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Abstract 

 
Our challenge in the current study is to extend research on the cries of newborns for the early 

diagnosis of different pathologies. This paper proposes a recognition system for healthy and 

pathological cries using a probabilistic neural network classifier. Two different kinds of features 

have been used to characterize newborn cry signals: 1) acoustic features such as fundamental 

frequency glide (F0glide) and resonance frequencies dysregulation (RFsdys); 2) conventional 

features such as mel-frequency cestrum coefficients.  

This paper describes the automatic estimation of the proposed characteristics and the 

performance evaluation of these features in identifying pathological cries. The adopted methods 

for F0glides and RFsdys estimation are based on the derived function of the F0 contour and the jump 

"J" of the RFs between two subsequent tunings, respectively. The database used contains 3250 

cry samples of full-term and preterm newborns, and includes healthy and pathologic cries. 

The obtained results indicate the important association between the quantified features and some 

studied pathologies, and also an improvement in the identification of pathologic cries. The best 

result obtained is 88.71% for the correct identification of health status of preterm newborns, and 

82% for the correct identification of full-term infants with a specific disease. We conclude that 

using the proposed characteristics improves the diagnosis of pathologies in newborns. Moreover, 

the method applied in the estimation of these characteristics allows us to extend this study to 

other uninvestigated pathologies. 

 

  

Keywords. Pathologic cry - Classification- Probabilistic neural network - Mel-frequency 

cestrum coefficients - RF dysregulations - F0 glides. 
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1. Introduction  

The majority of sick babies appear healthy at birth. Thus, early diagnosis  of hidden pathologies 

for a quick and effective treatment during their first week of life is crucial, as it could save the 

lives of these babies. However, the realization of a systematic neonatal diagnosis procedure for 

all newborns demands high costs because it involves the participation of numerous health 

professionals and specialized equipment. Thus, our aim is to develop a low-cost diagnostic 

system that allows pediatricians to detect pathologies affecting newborns using spontaneous cry 

signals.  

Cry signal analysis is a valuable tool for predicting neonatal diseases. It allows for the 

recognition of a sick infant when signs of illnesses are absent. In the previous studies of infant 

cries, two different approaches have been adopted: 1) an automatic recognition that consist of cry 

classification using advanced signal processing techniques [1, 2, 3, 4, and 5], and 2) a spectral 

cry analysis based on observing the spectrograms of cry signals and software tools [6,7,8,9, and 

10].  

However, the cries of newborns provide important acoustic parameters that are not considered 

while monitoring the first days of infant life and in the standard measurements of the Apgar 

score (appearance, pulse, grimace, activity, and respiration), which is used to verify a baby's 

health immediately after birth. Moreover, studies regarding the development of reliable 

estimation procedures for the most important acoustics characteristics as well as the 

identification of their pathological markers are scarce.  

Unlike previous works, the aim of our study is to propose an automated tool that uses important 

characteristics of cry signals to support the diagnosis of diseases in newborn infants. These 

characteristics are described in Section 4.2.1. They include acoustic parameters that qualify the 

vocal tract, such as mel-frequency cestrum coefficients (MFCCs) and resonance frequencies 

dysregulation (RFsdys), and the vocal fold, such as fundamental frequency glide (F0glide).  

F0glide has been associated with central nervous system diseases, asphyxia, and malformations of 

the orolaryngeal tract; RFsdys indicate poor neural control of the vocal tract and breathing, and 

has been associated with hyperbilirubinemia, and prenatal tobacco and cocaine exposure [11]. 

MFCCs can represent properly various models of cries [2], they allow decoupling between the 

features of the vocal tract and the features generated by the source of excitation. 
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To differentiate pathologic cries from healthy ones, we strengthened the previous studies with 

data based on cry analysis. Hence, the primary purpose of our work is to complete a detailed 

analysis of acoustic phenomena produced in newborn cries, focusing specifically on the 

prevalence of F0glide and RFsdys. Moreover, we study the effectiveness of their use as an input of 

the proposed newborn's pathological cry identification system (PCIS).  

We performed specific procedures to estimate the average percentage of F0glide, the rising and 

falling times of F0glide (Tglide), and the percentage of RFsdys in the cry signals of healthy and sick 

infants. By implementing these procedures as described in Section 4.2.2 and by using the median 

and interquartile range, we managed to 1) determine the quantitative relationship among these 

acoustic parameters and the various studied pathologies, 2) facilitate their use in the proposed 

diagnostic system.  

This paper is organized as follows. Section 2 provides an overview of previous works. In Section 

3, the details regarding the database used are presented . In Section 4, we explain our 

methodology for cry signal feature extraction. Section 5 describes the proposed PCIS. In Section 

6, we provide a statistical analysis of the estimated characteristics and also an evaluation of the 

obtained classification results. Finally, the conclusion is presented in Section 7, which also 

summarizes the suggestions and future directions for further research.  

2. Previous studies 

Studies regarding neonatal cry had focused primarily on the classification of cries and also on the 

relationship between the characteristics of cry signals and diseases. These two research 

directions progressed separately. Hence, the characteristics of cries that are closely related to the 

pathologies of newborns have not been considered in the classification of cry studies. 

In cry recognition studies, different types of classifiers have been used, such as artificial neural 

networks [12], Gaussian mixture model [13], hidden Markov model [2], probabilistic neural 

network (PNN) [3], support vector machine [14], and radial basis function networks[15]. The 

developed automatic recognition systems were applied on cry signals of normal infants and 

infants suffering from deafness, asphyxia, cleft lip, or cleft palate. The most used features were 

MFCCs, wavelet packet transform coefficients, and linear predictive coding coefficients. 
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According to our knowledge, none have considered the acoustic characteristics of cry signals in 

the classification of pathologic cries. 

In this study, we are interested in the early diagnosis of newborn pathologies using the acoustic 

characteristics of cry signals. Most direct methods that have been addressed in different studies 

to assess the acoustic properties of cry signals were based on spectrographic analysis using visual 

techniques [8, 9]. The studied parameters were manually measurable in the spectrogram of the 

cry signal. These studies were primarily focused on babies at risk with low neurological factors 

such as prematurity, hyperbilirubinemia, prenatal exposure to drugs, and also neurological 

damages such as Krabbe's disease, Down syndrome, asphyxia, and meningitis [16]. Several 

characteristics have been associated with these diseases, such as hyperphonic cries, F0 

irregularity, extremely high-pitched cries, dysphonic cries, change in phonation mode, variability 

of F0, glide of F0, and dysregulation of RFs [7,8,10]. In our previous studies [10,17,18], we 

adopted an automatic approach for the evaluation of the prevalence of these features. The results 

obtained indicated that the studied characteristics depend on the pathology itself.  

We have also provided the experimental results corresponding to a proposed PCIS to separate 

pathologic cries from healthy ones, with and without using the studied characteristics such as the 

average percentage of hyperphonic cries and F0 irregularity [17]. The results of cry classification 

were better when these features were used in the PCIS.  

 

3. Database and cry recording 

The acoustic analysis presented herein was performed on a real database. The recordings of cry 

signals were created specifically to study the possibilities of the early diagnosis of various 

pathologies using spontaneous cries during the first days of infant life. They were performed in 

the Pediatrics Department at the Sainte-Justine Hospital in Montreal, using a small recorder, at a 

distance of 10 cm from a baby’s mouth with a sampling rate of 44.1 kHz and a resolution of 16 

bits. This database is similar to that used in [17], [18], and [19]. A description of the recording 

sessions was presented in a previous work [13]. The recordings were performed with background 

noise; they have been performed for healthy and pathological newborns cries for different kinds 

of cries, such as hunger, sampling blood, and change of diapers. The categories of health 

conditions considered in our cry database are as follows: healthy, heart problems, neurological 

disorders, respiratory diseases, and blood abnormalities. The constructed dataset contains 3250 
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cry samples of 1-s duration from 66 babies. Among them were preterm and full-term newborns, 

from 1-day to 1-month old. It is distributed by pathologies and gestational age, as illustrated in 

Table 1. It is noteworthy that the age of the babies does not exceed one month because the 

infants acquire voluntary control of their vocal tracts beyond this age [10].  

All the samples in the database have been used to investigate and analyze the proposed acoustic 

features in cry signals. However, because more healthy samples are available than pathology 

samples, and the number of cry samples associated with each of the diseases are different, only 

part of this database has been used in the study of the newborn's PCIS, as shown in Table 4 in 

Section 6.2. 

Table 1. Studied pathologies for different gestational ages 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Gestational age Pathology Sample size 

Full-term newborn (t) 

Healthy 1010 

Hyperbilirubinemia 250 

Vena cava thrombosis 77 

Meningitis 115 

Peritonitis 20 

Asphyxia 190 

Lingual frenum 141 

Preterm 

newborn (P) 

Healthy 764 

IUGR- microcephaly (in utero growth retardation) 78 

Tetralogy of Fallot 53 

Gastroschisis 134 

IUGR-asphyxia 

(intra-uterine growth retardation) 
148 

RDS (respiratory distress syndrome) 270 
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4. Cry signal features extraction  

 Feature extraction is a crucial step in the classification task; it affects the accuracy and reliability 

of pattern recognition. In our work, new features were extracted in addition to MFCCs. They 

were used to characterize different models of pathological cries and also cries from healthy 

newborns. These new high level features are the F0glide, Tglide, and RFsdys. 

 

4.1 MFCC 

MFCCs are the most used feature coefficients in automatic infant cry classification [1, 2, 4]. 

Considering the statistical stationary of cry signals in short periods of time, MFCCs were 

extracted using a frame duration of 23.2 ms (1024 samples) with 50% recovery and a sampling 

rate of 44.1 kHz. 

For every cry signal, we extracted 13 MFCC parameters for each frame of 23.2 ms. We obtained 

an MFCC matrix of 13 lines × N columns. N corresponds to the total number of frames in the 

whole cry signal.  

The calculation of MFCCs was performed as follows: 

 Perform a glottal inverse filtering to attenuate the influence of the vocal tract. 

 Multiply each frame by the Hamming window.  

 Estimate the power spectrum sequence using fast Fourier transform (FFT).  

 Convert the frequency outputs by the FFT onto the mel scale and obtain the logarithm of 

all filterbank energies. 

 Apply the discrete cosine transform on the log filterbank energies. 

Hence, MFCCs are obtained from the following relation: 

  

1

1
log( ) cos ( ) , 1, 2....,

2

k

n k

k

c S i k i M
k





 
   

 
  

where K is the number of filterbanks, which is 20 in this study. M is the length of the cepstrum 

that is chosen to be 13, and Sk represents the energy output of the kth triangular band pass filter. 
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4.2 Acoustic features 

The set of acoustic parameters used in our study is presented in Table 2. The first five 

characteristics were investigated previously in [19]. The automatic estimation of the remaining 

features are described below.  

 

Table 2. Studied cry characteristics 

 
 

Characteristics Definitions. 

Fundamental frequency (F0) Vibration frequency (in Hz) of the vocal folds. 

F0 Harmonics Multiples of fundamental frequency. 

RF1, RF2 (Hz) The first and second vocal tract resonance frequencies. 

Tuning (TUP) 
Blocks of 1024 samples during which an RF remains close to 

the harmonics of F0 (distance < 100 Hz).  

Transition (TRP) Blocks of 1024 samples between two subsequent TUPs. 

F0glide Rapid increase or decrease in F0 of 600 Hz or more. 

Glide duration (Tglide) Defined by the start time and finish time of F0 glide. 

Dysregulation of RFs (RFsdys) High frequency variability of RFs (RF1, RF2). 

 

 

4.2.1 Features description  

 Research in acoustic phonetics was focused on the mechanisms of speech production rather than 

cry production in newborns. Moreover, the acoustic properties of vocal folds and many aspects 

of source-filter interaction have not been clearly defined in newborn cries. Therefore, we have 

investigated the acoustic properties of speech and singing to understand the F0glide and RFsdys 

phenomena in cry signals.  

In vowel and voiced consonant production theory, the glottis operates independently of the vocal 

tract [20]. This theory concerns male speech more than female and child speeches. However, 

glide production is influenced by the interaction between the vocal tract and vocal folds [21]. 

When the oscillation frequency of the vocal fold F0 approaches the vocal tract resonance RFs 

(RF1, RF2), a nonlinear source-filter system coupling occurs. This interaction is more important 

for female and child speeches and even more for singing [22]. It has been mentioned [23] that the 
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rising and falling F0 occur with the upward and downward movement of the larynx respectively, 

and that the control mechanisms of F0 are influenced by the movements of the laryngeal frame 

and cervical spine.  

Based on the average pressure decrease across a narrow constriction in normal voice, Stevens 

[24] defined glides as a class of consonants with a constriction that is not sufficiently narrow. 

Thus, the glides were produced with a greater degree of constriction in the vocal tract, and their 

categories were differentiated by the aerodynamics of different degrees of vocal tract 

constriction.  

In cry signals, F0glide was defined as a rapid change in F0 (> 600 Hz) in 0.1 s. It can be either 

rising or falling glides [8]. This characteristic is shown in Figure 1 (a) that represents a 

spectrogram of a hyperphonic and dysphonic cry for a newborn suffering from asphyxia. We can 

observe the upward glide of 1102-2390 Hz at 0.053-0.210 s from the F0 contour of this cry, and 

thus the duration of glide (0.157 s) is higher than 0.1 s.  

Some studies have investigated the relationship between the glottal properties and vocal tract 

acoustics of an opera singer [25, 26, 27, and 28]. According to [25], the increase or decrease in 

resonance frequencies is related to the possibility of changes in the configuration of organs 

involved in voice production as follows: glottal-opening duration, glottal vibratory amplitude, 

glottal area, laryngeal height, mouth opening, and tongue shape. Because the tuning (TUP) 

phenomenon is defined as an adjustment of the RF such that it is close to F0 or one of its 

harmonics, it has been shown that professional singers use many resonance tuning strategies for 

vowels (RF1: 2F0, RF1: 3F0, RF2: 4F0, RF2: 5F0, RF2: 6F0, and RF2: 8F0 tuning) [25] .  

In our previous work [19], an automated approach has been used to estimate and evaluate the 

duration and percentage of TUP between RFs and the harmonics of F0 for healthy and pathologic 

newborn cries. The obtained results encouraged us to further investigate the variability of RFs, 

termed RFsdys here. Furthermore, this characteristic has been associated with neonatal diseases 

[10]. However, to our best knowledge, none have evaluated the variation pattern of RFsdys 

whether in cry signals or in speech signals.  

To quantify RFsdys and analyze their variation patterns according to the studied pathologies, we 

define this characteristic by the RF jumps between two successive TUPs. Therefore, during the 

transition period TRP as shown in Figure 1 (b), we observed that RF1 suddenly jumped 

downward from 3178 Hz to attain 2196 Hz at t = 0.031 s. Because F0 = 450 Hz, this jump 
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occurred between two successive tunings with the 7th and 5th harmonics of F0, (RF1:7F0 and 

RF1:5F0). Thus, in this case, the jump "J" is equal to two.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spectrograms of cry signals using PRAAT [29].  

a) Rising F0glide in the cry of full-term infant suffering from asphyxia. 

b) RF1dys between two successive TUPs in the cry of preterm infant with gastroschisis. 

 

4.2.2 Feature estimation 

The adopted approach for the estimation of F0glide, Tglide, and RFsdys is illustrated in Figure 2, and 

the principal steps are detailed below.  
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 RF1,RF2  estimation  

TUP detection

Dividing signal into overlapping 

frames of 1024 with 512 recovering

Dysregulation of 

RFs estimation

M(t) calculation  

Number and 

duration of  F0 Glide  

estimation

Preprocessing and classification 

of cry signals by pathology

F0  and its 10 

harmonics 

estimation  

 

Figure 2. Flowchart of adopted approach. 

 In the first step, cry signals were processed manually using PRAAT (a freeware program for the 

analysis and reconstruction of acoustic speech signals) [29]. The automated preprocessing 

method is currently being investigated by other researchers studying the PICS [30]. Because the 

recorded sounds include the background noises, speech, sound of medical equipment, and 

silence, some of these parts may distort the results of the analysis. Therefore, this step consists of 

noise filtering and segmentation of recordings into useful and non-useful segments. 

Subsequently, the database was organized by pathology and gestational age.  

In the second step, we applied the following procedure for acoustic characteristic measurement 

using self-developed functions in Matlab. This has been performed for healthy and pathologic 

cries by pathology and gestational age. Each cry segment of 1-s duration was divided into 50% 

overlapping frames of 1024 samples. Each frame was multiplied by the Hamming window. 

Thereafter, for each data frame, we estimated F0 and its 10 harmonics using the simple inverse 

filtering tracking algorithm [31, 32]; further, we estimated the RFs (RF1, RF2) using the modified 

covariance method based on the autoregressive power spectral density (AR-PSD) [33, 34]. The 

primary steps of the estimation algorithm of F0 and RFs are detailed in [18]. The performances of 
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these algorithms were tested on a real newborn cry database [16, 32]. The derived function M(t) 

was estimated using F0 contour measurements and subsequently used for F0glide detection.  

The TUPs and the jumps of RFs were estimated using the harmonics of F0 and RFs 

measurements. In contrast to a previous study [35], where the TUPs were investigated using a 

special visualization concept, the TUPs in our work were detected automatically according to the 

given definitions in Table 2 and subsequently used for RFsdys estimation. 

For each cry sample, F0glides, Tglide, and RFsdys (RF1dys, RF2dys) were calculated using the adopted 

algorithms detailed below.  

 

4.2.2.1 F0glide and Tglide estimation 

The following approach was adopted in this work to detect F0glide and its corresponding Tglide in 

1-s cry segments: 

 

(1) Estimate F0 and obtain the derived function M(t) of F0. 

0dF (t)
M(t) =

dt
 

(2) Obtain the time indexes "x" when M (t) is equal to zero.  

 M( ) 0x   

(3) Calculate the corresponding F0(x). 

(4) Identify the glides of F0 by the following condition: 

0 0F ( ( )) F ( ( 1)) 600x i x i Hz   , i=1…….N-1 

N: number of zero values at the function M(t)  

(5) Obtain the duration Tglide of each F0glide, by the following formula: 

glideT T( ( 1)) T( ( ))x i x i    

  T(x): the times at index « x». 

(6) Calculate the average percentage of F0glide (PF0glide) and average of Tglide (ATglide) by pathology 

and gestational age, using these formulas: 
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glide

F0glide

Total

glide

Tglide

glide

N
P =  ,

N

T
A = 

N


 

NTotal : Total number of segments in cry samples of 1-s duration.  

Nglide: Number of F0glide that occurred. 

(7) Calculate the median and interquartile range of the evaluated characteristics PF0glide and 

ATglide. 

Herein, we did not consider the time constraint of 0.1 s for the durations of F0glide. Thus, Tglide, 

which could be of any length, was estimated and analyzed according to the pathologies.  

 

4.2.2.2 RFsdys estimation  

The estimation of RFsdys was performed by computing the jump "J" of the RFs between two 

subsequent TUPs or during the transition duration (TRP). "Jump" represents the number of 

harmonics between two subsequent TUPs. This study examines the Js in the range of 1 to 9. In 

our work, the TUPs and TRPs were detected automatically and used for the evaluation of RFsdys.  

RFsdys were separately investigated for RF1dys and RF2dys with the same procedure for each data 

frame in 1-s cry segments as follow: 

 

(1) Estimate F0 and its 10 harmonics. 

(2) Estimate RF1 and RF2. 

(3) Identify TUPs separately for RF1 and RF2 by the following conditions. 

 

0 1n.F ( ) RF ( ) 100, [1,...9], [1.....N ]Totalp p n p     

0 2n.F ( ) RF ( ) 100, [1,...9], [1.....N ]Totalp p n p     

n: order of harmonic (1 to 9). 

p: index of frame in cry segment 

 

(4) Find the time indexes of the start and the end of TRPs, i.e., (s1, e1) and (s2, e2), for RF1 and 

RF2, respectively. 
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(5) Calculate the corresponding RF1 (s1), RF1 (e1), RF2 (s2), and RF2 (e2). 

(6) Obtain the jumps J1 and J2 for RF1 and RF2 ,respectively, using the following formulas, 

respectively: 

 

RF1 1 1 1 1 1 1 1 1 1 0C (z ) = RF ( (z )) - RF ( (z )) = J (z ) Fs e   z1= [1.......N1TRP] 

RF2 2 2 2 2 2 2 2 2 2 0C (z ) = RF ( (z )) - RF ( (z )) = J (z ) Fs e   z2= [1.......N2TRP]  

 

where CRF1 , CRF2 are the differences in RFs, i.e., RF1, RF2, respectively, during the TRPs.  

 N1TRP, N2TRP represent the number of TRPs for RF1, RF2, respectively. 

Thereafter, for each jump J1 and J2 in the range of 1 to 9, the average percentages of RF1dys 

(PRF1dys ) and of RF2dys (PRF2dys ) were estimated for each pathology and gestational age, using 

these formulas, respectively: 

  
1

2dys

J

RF 1 1

Total

N
P (J ) =  , J [1.....9]

N
 , 

2

2dys

J

RF 2 2

Total

N
P (J ) =  , J [1.....9]

N
  

NJ1, NJ2 are the number of jumps J1 and J2, respectively, in cry samples of 1-s duration. 

NTotal : Total number of segments in cry samples of 1-s duration.  

(7) Calculate the median and interquartile range of the evaluated characteristics PRF1dys and 

PRF2dys. 

 

5. PCIS description  

The proposed diagnostic system was built around an efficient PNN classifier and significant 

infant cry features. In this study, we investigate the effectiveness of the extracted characteristics 

(PF0glide+ATglide+PRF1dys+PRF2dys) concatenated with MFCC features for the classification of 

healthy and sick newborn infants according to their cries. Thus, the sets of characteristics once 

obtained were used as inputs to the PNN classifier. 

The PNN classifier is used widely for classification problems in the medical domain [36, 37]. It 

is ideal for real-time applications and is computationally inexpensive. It can learn using the 

conjugate gradient method, new incoming training data without having to repeat the whole 

training process [38]. The PNN classifier implements the Bayesian decision rule. Its network 

architecture is based on three layers: (1) the input layer that computes the distances between the 
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input vector and the training input; (2) radial basis layer that produces a vector of probabilities; 

(3) competitive layer that selects the maximum of these probabilities. The network classifies the 

input vector, the assigned class as those with the highest probability [36]. 

Matlab was used for the development of the test system. The primary steps are as follows: 

 wav files recovery from each folder of the studied pathologies.  

  division of 1-s cry signals into overlapping frames of 1024 samples, with 50% recovery. 

For each 1-s cry segment, the following were performed:  

 estimation of PF0glide, ATglide, PRF1dys, and PRF2dys.  

 extraction of 13 MFCCs for each interlaced frame. 

 conversion of each matrix of the MFCCs specific to a cry sample into only one vector. 

 concatenation of each vector with its corresponding PF0glide, ATglide, PRF1dys, and PRF2dys. 

The set of obtained vectors were selected as the final inputs to the PNN classifier. 

 application of five-fold cross validation; four folds for training set and one fold for testing 

set. 

 data classification using the PNN classifier; the strategy proposed by [36] paper and the 

function newpnn () in Matlab [39] were used. 

 calculation of the correct identification rate namely, accuracy. 

6. Results and discussion  

6.1 Acoustic and statistical analysis  

The cry signals were analyzed using the studied characteristics (PF0glide, ATglide , PRF1dys, and 

PRF2dys). Moreover, they have been investigated according to the gestational age (full-term and 

preterm) and diseases afflicting newborns. The cry features given in Table 2 were estimated for 

the complete database presented in Table 1. 

An example of F0glide is shown in Figure 3; it represents an estimate of F0 for a 1-s cry of a 

newborn suffering from asphyxia. The irregular contour of F0 presents the rising glide between 

0.21 s and 0.24 s and the falling glide between 0.58 s and 0.63 s. 
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Figure 3. Estimated F0 for a cry signal of a newborn suffering from asphyxia; 

rising and falling F0glide (red ellipses). 

 The average percentage of F0glide (PF0glide) and the average durations of the glides (ATglide) are 

given in Table 3 and presented by pathology and gestational age in Figures 4(a) and 4(b), 

respectively. 

The obtained results indicate that the cry signals do not present the glides of F0 in both healthy 

premature and full-term newborns, and also in the studied cases of lingual frenum and 

meningitis. They also indicate that, in a group of full-term newborns, the highest median and 

interquartile range of PF0glide are found in peritonitis with average glide durations compared to 

other diseases. The lowest percentage is found in the case of vena cava thrombosis with longer 

durations of F0glide. In the same group of full-term newborns, a small difference occurred in the 

occurrence of F0glide and also ATglide between the cries of hyperbilirubinemia and asphyxia 

diseases.  
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Table3. PF0glide, and ATglide estimation results 

 

The highest median and interquartile ranges of PF0glide among the two groups of newborns were 

observed in the cries of preterm newborns affected by IUGR-microcephaly disease with rather 

long periods of glides. However, Figure 4 and Table 3 show that the highest median and 

interquartile range of ATglide characterize the tetralogy of Fallot disease, which presents the same 

PF0glide as RDS disease compared to other pathologies. 

 

 

 

 

 

Pathology 

PF0glide (%) ATglide (s) 

Median Interquartile 

Range 

Median Interquartile 

Range 

Healthy (t) 0 0 0 0 

Hyperbiluribinemia(t) 8.33 3.9 0.16 0.10 

Vena cava thrombosis (t) 7.14 4.87 0.25 0.11 

Meningitis (t) 0 0 0 0.00 

Peritonitis (t) 12.5 6.52 0.22 0.12 

Asphyxia (t) 8 4.17 0.15 0.09 

Lingual frenum (t) 
0 0 0 0.00 

Healthy (P) 0 0 0 0.00 

IUGR-microcephaly (P) 18.46 12.5 0.28 0.10 

Tetralogy of Fallot (P) 10 4.91 0.31 0.17 

Gastroschisis (P) 16.66 8 0.27 0.11 

IUGR-asphyxia (P) 11.11 4.95 0.23 0.12 

RDS (P) 10 5.71 0.18 0.11 
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Figure 4. Box-and-whiskers plots for a) PF0glide, b)Tglide, by pathology. 

Concerning the RFsdys, examples of this feature are shown in Figure 5, which represents the 

estimates of F0, their harmonics, RF1, and RF2 for the 1-s cry of a newborn suffering from 

hyperbilirubinemia. An RF1dys was observed at approximately 0.38 s between the third and sixth 

harmonics, "J = 3" and also an RF2dys at approximately 0.26 s between the seventh and ninth 

harmonics  "J = 2".  
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Figure 5. Full-term newborn suffering from hyperbilirubinemia, 

F0 and their harmonics (red lines), RFs: RF1 (black dots) and RF2 (blue dots), RFsdys between 

TUPs (green rectangles). 

Comparative results are presented in Figure 6. They exhibit the variation patterns of RFsdys by 

pathology. This dysregulation is expressed by the percentage of jump "J" previously defined in 

Section 3.4. Figures 6(a) and (b) show that the majority of cries of preterm newborns are 

characterized by more RF1dys when J = 1 than cries of full-term newborns. The percentage of RF1 

jumps is more important for all jumps J = 1 to 9 in the cries of healthy preterm newborns than in 

the cries of healthy full-term newborns. 

According to Figure 6(a), the cry signals of vena cava thrombosis and asphyxia diseases present 

the most RF1dys, with the highest percentage of jump for "J" from 1 to 9, except for "J" of 3 and 4 

jumps, where the largest percentage is found in cry signals of lingual frenum pathology. In the 

case of hyperbilirubinemia and for "J" equal to 1, 2, and 3 jumps, the cry signals were qualified 

by more RF1dys than those of healthy newborns. Further, in peritonitis disease, the percentage of 

jumps for "J" of 1, 2, 5, and 6 is higher than those of healthy newborns. Unlike these latest 

pathologies, the cry signals in case of meningitis present less RF1dys for all jumps "J" (1 to 9) 

than in healthy newborn. From Figure 6 (b), we can observe the highest RF1dys for jumps J = 1 to 

6 in the case of tetralogy of Fallot disease compared to the other studied cases. We also noticed a 
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higher percentage of RF1 jumps for J = 1 in both cases of RDS and gastroschisis, and less RF1dys 

was observed in the cry signals of IUGR–microcephaly and IUGR–asphyxia compared to the 

cries of healthy preterm newborns. The variation patterns of RF2dys for full-term and preterm 

newborn cry signals are shown in Figure 6 (c and d, respectively). We observed that the 

percentage of RF2 jumps depends on the studied pathologies. According to the jumps "J", it can 

be less or more important than in those in healthy newborn cries. In the cases of full and preterm 

newborns, all studied diseases are characterized by low difference in the percentage of RF2 

jumps compared to healthy preterm newborn cries, except for the cry signals of tetralogy of 

Fallot disease that presents a greater percentage of RF2dys than the healthy ones for J = 1 to 5 

jumps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Average percentage of RFsdys by jumps "J". 

a) RF1dys for full-term newborns, b) RF1dys for preterm newborns, 

 c) RF2dys for full-term newborns, d) RF2dys preterm newborns. 

 

c) d) 

a) 
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6.2 Classification results 

In this work, we present the results of healthy and sick (with specific diseases, see Table 1) 

infant identification systems. To test and validate the use of the studied characteristics, two 

experiments were performed in both cases of full-term and preterm infants: 1) separate cries by 

health status of infant (pathologic cries from healthy ones); 2) separate cries into those of healthy 

infants and those sick with specific diseases. The effectiveness of the studied characteristics 

(PF0glide, ATglide, PRF1dys, and PRF2dys) in the recognition of pathological cries was compared to the 

use of MFCC parameters as the input to the PCIS. The performance of the PCIS was evaluated 

based on the rate of correct identification (overall accuracy) [4].  

The distribution of cry samples according to classes and pathologies are shown in Table 4. In the 

first experiment, the cry samples are distributed into two classes: healthy cries and pathological 

cries. In the second experiment, the cry samples are distributed in five classes according to the 

used pathologies. There are many healthy samples in our database and limited numbers of cry 

samples from sick infants. However, the five-fold cross validation has been used, in which each 

fold is of equal size and contains the same percentage of samples as that of each target class.  

Table 4. Distribution of cry samples per class  

 

Experiments 
Number of 

Classes 
Gestational age 

Samples number 

Per class 

Classes 

First 

 

2 classes 

 

Preterm 

 

50×5/250 

Pathologic (Tetralogy of Fallot, 

Gastroschisis, IUGR-microcephaly, RDS, 

IUGR-asphyxia) /healthy 

Full term 50×5/250 

Pathologic (hyperbilirubinemia,lingual 

frenum, vena cava thrombosis, asphyxia, 

meningitis) /healthy 

Second 5 classes 

Preterm 50×5 
Tetralogy of Fallo /gastroschisis 

/RDS /IUGR-asphyxia/healthy 

Full-term 50×5 

Hyperbiluribinemia/vena cava 

thrombosis/asphyxia/meningitis/hea

lthy 
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The best results of the correct identification rate obtained for all implemented experiments are 

shown in Table 5. The use of MFCCs as feature characteristics is tested for the two experiments. 

The best performance obtained (72%) is found in the identification of full-term infants 

pathologies. The second test corresponds to the use of the studied features in addition to MFCCs. 

This test provides a better identification rate (88.71%) of health status of preterm infants.  

According to the comparative results presented in Table 5, the use of the studied characteristics 

(PF0glide, ATglide, PRF1dys, and PRF2dys) in addition to MFCCs improves the performance of the PCIS 

compared to the use of MFCCs without the studied characteristics compared to the MFCC 

features only; in the first experiment, the overall accuracy had improved by 18.5% points for the 

identification of health status of preterm infants and by 7% points for the identification of the 

health status of full-term infants. In the second experiment, the overall accuracy improved by 

12% points for the identification of preterm infants with a specific disease, and 10% points for 

the identification of full-term infants with a specific disease. 

Table 5. Overall accuracy results 

 

7. Conclusion 

In this work, we proposed an automated classification method for different cry patterns. We used 

new features that improved the accuracy of the recognition of pathological cries. This study 

focused on the following: 1) improvement of PCIS performances using studied features, 2) 

Experiments Classes 

number 

Gestational 

age 

Features 

   MFCC PF0glide + ATglide + PRF1dys+ 

PRF2dys+ MFCC 

First 2 classes 

Preterm 70.16 % 88.71 % 

Full term 60.00 % 67.00 % 

Second 5 classes 

Preterm 60.00 % 72.00 % 

Full term 72.00 % 82.00 % 
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description of our method for estimating the proposed features, and 3) description of associations 

between infant medical conditions and the considered characteristics.  

The proposed methods to estimate these features permitted the analysis of a considerable number 

of pathologic cry signals in a short time, and the extension of the study for other pathologies not 

considered. Hence, we are recording a larger database with a greater variety of pathologies and 

more subjects for each pathology.  

We successfully identified the occurrence of the proposed characteristics in cry signals according 

to the studied pathologies. The glide of F0 was found absent in healthy newborn cry signals and 

also in some of the pathologies. The obtained results suggested that the prevalence of relatively 

slow glides increased in sick preterm infants, especially in babies with diseases affecting the 

CNS such as IUGR-microcephaly. Our results indicated a complex pattern variation of RF2dys in 

the pathologic cry signals compared to that of RF1dys . 

 From the presented work and results obtained in this study, we conclude that, occurrences of 

Fglides and RF1dys in addition to other characteristics investigated in our previous works were 

found to be useful in the diagnosis of the studied pathologies.  

The encouraging classification results indicated the highly discriminatory nature of the proposed 

features. These characteristics can be explored as inputs to a diagnostic system using other 

modeling and classification methods to ultimately provide a basis for alerting healthcare workers 

to intervene. We also expect to improve the results by studying other classifiers. 

The results obtained using the PNN classifier and the proposed acoustic features were not 

compared with other results of previous studies. It is noteworthy that in this study, cases of full-

term and premature babies, both with and without pathologies were investigated, thus increased 

the complexity of a PCIS significantly. For example, the cry signals of neonatal asphyxiate and 

healthy babies contain significant differences in the acoustic signals, thus easing the 

identification process.  

In conclusion, our research underlined the importance of using acoustic features in the task of cry 

recognition and provided support and additional results to investigations regarding neonatal 

cries. 
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