T (EEG) and ~T (fMRI) are separately

decomposed, and pairwise correlation of all the components are com-

puted. Components with similarity exceeding a predefined threshold

t are considered shared (Genicot, Absil, Lambiotte, & Sami, 2016), a

value of t =0.70 can be a suggested value. Based on the application

at hand this can be increased or decreased in order to restrict the

shared set to more similar components or include components with

weaker similarities, respectively. Note that the shared components

are determined in the ACMTF framework via appropriate regulariza-

tion on the gains of the corresponding CPD components (Acar

et al., 2017a; Acar et al., 2017b).

In this way, we can also get an indication for the appropriate λ

values to be used: higher correlation indicates higher values for λ;

hence, the λ's of the modes which will not be coupled will be set to

zero (Acar et al., 2017a). It must be pointed out that the coupling is
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not always beneficial, as we will demonstrate in the following. Only in

cases where we have significant correlation between the modalities

the coupling should be used. If “phantom” connections are imposed,

the performance will deteriorate (Lahat et al., 2015). A validation pro-

cess is therefore essential to decide whether all sources of data

(modalities) are relevant and necessary or whether any of those are

redundant or may even deteriorate the quality of the analysis (Acar

et al., 2013). It is really important that the data of both modalities

must be normalized (to unit norm) beforehand (so that the first two

terms in (11) have the same weight in the cost function) and

preprocessed for removal of artifacts (Walach, Filzmoser, &

Hron, 2018).

The best initialization of the decomposition algorithm for each

modality separately is not guaranteed to be the best possible for their

combination; furthermore, the permutation issues must be taken into

consideration. Hence, an initialization method designed specifically

for coupled decompositions must be used. For the initialization of the

coupled tensor decomposition, the generalized eigenvalue

decomposition-based method proposed in Sørensen et al. (2015) is

used.8 When prior information is available for any of the modes (usu-

ally for time courses), or part of them, the respective columns can be

excluded from the optimization function and set equal (or almost

equal) to their known values (Morante, Kopsinis, Theodoridis, &

Protopapas, 2020).

The correlation values presented in the following figures and

tables represent the mean Pearson correlation of all the obtained

sources with the ground truth. Since the same algebraic initialization

is used for every run, the SDs of all methods are relatively small.

4.1.1 | Soft versus flexible coupling

Figure 5 visualizes the importance of the choice of the λB value for

soft coupling. We can distinguish two cases. In the first case (the solid

lines), where the coupling assumption is exact (the simulated data

were generated with the use of the canonical HRF, H), it can be read-

ily seen that the hard coupling is the best to use. However, the soft

coupling analysis can reach the same performance with the

F IGURE 4 Simulated sources in electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). (a) Trials in EEG.
(b) Simulated neural activity. (c) Spectral profiles. (d) Topoplots of the neural activity. (e) Blood-oxygen-level-dependent (BOLD) time courses of
the fMRI. (f) Spatial maps of fMRI. From left to right the simulated sources are: “vision area” S1, “default mode network” S2, “auditory cortex” S3,
“sensory networks” (left and right) S4, “cognition areas” S5, and “dorsal attention network” S6
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appropriate tuning of λB. In the second case (dotted lines), the

assumption of hard coupling is violated, as the time courses of the

fMRI sources were generated through convolution with different

HRFs (the five different HRFs presented in Morante et al. (2020) have

been used, which have a mean correlation of 0.8 with the canonical

HRF), while in Equation (6), the HRF matrix, H, is assumed to be built

from the canonical HRF. The fact that the time courses of the two

modalities (after the transformation with H) are similar but not equal

deteriorates the performance of hard coupling. It still performs better

than the uncoupled version but it is outperformed by the soft cou-

pling for λB > 0.1. In cases where we move the HRF farther from the

canonical HRF, the hard coupled case can become even worse than

the uncoupled one.

To compare soft (Equation (12)) with flexible coupling

(Equation (11)), we simulated a similar single-subject scenario in order

to evaluate the performance and the computational cost of each

method. We have simulated four different scenarios. In each scenario,

we slightly modify the HRF from which the data are generated. The

canonical HRF is adopted in the first scenario, while an HRF with 0.9,

0.8, and 0.7 correlation with the canonical one was used in the other

scenarios, respectively. We can see (Figure 6) that, if we manage to

tune appropriately the λB value, then the soft coupling method (green)

outperforms the other methods but its deviation is large and its per-

formance can be even worse than that of the flexible methods, in case

of a possible suboptimal selection of λB. The selection of λB is made

via grid search from the set {0.01; 0.1; 10; 100; 1,000}. Regarding the

choice of the HRF model (Lennard-Jones or double gamma), it seems

that there is a compromise between accuracy and time complexity.

The difference between the variances of the performance of the soft

coupling and the flexible approaches is only statistically significant, in

the first and third case of Figure 6. This difference is driven by the

values of λB that are far away from the optimal one (e.g., selection of

λB = 1,000 when the optimal is 0.01); hence, if the user selects a value

in the “neighborhood” of the optimal one, the deviation is decreased,

and the difference is below the significance level. In the cases where

the HRF is closer to the canonical one, the Lennard-Jones model has

similar performance with the double gamma model albeit with signifi-

cantly lower complexity. In the cases where the HRF differs more

from the canonical one, the performance of the Lennard-Jones model

deteriorates and the time needed to converge can also become longer

(while also a higher SD is observed). It should be noted that the time

needed for the selection of the λ value is not included since it depends

on the intervals of the grid used in the grid search approach followed.

Furthermore, we noted that the performance of the flexible

approaches was very good in the single-subject case but when extra

subjects were added the increase in the computation time was not lin-

ear and the complexity was significantly increased.

4.1.2 | Soft-coupled tensor–tensor decomposition

To compare the soft-coupled tensor–tensor decompositions

(Equation (10)) with DCMTF (Equations (11) and (12)), multisubject

scenarios were simulated. The data from each subject contained all

the six sources shown in Figure 4 with different activation levels. The

activation patterns have strengths randomly sampled from a uniform

(Adalı et al., 2015a; Logothetis & Pfeuffer, 2004) distribution. Five dif-

ferent subjects are simulated, and for the simulations presented in this

subsection each subject is assumed to have the same time course for

every source (differing only in the noise) while in the next sub-

section differences are incorporated in the time courses and HRFs of

some of the subjects.

The mean correlation between the obtained sources and the gro-

und truth per method and per modality at different signal-to-noise

ratios (SNR = squared Frobenius norm of the signal over the squared

Frobenius norm of the noise) can be seen in Figure 7. We have simu-

lated two different cases: (a) the same noise level as in Lei

et al. (2007) is used and (b) the methods are tested with higher level

of noise. pICA exhibits inferior performance compared to both the

uncoupled and soft coupling methods in both scenarios, due to the

overlapping in the sources, which violates the independence assump-

tion. The resulting spatial maps obtained by spatial ICA in case (a) can

F IGURE 5 Mean correlation of the
obtained sources with the ground truth,
using uncoupled (two separate canonical
polyadic decompositions [CPDs] in each
modality), Hard coupled (the separate
CPDs have hard coupled time modes) and
soft coupled CPDs (Equation (10)) models,
with different λB values
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be viewed in Figure 8. Note that, in the overlapping areas, there is

crosstalk between the maps. S4, which overlaps with most of the rest

of the sources, cannot be identified (for comparison with the ground

truth, observe row d of Figure 4). It can be seen that, in case (a), the

correlation for EEG with uncoupled analysis is higher than with soft

coupling. The slight decrease in the performance in EEG can be

explained by the gain in the performance in the fMRI sources. Overall,

the correlation is increased with soft coupling (mean correlation

among sources and between the two modalities—diamond). In case

(b), where the SNR is of similar level for both modalities, soft coupling

yields better results for both.

4.1.3 | Flexible DCMTF

In this subsection, we will test the case where intersubject variability

exists, in time (different acquisition protocol) or in space (different

spatial maps per source). Three different scenarios and two sub-

scenarios (for each) will be tested: in the first scenario, all the subjects

have the same time courses (similar to the previous subsection). In the

second scenario, each subject has a different HRF and a time shift in

each of the time courses of the sources. The five different HRFs pres-

ented in Morante et al. (2020) have been adopted and also the time

courses are shifted (the first subject has no shift while subjects 2–5

F IGURE 6 Comparison, based on Pearson correlation and time till convergence, of the soft coupling method with the flexible coupling

method using the double gamma hemodynamic response function (HRF) and Lennard-Jones HRF models

F IGURE 7 Accuracy of different decomposition methods (uncoupled canonical polyadic decompositions [CPDs], coupled CPDs, and parallel
independent component analysis [pICA]) based on the Pearson correlation, with different signal-to-noise ratio (SNR) values

CHATZICHRISTOS ET AL. 1243



have time shifts at increments of 1 s with respect to the first subject,

hence a shift of 4 s in the fifth subject). In the last scenario, the time

courses of the subjects are the same but the spatial maps of every

subject are different: subject variability was introduced in the spatial

domain of two of the sources (2 and 4) and rotation (in increments of

4� per subject) of one of the sources (2) and voxel shifts at increments

of two voxels with respect to the first subject in the other source (4).

In every scenario, two subscenarios are also simulated: (a) only

sources 2, 3, and 4 (Figure 4) with low spatial overlap are used, and

(b) all the sources are used. We considered these subscenarios in

order to assess the impact of overlapping, time shift and intersubject

spatial variability, separately.

The mean Pearson correlation of the obtained sources with the

ground truth is given in Table 1 for the different scenarios. It can be

noted that the pICA method outperforms the other methods in the

case where no severe spatial overlap and the same time courses per

subject exist. However (as mentioned previously), this method is also

affected more severely by the spatial overlap of the sources (since the

assumption of independence of the sources is then violated) and addi-

tionally it is affected by per subject differences in the time courses

since it is based on the assumptions imposed by GICA (Beckmann &

Smith, 2005). In the case of high overlap and same time course per

subject, the soft coupled tensor decomposition exhibits the best

performance but on the other hand this method is most affected by

the differences in the time courses, since the assumption of

multilinearity is violated in the time domain. The Uncoupled decompo-

sitions have similar behavior (among the different cases) since the dif-

ference in the time course per subject remains even when the EEG

and fMRI tensors are decomposed separately. For the DCMTF model,

we used the flexible approach with Lennard-Jones HRF. We can note

that DCMTF allows the successful estimation of the underlying

sources and hence performs much better than the other methods in

the case of different time courses and HRFs per subject. It should be

noted that the performance of DCMTF is similar to that of soft-

coupled tensor decomposition in the case of the same HRF and time

course per subject. In the case where different spatial maps per sub-

ject exist but the same time course per source, we can note that the

ICA-based method is affected less since the assumption of the same

time course used by GICA is then valid. Concerning the SD of the

Pearson correlation, we can observe that GICA is the more stable

method with slightly higher SD in the cases where it fails.

The performance of DCMTF presented in Table 1 in the first two

scenarios is with a high value of λ1 (λ1 = 106), since the spatial maps

per subject are the same, while for the last scenario the λ1 = 1 value

was selected, based on grid search. The tuning of λ1 affects less the

result than that of λ2 (as we saw in the previous scenario). We used in

F IGURE 8 Resulting functional magnetic resonance imaging (fMRI) spatial maps with (a) parallel independent component analysis (pICA).
(b) Soft coupled canonical polyadic decompositions (CPDs), at signal-to-noise ratio (SNR) = 0.1

TABLE 1 Mean and SD (30 runs) of the correlation with the ground truth of the sources obtained via different fusion methods, under
different scenarios

Same time and space Different time courses Different spatial maps

Methods Low overlap High overlap Low overlap High overlap Low overlap High overlap

Parallel ICA 0.95 ± 0.02 0.80 ± 0.02 0.82 ± 0.02 0.68 ± 0.11 0.88 ± 0.02 0.75 ± 0.02

Uncoupled 0.85 ± 0.02 0.82 ± 0.02 0.84 ± 0.6 0.81 ± 0.08 0.85 ± 0.09 0.80 ± 0.10

Soft coupled tensors 0.95 ± 0.02 0.92 ± 0.02 0.75 ± 0.02 0.65 ± 0.03 0.78 ± 0.02 0.70 ± 0.03

DCMTF 0.91 ± 0.03 0.90 ± 0.03 0.90 ± 0.04 0.90 ± 0.03 0.88 ± 0.04 0.87 ± 0.04

Note: The best correlation among the different algorithms (per use case) is annotated with bold letters.

Abbreviations: DCMTF, double coupled matrix tensor factorization; ICA, independent component analysis.
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this context the flexible approach (Equation (11)) in order to be able

to evaluate the effect of λ1.

4.2 | Real data

4.2.1 | Epilepsy use case

In this section, we will illustrate that DCMTF could be also potentially

used in a special case of multisubject epileptic analysis. To employ

tensor methods in multisubject epileptic studies, a main assumption

must be made, namely that all subjects must have their ictal onset

zone (IOZ) in similar areas (i.e., same lobe), an information that might

not be available in all cases. Hence, such studies with multiple epilep-

tic subjects analyzed do not target the identification of the IOZ of

each subject but rather the understanding of the common epileptic

networks of patients with similar IOZs (Hunyadi et al., 2016).

As an example of such a use case, we consider the dataset of

10 temporal lobe epilepsy patients, that have been previously used in

Hunyadi et al., 2016 and Van Eyndhoven et al. (2019).9 The study was

carried out in accordance with the recommendations of the Interna-

tional Conference on Harmonization guidelines on Good Clinical Prac-

tice with written informed consent from all subjects and was

approved by the Medical Ethics Committee of the University Hospital

Leuven. All subjects were adults who (a) underwent a full presurgical

evaluation for refractory focal epilepsy using EEG–fMRI; (b) had

single-photon emission computed tomography coregistered to MRI

(SISCOM) images available, as well as post-surgery MRI scans when

patients were seizure-free; (c) had interictal epileptic discharges (IEDs)

recorded during the EEG–fMRI recording session. The clinical charac-

teristics of the patients can be viewed in Table 2.

Scalp EEG data were recorded with the use of an MR-compatible

EEG cap placed according to the international 10/20 system, sampled

at 5 Hz and referenced to electrode Cz. fMRI data were acquired on a

3 T MR scanner (either on Achieva TX with a 32-channel head coil or

Intera Achieva with an eight-channel head coil in Philips Medical

Systems, Best, Netherlands) with an echo time (TE) of 33 ms, a TR

either of 2.2 or 2.5 s, and a voxel size of 2.6 � 3 � 2.6 mm3.

Preprocessing

Band-pass filtering in the EEG signal between 0.1 and 30 Hz has been

applied, as a preprocessing step. Furthermore, gradient and bal-

listocardiographic (BCG) artifacts were removed using the Bergen plug-in

of EEGLAB (Delorme&Makeig, 2004) andBrain VisionAnalyzer software,

respectively. The signal of every channel was divided by its SD. Two neu-

rologists subsequently inspected and annotated the EEG signals for IEDs.

Motion correction was performed using Motion Correction

FMRI's Linear Image Registration Tool (Jenkinson, Bannister, Brady, &

Smith, 2002), followed by a slice-timing correction using Fourier space

time-series phase shifting. Then, brain volumes were extracted using

Brain Extraction Tool (Smith, 2002) and brain images were smoothed

with a 6 mm full width at half maximum Gaussian Kernel (approxi-

mately twice the voxel size). Eventually, grand-mean voxelwise inten-

sity was normalized over the entire 4D dataset by a single

multiplicative factor followed by a high-pass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with SD

σ = 50.0 s). Registration of the fMRI data to high-resolution T1

images and to standard (MNI atlas) images was carried out using the

FMRIB's Linear Imaging Registration Tool (Jenkinson et al., 2002).

We have formed the per-subject EEG tensor as ~T k �RIe�I~a�I~b ,

where Ie represents different frequencies. We created a spectrogram

which was computed from the nonoverlapping EEG segments, with

each segment having length equal to the TR of the fMRI acquisition of

the specific subject, in order to obtain a spectrogram “synchronized”
to the fMRI signal. The squared Fourier magnitudes are averaged into

1 Hz bins, from 1 to 40Hz.

In order to reduce the size of the fMRI images, the initial

79 � 95 � 68 images were vectorized and masked with the region of

interest (ROI) mask created in Hunyadi et al. (2016). Hence, the fMRI

data of the kth patient were organized into Xk �RIa�Ib , with Ia

=11,923 voxels and Ib being equal to the number of fMRI scans per

patient (fourth column of Table 2).

TABLE 2 Clinical characteristics of the patients and the number of IEDs annotated by the neurologists

Subject number Gender IOZ Number of fMRI scans Number of IEDs IED rate per hour

1 F Left temporal 540 15 40

2 F Right parieto-temporal 1,080 105 156

3 M Right temporal 1,620 825 733

4 F Left anterio-temporal 1,080 117 156

5 F Left anterio-temporal 1,080 126 187

6 M Left parieto-temporal 1,080 11 15

7 F Left temporo-occipital 1,620 1,815 1,613

8 F Right temporal 540 226 602

9 M Left anterio-temporal 1,080 6 8

10 F Right temporal 1,350 966 1,171

Abbreviations: fMRI, functional magnetic resonance imaging; IEDs, interictal epileptic discharges; IOZ, ictal onset zone.
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Selection of hyperparameters

In order to predict the optimal model for our dataset (similarly with

Van Eyndhoven et al. (2019)), we constructed a “BOLD predictor,”
that is, the regressor of interest that would have been used if the anal-

ysis were performed in the context of GLM. In order to construct the

BOLD predictor, the timing of the annotations of the IED, provided by

the neurologists, was used. At each annotation of an IED, a Dirac delta

function was placed. The time course of the successive delta functions

was convolved with the canonical HRF. For the selection of the rank

per patient, we fitted a CPD model to the EEG data of each patient

for R ranging from 1 to 7 and for every R we computed the maximum

correlation between the resulting time courses and the BOLD predic-

tor (Table A1). We have noted that, for R = 2, the CPD of the EEG

tensor was not always providing a source of interest, meaning that

the temporal mode of the resulting components was not always highly

correlated with the BOLD predictor. In order to estimate the rank for

every subject, along with the “BOLD predictor” we also employed the

CORe CONsistence DIAgnostic (CORCONDIA) (Bro & Kiers, 2003).

CORCONDIA reflects how close (in percentage) the core tensor of

the Tucker decomposition with the CPD factors is to superdiagonal.

The CORCONDIA score will decrease dramatically after the true rank

since any new components will be mainly descriptive of noise leading

to high off-superdiagonal core values. As estimated rank we selected

the rank corresponding to maximal correlation with the BOLD predic-

tor and CORCONDIA percentage higher than 70% (Kinney-Lang,

Spyrou, Ebied, Chin, & Escudero, 2018) (Table A1).

The number of common components (rank Rc of DCMTF)

selected per patient can be viewed in the second column of Table 3.

From the initial analysis of the temporal components of the CPD

of the EEG tensor, we tried to find what is the number of components

in each patient that were highly correlated (above 0.8) with the BOLD

predictor. This number ranged from 0 to 3 (median = 1, mean = 1.4),

hence we selected �R¼1.

The selection of the values of the λ's is more tricky. λ2 was

selected such that the correlation with the BOLD predictor is maxi-

mized. The different values of λ2 per subject can be viewed in the

penultimate column of Table 3. It must be noted that the selection

of λ2 was performed without the coupling in the spatial domain

among subjects, hence, in a single-subject analysis setting. The

value of λ1 = 1 (for the analysis of both left and right temporal sub-

jects) was selected as the value that maximizes the overlap of the

spatial maps with the IOZ. We must keep in mind that in other

applications such information might not be available. The selection

of the λ values is always problem-dependent. Moreover, it has been

observed that higher values of λ1 decrease the overlap with the

IOZ. This is a finding that makes sense, since the IOZ is subject-

specific and larger values of λ1 tend to minimize the differences

among the spatial maps and increase the similarity with the com-

mon map A.

Results of the analysis

As one can see from the third column of Table 3, in most of the sub-

jects, more than 80% of the IEDs are detected (compare to the fifth

column of Table 2). We can observe (Table 3) that the spatial maps

obtained for all subjects (except for Subject 1) show significant activa-

tion in areas that are concordant with the IOZ. For the visualization of

the spatial components, the transformation to Z scores has been per-

formed with the use of the “display” GUI of the GIFT toolbox

(Medical Image Analysis Lab (MIALAB), 2017). Similarly with the simu-

lated experiments, all the algorithms ran 30 times. The Z-map of the

common spatial matrix, A, reveals activations in the right and left tem-

poral lobe for the group of the patients with right and left temporal

epilepsy, accordingly. It must be noted that for the patients with the

left temporal epilepsy the activation is more on the anterior side of

the temporal lobe. Furthermore, for those with the right temporal epi-

lepsy we also observe activations in the occipital lobe, as well (red

areas of Figure 9). Moreover, for both groups, deactivations (negative

part of the fMRI Z images) are observed in areas associated with the

DMN (blue areas of Figure 9).

We should also note that in some subjects (e.g., Subject 2) we

observed a second component with high correlation with the BOLD

predictor. The spatial Z-map of this component includes ROIs of acti-

vation that are not common among the subjects (e.g., activation in

parietal lobe for Subject 2). It seems that in subjects where the

TABLE 3 Results of the analysis in
each patient

Subject number Selected Mean number of λ2 Spatial map

Rank Rc Detected IEDS Overlap with IOZ

1 5 9 (15) 1 No

2 2 98 (105) 10 Yes

3 4 694 (825) 10 Yes

4 5 95 (117) 100 Yes

5 2 94(126) 1,000 Yes

6 3 8 (11) 1 Yes

7 3 1,569 (1,815) 100 Yes

8 3 190 (226) 10 Yes

9 2 5 (6) 10 Yes

10 2 804 (966) 100 Yes

Abbreviations: IEDs, Interictal Epileptic Discharges; IOZ, Ictal Onset Zone.
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difference between the subject-specific spatial map, Åk, and the com-

mon one, A, is significant, the spatial map of interest is split in two

components. This is a very interesting and promising finding since in

group analysis in the framework of GLM such splitting is not allowed.

Comparing with the results obtained with the use of GLM as

preprocessing step (presented in Hunyadi et al. (2016), Figure 2a), we

can see that our results provide a denser and more concentrated acti-

vation in the right pole, while also the DMN is better discriminated

without the need of extra analysis (in Hunyadi et al. (2016), the DMN

appeared only if the GLM component was further decomposed with

CMTF; see Figure 2b).

4.2.2 | Visual oddball EEG–fMRI

The dataset used in this subsection is obtained from the OpenfMRI

database (Stanford University, 2017). Its OpenfMRI accession number

is ds000116 and it has been previously used in Walz et al. (2013). The

17 subjects (11 males; mean 27.7 years; range 20–40 years) per-

formed different sessions of visual oddball tasks while EEG and fMRI

were simultaneously recorded. The demographic characteristics of the

subjects can be viewed in Table 4.

In each session, 125 stimuli per task were presented for 200 ms

each, with a 2–3 s uniformly distributed variable intertrial interval

(VITI) and a target probability of 20% (target—oddball stimuli where

the subject should press the button and 80% standard stimuli which

should be ignored) (Walz et al., 2013). The first two stimuli for each

run were constrained to be standard. As target and standard stimuli, a

large red circle and a small green circle on gray backgrounds were

used, respectively (3.45 and 1.15� visual angles).

The fMRI data were acquired with the use of 3 Tesla Philips

Achieva MRI scanner and a resolution of 3 � 3 � 4 mm3 was used.

The TR used was 2,000 ms (smaller than VITI) and the TE was equal

to 25 ms. Thirty-two slices of 64 � 64 voxels were obtained. A single-

volume high-resolution (2 � 2 � 2 mm3) echo-planar imaging image

and a 1 � 1 � 1 mm3 spoiled gradient recalled (SPGR) image were

acquired from each subject for registration purposes. We must note

that Subject 10 has been excluded from our analysis since it is the

only subject for which an SPGR MRI image was not available.

The EEG electrodes were arranged in 43 bipolar pairs. All elec-

trode impedances were kept below 20 kΩ, including 10 kΩ resistors

built into each electrode for subject safety. A more detailed and com-

prehensive description of the hardware, along with the acquisition of

the data can be found in Walz et al. (2013).

Preprocessing

Gradient artifacts were removed by subtracting the mean artifact

across all functional volume acquisitions and a 10 ms median filter

was also applied in order to remove any residual spike artifacts. Band-

pass filtering of the data between 1 and 100 Hz has been performed

while also a notch filter has been employed at 60 Hz for removal of

the electrical line noise interference. The authors in Walz et al. (2013)

have used principal component analysis (PCA) to remove the BCG

artifact, but we noted that still the data were corrupted by remnants

of the BCG artifact. On top of the PCA that has been used we also

applied ICA in order to improve the result of the artifact removal, fol-

lowing the rationale of the optimal basis set + ICA method, proposed

in Vanderperren et al. (2010).

The BCG-free data from the 43 bipolar channels were referenced

to the 34-electrode space, in each subject. Noisy channels (subjec-

tively determined by visual inspection from Walz et al. (2013)) were

excluded prior to re-referencing due to oversampled system design.

The excluded electrodes per subject can be viewed in the last column

of Table 4.

We computed a spectrogram for each subject from the non-

overlapping EEG segments, with each segment having length equal to

the TR of the fMRI acquisition of the specific subject, in order to

obtain a spectrogram “synchronized” to the fMRI signal. The squared

Fourier magnitudes are averaged into 1 Hz bins, from 1 to 40 Hz. We

have formed an EEG tensor as ~T k �RIe�I~a�I~b , where Ie =40 represents

different frequencies, I~a ¼34 electrodes, and I~b is the number of EEG

samples (not the same over all subjects). The fMRI data of the kth

F IGURE 9 Common spatial map of activation for patients with right temporal epilepsy, A. With the red color, we can view values of Z > 0 and
with blue color Z < 0
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subject were organized into Xk �RIa�Ib , with Ia =131,072 voxels and

Ib =170 being equal to the number of fMRI scans per subject.

The same preprocessing steps as those described in

“Preprocessing” section were followed, with the only difference

being that no slice time correction was performed. Furthermore,

bias field correction has been performed using the FMRIB's Auto-

mated Segmentation Tool (Zhang, Brady, & Smith, 2001), which is

available in FSL (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2017).

Selection of hyperparameters

To determine the rank per subject, we employed CORCONDIA (Bro &

Kiers, 2003). Since we were expecting at least three different sources

(normal stimuli, odd stimuli, and response to odd stimuli) we selected

as rank, Rc, the rank that was higher than 2 and exhibited the highest

drop in CORCONDIA percentage when rank was increased beyond

that (the selected rank per subject can be seen in the respective col-

umn in Table 4). The λ2 per subject was selected so that the resulting

sources in the single-subject case for the flexible (Equation (11)) and

soft version (Equation (12)) of the proposed algorithm have the maxi-

mum correlation with each other. As it was previously observed, the

flexible scheme had a very good performance in the single-subject

analysis but, when the number of subjects is increased, significant

increase of the complexity is noted. Hence, we will use the result of

the flexible approach in the single-subject case for tuning λB in the

soft approach (which is considered equivalent to λ2 in the multisubject

scenario).

Results of the analysis

In our first attempt to blindly extract the different sources, the

method failed to successfully discriminate the target and normal

stimuli and separate them into distinct sources. Instead, a single

source with a combination of both stimuli was obtained. Unlike the

previous case, where a big portion of the IEDs were even blindly dis-

criminated from the background brain activity, in this use case, the

two sources are highly correlated. Hence, we resorted to a semiblind

approach (Morante et al., 2020). Namely, for every subject, we

assumed that two of the components of the EEG trial mode (~ak,1 and

~ak,2) are known and equal to the timings of the normal and oddball

stimuli (with delta functions placed at the exact times where the stim-

uli occurred).

Both conditions (target and normal stimuli) elicited activation in

regions associated with a response to visual stimulation (occipital cor-

tex). In accordance to earlier findings, the source which was correlated

with the target stimuli revealed activation in inferior and middle/

superior frontal gyrus, anterior (mainly) and posterior cingulate cortex,

inferior and superior parietal lobe and dorsolateral prefrontal cortex

(Stevens, Skudlarski, Gatenby, & Gore, 2000; Brázdil, Mikl, Mareček,

Krupa, & Rektor, 2007; Ardekani et al., 2002). In some of the subjects,

we have also noted activity in the left thalamus, in the amygdala and

in the right cerebellum (probably connected to pressing the button

with the right finger). The main activated areas with the respective

size in voxels, the exact position in MNI space, the maximum Z-score

and the respective Brodmann area can be viewed in Table 5.

As expected, additional activation was observed in the contrast

created target > normal stimuli. Widespread activation mainly in the

left hemisphere and more specifically in the parietal and frontal

regions and a frontal pole activation has been noted (Figure 10). It

appears that three main networks are involved. The DMN (posterior

cingulate cortex, precuneus, medial prefrontal cortex, and angular

gyrus), the central executive network (lateral posterior parietal and

dorsolateral prefrontal cortex) and the salience network (anterior

TABLE 4 Results of the analysis in
each subject

Subject
number Sex Age

Selected
rank, Rc λ2

Excluded bipolar
pairs

1 M 34 4 100 8, 24

2 F 25 3 100 5, 30

3 M 25 5 10 29, 30, 34, 36

4 M 30 4 1,000 23, 24, 30

5 M 21 4 1,000 8, 30

6 M 26 6 100 9, 24, 30

7 M 35 5 1,000 30

8 M 23 3 100 28, 29, 30, 33, 36

9 M 33 3 1,000 29, 30, 33

10 M 26 3 1,000 24, 29, 33

11 F 40 4 100 16, 24, 30

12 M 32 3 100 30

13 F 23 6 1,000 30

14 F 20 3 1,000 30

16 F 25 3 1,000 16, 24, 28, 30, 37

17 F 27 7 1,000 7, 33
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cingulate gyrus and frontal insular cortex). Those networks have been

reported in the literature in visual oddball paradigms when the target

stimuli are compared with the standard one (Kiehl, Laurens, Timothy,

Forster, & Liddle, 2000; Sbaihat et al., 2021).

In the analysis of the temporal component of the EEG, we have

noted an increased theta 4–7 Hz and (especially) delta activity 0.5–

4 Hz in the frequency component of the source related to the target

stimuli. In the literature, the delta band in oddball paradigms has been

most directly related to target P300 ERP produced during the target

stimuli (Kolev, Demiralp, Yordanova, Ademoglu, & Isoglu-Alkac, 1997;

Bernat, Malone, Williams, Patrick, & Iacono, 2007). It has been

reported that an increased delta activity is common for both hemi-

spheres during the target stimuli in oddball paradigms and for theta

coherences over the left hemisphere (Güntekin & Başar, 2010). Fur-

thermore, the modulation of spectral activity in the delta band in

response to the target stimuli indicates a dissociation in the activity of

the neural networks that oscillate in delta and theta ranges and

contribute to the generation of the P300, and can be used in order to

identify disorders of consciousness (Rivera-Lillo et al., 2018).

5 | DISCUSSION

Our results suggest that, if the correct coupling strategy (fusion

model) is selected (based on the type of the problem at hand), the use

of “nonhard” (soft or flexible) coupling methods with raw data can

lead to better performance, compared to the uncoupled or hard-

coupled counterparts. In any case, the selection of the method to be

employed is heavily based on any a priori knowledge of the type of

problem. A preliminary analysis of the data of both modalities sepa-

rately is recommended. This can provide relevant information to the

user on the model to be selected as well as hints on the values of the

(hyper)parameters. As mentioned previously, also the number of

coupled components, Rc, can be obtained by setting a threshold based

F IGURE 10 Spatial map of activation for the contrast target > normal stimuli Z > 2.5

TABLE 5 Significant (Z > 2.5) activation clusters from the contrast of the target stimuli versus baseline

Cluster size Z-score MNI x MNI y MNI z BA Hemisphere Anatomical labels

986 5.3 12 �92 2 17 Bilateral Primary Vis., I. occipital L.

373 4.9 33 �58 �30 — Bilateral Cerebellum

323 6.2 7 2 36 24, 32 Bilateral Anterior cingulate G.

295 5.6 �8 �12 67 6 Left Premotor, SMA

257 4.8 54 24 23 9 Bilateral Dorsolateral prefrontal C.

232 4.5 37 0 38 8 Bilateral Front-eye fields

M. and S. Frontal G.

198 3.4 �48 �60 36 39, 40 Left Angular G., M. parietal L.

174 3.6 50 �53 38 39, 40 Right Angular G., M. parietal L.

169 4.3 62 �40 8 22 Right S. and M. temporal G.

124 4.3 30 �65 52 7 Right S. lateral occipital C.

123 3.5 �57 12 13 4 Left Precentral G.

112 4.5 �57 �38 28 40 Left Supramarginal G., I. parietal L.

103 4.3 37 �39 33 40 Right Supramarginal G., I. parietal L.

98 5.2 52 10 28 44 Right Brocca, I. prefrontal C.

85 3.9 �51 �41 8 22 Left S. temporal G.

34 2.95 �7 �56 8 23 Left P. cingulate G.

18 2.85 �14 2 24 8 Left Caudate nucleus

Abbreviations: C, Cortex; G, Gyrus; I, Inferior; L, Lobe; M, Middle; P, posterior; S, Superior; SMA, Supplementary Motor Area; Vis, Visual cortex.
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on the correlation among the components of the two modalities in

the initial “separate” decomposition.

Furthermore, it should be kept in mind that the design of the

experiment plays a significant role in the model selection. An experi-

ment with different time courses per subject will lead to the adoption

of DCMTF; this does not mean that the multiway nature of the data

will still not be exploited (as previously noted), since the coupling

across the spatial modes of the coupled fMRI data will enrich the opti-

mization problem with spatial neighborhood information among the

different subjects.

Concerning reproducibility of the results, we have noted that all

the methods have a low SD provided that they succeed to correctly

separate the sources (high mean Pearson correlation). We have also

noted that although the SD of the correlation is low in the uncoupled

tensors method in cases where it fails, the SD of the correlation of the

estimated sources in every run is high (can go up to 0.40). This means

that, although the method produces (almost) equally bad results in

every run, the intrarun variability is high. On the other hand, the

coupled tensors method, though it also fails when different time

courses exist, has low intrarun variability. This difference could be

possibly explained from the coupling constraints which enhance the

uniqueness properties of the decomposition.

We have demonstrated the use of DCMTF in two different use

cases, namely IOZ localization and visual oddball paradigm. In the epi-

lepsy use case, DCMTF has retained, in the multisubject study, the good

performance reported in Van Eyndhoven et al. (2021) with separately

analyzing each subject. DCMTF is capable of blindly obtaining (most of)

the IEDs annotated by the neurologists, while other multisubject

methods using CMTF (Acar et al., 2017a; Hunyadi et al., 2016) can be

applied only with the use of predefined IEDs (as a regressor for GLM).

Hence, the automatic detection of the IEDs is not possible. Furthermore,

in the oddball paradigm, our model obtains activated areas congruent

with the literature and provides also frequency information that is not

possible with the usual analysis in the framework of GLM. We need also

to stress out that the use of tensor–tensor approaches (Chatzichristos

et al., 2018; Jonmohamadi et al., 2020) could not have been applied in

none of the use cases, since the subjects do not have the same time

courses. Hence, DCMTF is the only method available (to the best of the

authors' knowledge) that can be used in a (semi-) blind context using raw

data and not predefined features in both of the analyzed use cases.

The flexible approach proposed in Van Eyndhoven et al. (2017)

and Van Eyndhoven et al. (2021) performs very well in single-subject

cases and without the need of any parameter tuning. In multisubject

cases (with the use of DCMTF), however, it becomes computationally

expensive, and as the number of subjects increases, problems in the

model computation might occur (nonconvergence of the model and

high memory consumption). Hence, we suggest the use of the flexible

two-gamma model for single-subject analysis (similar to this per-

formed in Van Eyndhoven et al. (2021)) but in multisubject studies the

use of the Lennard-Jones model or the soft coupling DCMTF are pro-

posed. Still, the more accurate double gamma HRF model can be used

as an indirect way to tune the λ's of the soft coupling approach, as

exhibited in Section 4.2.2.

We have demonstrated that relying on raw data in the problem of

fusion of EEG and fMRI, and provided the heterogeneity of the data

variables (Walach et al., 2018) is carefully handled, facilitates accurate

source identification. As it has been previously pointed out (Lahat

et al., 2015; Adalı et al., 2015b), the use of raw data can improve the

result of the decomposition by exploiting latent correlations between

the different datasets, which might have been hidden by the use of

intermediate feature extraction methods (such as GLM). Moreover,

we have confirmed that ICA-based methods fail to correctly decom-

pose overlapped sources (Chatzichristos, Kofidis, et al., 2019;

Stegeman, 2007).

6 | CONCLUSIONS

After briefly introducing the reader to the problem of EEG–fMRI

fusion, this article reports our recent results in this subject, which are

based on the adoption of two different coupled decomposition

models for jointly analyzing fMRI and EEG data in a true and early

fusion context. This is an attempt to benefit from the multiway nature

of both modalities, and to perform an early fusion, bypassing the need

to rely on features. Performance gains have been reported compared

to pICA as well as to the separate tensor decomposition-based ana-

lyses of the datasets. A comparison between flexible (computation of

the optimal HRF from data) and soft (similarity and not equality to a

predefined HRF) coupling approaches has been presented while also

an alternative HRF model, intended to reduce the complexity of the

double gamma HRF model, has been tested for the first time.

We have demonstrated in two real-world applications (interictal

onset localization and visual oddball paradigm) that DCMTF is capable

of producing good results both in a semisupervised and an

unsupervised setting. The results of the analysis are in accordance

with previous studies and our findings point out the superiority of the

use of raw data over features, when carefully preprocessed and with

the selection of the appropriate model.

Future work will include alternative decomposition models

(e.g., BTD (Dron, Chin, & Escudero, 2021)) in the fusion model and

comparisons with additional matrix-based methods, notably those

based on independent vector analysis (Adalı et al., 2015a). Ways of

semiautomatically selecting the values of the λ parameters should also

be sought for.
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ENDNOTES
1 These values are used in the statistical parametric mapping (Friston,

Ashburner, Nichols, & Penny, 2007) toolbox that is commonly used in

the analysis of fMRI.
2 In the so-called balloon model, the neuronal activity is approximated by

the stimulus/task input scaled by a factor called neural efficiency.
3 A detailed description and motivation of the use of the LennardJones

potential along with a fit analysis with real data can be found in

Morante (2020).
4 For the implementation of the models used in this article, we have used

the structured data fusion framework (Sorber, Van Barel, & De

Lathauwer, 2013) of Tensorlab (Vervliet, Debals, Sorber, Van Barel, & De

Lathauwer, 2016), and more specifically the NLS optimizers therein.
5 The quadrilinear model of CPD (Equation (10)), selected for

decomposing the EEG tensor, assumes that every subject has exactly

the same frequency weights, an assumption which is restrictive and can

be relaxed with the adoption of PARAFAC2 (Weis et al., 2010; Sur &

Sinha, 2009) as explained in Chatzichristos et al. (2018).
6 In cases though that different divergences (Chatzichristos, Vandecapelle,

et al., 2019) are being used per modality, due to different underlying sta-

tistics, the proper selection of the weights of each modality, that can

compensate for different scaling and noise levels in the datasets,

becomes a really difficult and barely resolved task (Schenker et al., 2021;

Şimşekli, Cemgil, & Ermiş, 2015).
7 The matrix A plays a similar role with the “consensus variable” in

Schenker et al. (2021).
8 Special thanks to Dr Nico Vervliet, KU Leuven, for sharing the code by

Dr M. Sørensen, University of Virginia, USA.
9 In Hunyadi et al. (2016), the spatial maps of the left temporal patients

were mirrored in order to obtain consistent right-lateralized activation

maps in all of the subjects. We will not adopt this rationale of mirroring

the left subjects. We will instead analyze both groups (left and right) sep-

arately and combine any findings.
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Ermiş, B., Acar, E., & Cemgil, A. (2013). Link prediction in heterogeneous

data via generalized coupled tensor factorization. Data Mining and

Knowledge Discovery, 29(1), 203–236.
Farias, R. C., Cohen, J. E., & Comon, P. (2016). Exploring multimodal data

fusion through joint decomposition with flexible couplings. IEEE Trans-

actions on Signal Processing, 64(18), 4830–4844.
Ferdowsi, S., Abolghasemi, V., & Sanei, S. (2015). A new informed tensor

factorization approach to EEG–fMRI fusion. Journal of Neuroscience

Methods, 254(1), 27–35.
Friston, K., Ashburner, J., Nichols, T., & Penny, W. (2007). Statistical para-

metric mapping: The analysis of functional brain images. Amsterdam,

Netherlands: Elsevier.

Genicot, M., Absil, P.-A., Lambiotte, R., & Sami, S. (2016). Coupled tensor

decomposition: A step towards robust components. In European Sig-

nal Processing Conference (EUSIPCO). Budapest, Hungary.

Gong, X.-F., Lin, Q.-H., Cong, F.-Y., & De Lathauwer, L. (2018). Double

coupled canonical polyadic decomposition for joint blind source sepa-

ration. IEEE Transactions on Signal Processing, 66(13), 3475–3490.
Groves, A. R., Beckmann, C. F., Smith, S. M., & Woolrich, M. W. (2011).

Linked independent component analysis for multimodal data fusion.

NeuroImage, 54(3), 2198–2217.
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APPENDIX

A rank selection. Epilepsy use case

In all subjects (other than Subj.3 and Subj.6), the rank with the maxi-

mum correlation with the BOLD predictor was selected. In Subj.3 and

6, the CORCONDIA percentage of the rank with the highest correla-

tion (R = 6 in Subj.3 and R = 3 in Subj.6) was below 70%; hence, we

selected as optimal rank R = 4 and 2, respectively (second highest

correlation, with CORCONDIA >70%).
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TABLE A1 CORCONDIA percentage and maximum correlation with BOLD predictor for every subject for R �{1, 2, …, 7}

CORe CONsistency DIAgnostic % Correlation with BOLD predictor

Rank 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Subj.1 — 100 99.4 97 90 76.8 69 0.35 0.9 0.44 0.93 0.97 0.9 0.92

Subj.2 — 100 95.7 69.4 29.4 28.2 24.1 0.29 0.94 0.92 0.92 0.91 0.93 0.9

Subj.3 — 100 87 74.6 37.5 12.6 �12 0.11 0.2 0.61 0.71 0.78 0.82 0.68

Subj.4 — 100 98.6 94.1 93.7 89.6 79.4 0.25 0.8 0.22 0.62 0.9 0.68 0.12

Subj.5 — 100 97.7 95.6 �1.4 �12 �74.5 0.09 0.8 0.74 0.75 0.76 0.7 0.33

Subj.6 — 100 99.7 70.5 �22.4 �67 �174 0.61 0.93 0.94 0.54 0.95 0.94 0.94

Subj.7 — 100 98.8 95.2 90.4 31.4 23.2 0.22 0.66 0.68 0.53 0.48 0.47 0.39

Subj.8 — 100 98 95 91.2 82.3 79.5 0.39 0.35 0.95 0.94 0.95 0.94 0.94

Subj.9 — 100 97.2 77.6 �23 �2 42.3 0.58 0.91 0.68 0.72 0.74 0.69 0.68

Subj.10 — 100 97.6 88.8 58.6 69.4 53.3 0.67 0.78 0.74 0.69 0.45 0.5 0.42

Note: The selected rank is highlighted with bold letters.

Abbreviations: BOLD, blood-oxygen-level dependent; CORCONDIA, CORe CONsistence DIAgnostic.
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