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Soil microbial communities have profound effects on the growth, nutrition and
health of plants in agroecosystems. Understanding soil microbial dynamics in
cropping systems can assist in determining how agricultural practices influence soil
processes mediated by microorganisms. In this study, soil bacterial communities
were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in
which JA was successively monocropped for 3 years in a wheat field. Soil bacterial
community compositions were estimated by amplicon sequencing of the 16S rRNA
gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated
by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed
that 1–2 years of monocropping of JA did not significantly impact the microbial
alpha diversity, and the third cropping of JA decreased the microbial alpha diversity
(P < 0.05). Principal coordinates analysis and permutational multivariate analysis of
variance analyses revealed that continuous monocropping of JA changed soil bacterial
community structure and function profile (P < 0.001). At the phylum level, the wheat field
was characterized with higher relative abundances of Latescibacteria, Planctomycetes,
and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping
of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria.
At the genus level, the first cropping of JA was enriched with bacterial species with
pathogen-antagonistic and/or plant growth promoting potentials, while members of
genera that included potential denitrifiers increased in the second and third cropping
of JA. The first cropping of JA had higher relative abundances of KO terms related
to lignocellulose degradation and phosphorus cycling, the second cropping of JA
had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide
reductase, and the third cropping of JA had higher relative abundances of KO terms
nitrate reductase and nitrite reductase. The abundances of amoA genes decreased
while nirK increased in the third cropping of JA, nirS continuously increased in the
second and third cropping of JA (P < 0.05). Redundancy analysis and Mantel test
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found that soil organic carbon and Olsen phosphorus contents played important roles
in shaping soil bacterial communities. Overall, our results revealed that continuous
monocropping of JA changed soil bacterial community composition and its functional
potentials.

Keywords: Helianthus tuberosus L., soil bacterial community, bacterial diversity, monocropping, nitrogen cycling

INTRODUCTION

The rapidly increasing global food demand poses a huge
challenge for the sustainability of agricultural production
(Tilman et al., 2011). Modern agricultural practices are often
characterized by monocropping, which leads to the simplification
of the components of agricultural systems (Cook, 2006). The
continuous monocropping system, in which the same crop is
repeatedly monocropped on the same land, is not long-term
sustainable, because it usually results in reduction of crop yield
and quality, a phenomenon which has been described as ‘soil
sickness’ (Cook, 2006; van der Putten et al., 2013).

Plants can change soil biology, chemistry, and structure in
ways that alter subsequent plant growth, and this process is
referred as plant–soil feedback (van der Putten et al., 2013). As
a kind of negative plant–soil feedback in agricultural ecosystems,
soil sickness has been reported for several crops, such as corn (Zea
mays L.) (Gentry et al., 2013), pea (Pisum sativum L.) (Nayyar
et al., 2009) and cucumber (Cucumis sativus L.) (Zhou and Wu,
2012). Possible factors that contribute to soil sickness include
accumulation of phytotoxic compounds, build-up of soil-borne
pathogens, deterioration of soil physico-chemical characteristics,
and changes in nutrient availability (Zhou and Wu, 2012; Huang
et al., 2013). Recently, changes in soil biological properties have
also been proposed to account for the yield decline in continuous
monocropping systems (Nayyar et al., 2009; Huang et al., 2013;
Zhou et al., 2017a).

Soil microorganisms are responsible for key processes
associated with soil fertility and plant health, and are an
important driver of the functioning of terrestrial ecosystems
(Bever et al., 2012; Bhattacharyya and Jha, 2012). Changes
in soil microbial communities may lead to alterations in
the functions performed by the community and thus have
feedbacks on plant health and fitness (Bever et al., 2012;
Zhou et al., 2017a). Soil microbial communities are driven
by a myriad of factors, including soil physical and chemical
properties, aboveground plant species abundance and diversity,
and agricultural practices (such as monocropping, crop rotation,
intercropping, fertilization, irrigation, and tillage) (Acosta-
Martínez et al., 2008; Nayyar et al., 2009; Rosenzweig et al.,
2012; Sun et al., 2014; Zhou et al., 2017a). For example, it
has been shown that diversified cropping systems (such as
intercropping, crop rotation, and cover crop) usually have higher
diversities and abundances of soil microbial communities than
monocropping systems (Zhou et al., 2011, 2017a; Tiemann
et al., 2015). Knowledge about how continuous monocropping
influences soil microbial communities is helpful for the
development of practices to relieve soil sickness in agriculture
production.

Jerusalem artichoke (JA) (Helianthus tuberosus L.) is an
economically important crop, which can be used as a food
for direct human consumption and livestock feed after silage
(Kaur and Gupta, 2002). Market forces have encouraged farmers
to cultivate JA in monoculture and a reduction in tuber yield
and quality was usually observed (Chi et al., 2009; Zhou et al.,
2016). Previously, we found that continuous monocropping
of JA changed the structure and decreased the diversity of
soil bacterial communities as estimated by PCR-denaturing
gradient gel electrophoresis analysis (Zhou et al., 2016). High-
throughput sequencing techniques, such as 454 pyrosequencing
and Illumina sequencing, can provide a higher resolution and a
better understanding of environmental microbial communities
than the PCR-based fingerprinting techniques (Schöler et al.,
2017). High-throughput sequencing techniques also greatly
facilitated the diversity and the composition analyses of
microbial communities in agricultural soils (Acosta-Martínez
et al., 2008; Sun et al., 2014; Bainard et al., 2016; Chavez-
Romero et al., 2016; Zhou et al., 2017a). Therefore, it is
necessary to deepen our understanding about the dynamic
changes in soil microbial communities during continuous
monocropping of crops with high-throughput sequencing
techniques.

In this study, we evaluated the responses of soil bacterial
communities to continuous monocropping of JA with high-
throughput sequencing. JA was grown in a long-term cultivated
wheat field for three successive years. Bulk soil bacterial
communities were assessed by amplicon sequencing of the
V3-V4 region of the 16S rRNA gene on an Illumina MiSeq
platform. In addition, bacterial community potential functions
were inferred from the amplicon data using Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (Langille et al., 2013). Abundances of ammonia-
oxidizing and denitrifying bacteria were estimated by quantitative
PCR analysis of the amoA, nirS, and nirK genes. Plant litter
and root exudates are important carbon resources for soil
microorganisms, and the chemistries of these organic matters
differ among plant species (Fierer et al., 2007; Eilers et al.,
2010; Birouste et al., 2012). Therefore, we first hypothesized
that soil bacterial communities differed between wheat- and
JA-cultivated soils. Since it is usually observed that continuous
monocropping had an adverse effect on soil bacterial community
diversity, while crop rotation were able to increase soil bacterial
community diversity (Zhou et al., 2011, 2017a; Tiemann et al.,
2015). The first cropping of JA can be viewed as a wheat-JA
rotation system. Therefore, our second hypothesis was that soils
from the wheat field and the third cropping of JA would have
lower soil bacterial community diversities than the first cropping
of JA.
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MATERIALS AND METHODS

Field Experiment
The experimental site was located in field of Mojiaquanwan
village, Chengbei District, Xining, China (36◦42’N, 101◦45’E),
which has been continuously cultivated with wheat (Triticum
aestivum L.) for more than 20 years. Wheat was grown from
early March to early September and thereafter left fallow till next
wheat crop. The soil was castanozem (FAO/UNESCO System of
Soil Classification), containing organic matter: 2.03%, available N
(NH4

+ and NO3
−): 69 mg kg−1, Olsen P: 65 mg kg−1, available

K: 229 mg kg−1, EC (1:2.5, w/v) and pH (1:2.5, w/v), 8.12.
The field experiment was conducted from April 2010 to

October 2012. The annual precipitations in these 3 years were
405.0, 390.4, and 446.1 mm, respectively, and the mean annual
temperatures were 6.4, 5.7, and 5.2◦C, respectively. There are four
treatments in the experiment, namely, W, F, S, and T (Table 1).
W was the long-term cultivated wheat field. F, S, and T were
designed to be planted with JA for 1, 2, and 3 years, respectively.
Briefly, in 2010, treatment T was planted with JA, the other three
treatments were planted with wheat. In 2011, treatments T and S
were planted with JA, the other two treatments were planted with
wheat. In 2012, treatments T, S, and F were planted with JA, the
treatment W was planted with wheat. The experiment was set up
in a randomized block design, with three replicate plots for each
treatment. Each plot measured 120 m long and 80 m wide.

Jerusalem artichoke tubers (cv. Qingyu 2), provided by
Institute of Horticulture, Qinghai Academy of Agriculture and
Forestry Sciences, China, were planted on April 5 each year and
harvested on October 25 each year. Within-row spacing was
40 cm and the row width was 60 cm. Wheat was broadcast seeded
in early March and harvested in early September. There was
one crop (wheat or JA) per year. After the harvest of JA and
wheat, the fields were left fallow until to plant the next crop.
Both diammonium hydrogen phosphate and urea were applied
at the rate of 300 kg ha−1 as basal fertilizer. Flooding irrigation
with groundwater was performed when necessary. Weeds were
manually removed once a month in May and June.

Soil Sampling and DNA Extraction
Bulk soil samples were collected on November 25, 2012, 1 month
after JA harvest. Eight soil cores (5 cm diameter, 15 cm deep) were
randomly collected between rows of crops from each plot to make

TABLE 1 | Experiment setup of the field experiment.

Treatments Year

2010 2012 2013

W Wheat Wheat Wheat

F Wheat Wheat JA

S Wheat JA JA

T JA JA JA

Crops, wheat or Jerusalem artichoke (JA), were planted in different treatments from
2010 to 2012. W was continuously planted with wheat; F, S, and T were planted
with JA for 1, 2, and 3 years, respectively. All soil samples were taken in 2013.

a composite sample. Large stones and root debris were removed
by sieving (2 mm), then fresh soils were transported to laboratory
and stored at −70◦C. There were triplicate soil samples for each
treatment and there were 12 soil samples in total.

Total soil DNA was extracted with the PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
United States) as per the manufacturer’s instructions. Each
composite soil sample was extracted in triplicate and the
extracted DNA solutions were pooled.

High-Throughput Amplicon Sequencing
and Data Processing
Soil bacterial community compositions were analyzed with high-
throughput sequencing on an Illumina MiSeq platform. Primers
of F338/R806 were used to amplify V3-V4 region of the bacterial
16S rRNA gene as described before (Derakhshani et al., 2016;
Zhou et al., 2017a). Both the forward and reverse primers
also had a 6-bp barcode unique to each sample, which were
used to permit multiplexing of samples. Each composite soil
sample was independently amplified in triplicate, the products
of the triplicate PCR reactions were pooled and purified
using the Agarose Gel DNA purification kit (TaKaRa, China).
Then, purified amplicons were quantified by a TBS-380 micro
fluorometer with Picogreen reagent (Invitrogen, United States),
and pooled in equal amounts. The mixture was then paired-end
sequenced (2 × 300) on an Illumina Miseq platform at Majorbio
Bio-Pharm Technology Co., Ltd., Shanghai, China.

Raw sequence reads were de-multiplexed, quality-filtered, and
processed using FLASH (Magoc and Salzberg, 2011) as described
before (Zhou et al., 2017a). Operational taxonomic units (OTUs)
were delineated at 97% sequence similarity with USEARCH
using an agglomerative clustering algorithm (Edgar, 2010). Then,
a representative sequence of each OTU was taxonomically
classified through BLAST against the SILVA (Quast et al.,
2013). Chimeric sequences were identified and removed using
USEARCH 6.1 in QIIME 1.9.1 (Caporaso et al., 2010). Functions
of soil bacterial communities were predicted by PICRUSt from
the 16S rRNA marker gene sequences on the Galaxy platform1

(Langille et al., 2013), and the biological functions were annotated
in the KEGG database (Kanehisa et al., 2012). Specifically,
we focused on functions associated with carbon, nitrogen,
phosphorus, and sulfur cycling. The data set was deposited in
the NCBI-Sequence Read Archive with the submission Accession
Number SRP115368.

Quantitative PCR Analysis
Abundances of ammonia-oxidizing and denitrifier communities
were estimated by quantitative PCR assays with an IQ5 real-time
PCR system (Bio-Rad Lab, Los Angeles, CA, United States). For
the ammonia-oxidizing community, the gene encoding ammonia
monooxygenase catalytic subunit A (amoA) was amplified using
the primer set of amoA1F/amoA2R (Rotthauwe et al., 1997)
according to the methods described by Glaser et al. (2010).
For the denitrifier community, the cytochrome cd1-containing
nitrite reductase gene (nirS) and the Cu-dependent nitrite

1http://huttenhower.sph.harvard.edu/galaxy
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reductase gene (nirK) were amplified using the primer sets of
nirSCd3aF/nirSR3cd (Kandeler et al., 2006) and nirK1F/nirK5R
(Braker et al., 1998), respectively, according to the methods
described before (Hai et al., 2009; Braker et al., 2015). A 20 µl
PCR reaction mixture contained 10 µl of 2× Real SYBR Mixture
(Tiangen Biotech, Beijing, China), 0.2 µM of each primer, 2.5 ng
of soil DNA. Standard curves were created with 10-fold dilution
series of plasmids containing the ITS regions from soil samples.
The specificity of the products was confirmed by melting curve
analysis and agarose gel electrophoresis. The threshold cycle
(Ct) values obtained for each sample were compared with the
standard curve to determine the initial copy number of the target
gene. Sterile water was used as a negative control to replace the
template. All amplifications were performed in triplicate.

Statistical Analysis
Read counts from high-throughput amplicon sequencing were
not rarefied to equal sampling depths because this unnecessarily
discards data (McMurdie and Holmes, 2014). For alpha diversity
analysis, square root transformed read counts (Balint et al.,
2015) were used to calculated Hill’s series of diversity. The
series consists of three numbers: N0 is the number of species
in a sample; N1 is the antilogarithm of the Shannon diversity
(representing the abundant species in a sample); and N2 is
the inverse Simpson diversity (representing the very abundant
species in a sample) (Hill, 1973). To compare with alpha diversity
indices from the unrarefied data, alpha diversity indices were also
calculated from a randomly selected subset of 22,503 16S rRNA
gene sequences per sample.

For beta diversity analysis, read counts were centered log-
ratio (CLR) transformed (Fernandes et al., 2014). Bacterial
community structure and function profile were analyzed using
principal coordinates analysis (PCoA) based on a Euclidean
distance matrix. Permutational multivariate analysis of variance
(PerMANOVA) was used to test the differences in microbial
communities with the Euclidean distance and 999 permutations.
The PCoA and PerMANOVA analyses were performed with the
pcoa and adonis functions in ‘vegan’ package in ‘R’ (Version
3.3.1), respectively.

Linear discriminant effect size (LEfSe) analysis was used to
identify biomarkers that were significantly associated with each
treatment with an alpha value of 0.05 for the Kruskal–Wallis test
and a threshold of 2.0 for logarithmic linear discriminant analysis
(LDA) scores (Segata et al., 2011).

Previously, we found that continuously monocropped JA
did not change soil pH and inorganic N content, the first
cropping of JA had the highest soil organic carbon (SOC) content
while the third cropping of JA had the lowest soil Olsen P
(Zhou et al., 2017b). Redundancy analysis (RDA) was used to
identify soil properties that predict the variation of bacterial
communities. Mantel test with a Monte Carlo simulation
with 999 randomizations was used to assess the relationships
between the Euclidean distance of bacterial community and
soil chemical properties. RDA and Mantel test analyses were
performed with the rda function in the ‘vegan’ package and
the mantel.rtest function in the ‘ade4’ package in ‘R’ (version
2.1.3), respectively. Spearman’s rank correlations between soil

properties and relative abundances of bacterial classes and genus,
and predicted functions were calculated in ‘psych’ package in ‘R’
(Version 3.3.1).

Differences in Hill’s series of diversity, relative abundances
of microbial taxa and abundances of amoA, nirS, and nirK
genes among treatments were analyzed using one-way analysis
of variance (ANOVA) followed by Tukey’s honestly significant
difference (HSD) test at the 0.05 probability level.

RESULTS

Amplicon Sequencing Data
After filtering reads by basal quality control and removing
singletons, Illumina Miseq sequencing of bacterial 16S rRNA
gene fragments generated 322,976 quality bacterial sequences
with an average read length of 397 bp, and 22,503–30,340
sequences were obtained per sample (mean = 26,915). The
Good’s coverage, which reflects the captured diversity, was larger
than 98% for all samples (data not shown). Rarefaction curves
of OTUs at 97% sequence similarity and Shannon’s diversity
indices of all samples tended to approach the saturation plateau
(Supplementary Figure S1), which indicates that the majority of
the bacterial diversity was recovered by the surveying effort.

Bacterial Community Composition
In total, 32 phyla were detected across all samples and
0.99% bacterial sequences were unclassified at the phylum
level (Unclassified Bacteria). The dominant phyla (relative
abundance > 5%) across all soil samples were Proteobacteria,
Actinobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, and
Chloroflexi, which accounted for more than 92% of the bacterial
sequences (Figure 1A). The top three phyla were Proteobacteria,
Actinobacteria, and Acidobacteria, which had relative abundances
ranging from 26.36 to 32.37%, 21.17 to 39.64%, and 9.31 to
17.00%, respectively. Gemmatimonadetes and Firmicutes were
less abundant phyla (relative abundance < 5% but > 1%)
with relative abundances ranging from 1.76 to 3.25% and 1.13
to 2.00%, respectively. Groups of Nitrospirae, Verrucomicrobia,
Cyanobacteria, Latescibacteria, Armatimonadetes, and JL-ETNP-
Z39 were also detected at relatively low abundances in all samples
(relative abundance > 0.1%).

Linear discriminant effect size analysis identified 107
differentially abundant taxa from the phylum to the genus level
(Figure 2 and Supplementary Figure S2). The first cropping
of JA had the most (41) and the third cropping of JA has the
least (13) number of differentially abundant taxa. Among these
differentially abundant taxa, nine were found to be genus-level
biomarkers. At the phylum level, the wheat field was enriched
with Latescibacteria, Planctomycetes, and Cyanobacteria; the first
cropping of JA with Actinobacteria and Unclassified Bacteria;
the second cropping of JA with Acidobacteria, Armatimonadetes,
Gemmatimonadetes, and Proteobacteria (P < 0.05).

At the class level, more than 70 bacterial taxa were
detected. All samples were dominated by Actinobacteria,
Acidobacteria, Alphaproteobacteria, Gammaproteobacteria, and
Betaproteobacteria (Figure 1B). LEfSe analysis identified 11
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FIGURE 1 | Relative abundances of main soil bacterial phyla (A) and classes (B). W represents the wheat field; F, S, and T represent the first, second, and third
cropping of Jerusalem artichoke (JA), respectively.

biomarkers at the class level (Figure 2 and Supplementary
Figure S2). The wheat field was characterized with higher
relative abundances of Thermomicrobia, Cyanobacteria, and
Planctomycetacia; the first cropping of JA with Actinobacteria
and Flavobacteriia; the second cropping of JA with Acidobacteria,
Chloroflexia, Gemmatimonadetes, Betaproteobacteria, and
Opitutae; the third cropping of JA with Gammaproteobacteria
(P < 0.05).

At the genus level, more than 500 bacterial taxa were detected.
Arthrobacter, Blastococcus, Chryseolinea, Gaiella, Lysobacter,
Marmoricola, Nocardioides, Skermanella, and Streptomyces spp.
were dominant classified genera (relative abundance > 1%)
(Table 2). The relative abundances of Variibacter, Illumatobacter,
Altererythrobacter, and Gemmata spp. were higher in the
wheat field than in other treatments (P < 0.05) (Table 2
and Supplementary Figure S2). The relative abundances of
Microbacterium, Mycobacterium, Pseudonocardia, Algoriphagus,
Flavobacterium, Bosea, Microvirga, and Pseudomonas spp. were
higher in the first cropping of JA than in other treatments
(P < 0.05). The relative abundances of Adhaeribacter, Roseiflexus,
Gemmatimonas, Rhizobium, Caenimonas, and Nitrosospira spp.
were higher in the second cropping of JA than in other treatments
(P < 0.05). The relative abundances of Nitrospira, Marmoricola,
Nocardioides, Haliangium, and Lysobacter were higher in the
third cropping of JA than in other treatments (P < 0.05).

A total of 2,395 OTUs were identified at 97% similarity.
Most dominated OTUs, with relative abundances greater

than 0.5% of the total sequences, were mainly assigned to
the Acidobacteria, Actinobacteria, and Gammaproteobacteria
at the class level (Supplementary Table S1). The relative
abundances of one OTUs assigned to Acidibacter, Chryseolinea,
Lysobacter, Acidobacteria Subgroup 6 norank, uncultured
Nitrosomonadaceae and unclassified Xanthomonadaceae were
higher in the wheat field than in the first cropping of JA; while
the relative abundances of OTUs assigned to Arthrobacter
and Streptomyces spp. was higher in the first cropping of JA
than in the wheat field (P < 0.05). The third cropping of JA
had the highest relative abundances of two OTUs assigned
to Nocardioides, Marmoricola and Lysobacter spp. and the
lowest Comamonadaceae unclassified among all treatments
(P < 0.05).

Bacterial Community Diversity and
Structure
For alpha diversities calculated from unrarefied data (Figure 3A)
and rarefied data (Supplementary Figure S3), the number of
OTUs (Hill’s N0) was lower in the third cropping of JA than in
the first cropping of JA (ANOVA, P < 0.05). Hill’s N1 and N2
were significantly lower in third cropping of JA than in other
treatments (ANOVA, P < 0.05).

The PCoA analysis at the OTU level showed a clear
separation among samples from the wheat field, the first, second,
and third cropping of JA (Figure 3B). PerMANOVA analysis
demonstrated that continuous cropping of JA significantly
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FIGURE 2 | Cladograms, generated from LEfSe analysis, represent the polygenetic distribution of soil bacterial taxa. Biomarkers that are significantly associated with
each treatment with LDA scores larger than 2 are shown. Significantly discriminant taxon nodes are colored: red for the wheat field (W), green, blue and purple for
the first (F), second (S), and third (T) cropping of Jerusalem artichoke (JA), respectively. Yellow circles represent non-significant differences in abundance between
treatment groups for that particular taxon. Each circle’s diameter is proportional to the taxon’s abundance. Labels are shown of the phylum, class and order levels.
The LDA scores of each identified biomarker from the phylum to genus levels are shown in Supplementary Figure S1.

changed soil bacterial community structure (F = 3.034,
R2 = 0.532, P < 0.001).

Predicted Functions of Bacterial
Communities
The majority of the predicted functional gene categories were
related to metabolism (52.09%), followed by genetic information
(15.76%), environmental information processing (13.27%), and
unclassified (12.91%). LEfSe analysis identified five differentially
abundant KEGG pathways at KEGG level 1, 21 differentially
abundant KEGG pathways at KEGG level 2 (Figure 4), and
89 differentially abundant KEGG pathways at KEGG level
3 (Supplementary Figure S4). The first cropping of JA was
characterized by enrichment of functions related to metabolism
at KEGG level 1, and amino acid metabolism and carbohydrate
metabolism at KEGG level 2; the second cropping of JA was
characterized by enrichment of functions related to genetic
information processing and cellular processes at KEGG level 1;
the third cropping of JA was characterized by enrichment

of functions related to organismal systems at KEGG level 1
(Figure 4).

For pathways at level 3 that are involved in carbohydrate
metabolism, pentose and glucuronate interconversions, galactose
metabolism, inositol phosphate metabolism, glyoxylate and
dicarboxylate metabolism, fructose and mannose metabolism,
glycolysis/gluconeogenesis, pyruvate metabolism, propanoate
metabolism, butanoate metabolism, were enriched in the first
cropping of JA; TCA cycle was enriched in the third cropping of
JA. At KEGG level 3, the second cropping of JA was also enriched
with sulfur metabolism.

Several predicted KEGG Ortholog (KO) terms related to
carbon, nitrogen, phosphorus and sulfur cycling were also
differed among treatments (Figure 5). For example, the relative
abundances of KO terms related to lignocellulose degradation,
such as 6-phospho-beta-glucosidase, neutral alpha-glucosidase
C and catalase, were higher in the first cropping of JA than in
other treatments (P < 0.05). The relative abundances of KO
terms ammonia monooxygenase subunit C and hydroxylamine
oxidase, which are involved in ammonification, were higher
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FIGURE 3 | Alpha diversities (A) and PCoA analyses of soil bacterial community structure (B) and function profile (C). (A) Hill’s series of diversity was calculated from
unrarefied data. Different letters indicate significant difference based on Tukey’s HSD test (P < 0.05). (B) The PCoA analysis of soil bacterial community structure was
based on the Euclidean distance of the centered log-ratio (CLR) transformed read counts at the OTU level. (C) The PCoA analysis of soil bacterial community
function profile was based on the Euclidean distance of the CLR transformed pathway numbers at KEGG level 3. OTUs were delineated at 97% sequence similarity.
W represents the wheat field; F, S, and T represent the first, second, and third cropping of Jerusalem artichoke (JA), respectively.

in the second cropping of JA than in the wheat field and
third cropping of JA (P < 0.05). Among all treatments, the
third cropping of JA had the highest relative abundances of
KO terms nitrate reductase and nitrite reductase, while the
second cropping of JA had the highest relative abundances of
KO terms nitrous-oxide reductase and nitric-oxide reductase
(P < 0.05). The relative abundance of KO term inosose
dehydratase, which participates in phosphorus cycling was
higher in the first cropping of JA than in other treatments
(P < 0.05). For KO terms related to sulfur cycling, the relative
abundance of sulfate adenylyltransferase and adenylylsulfate
reductase subunit B were higher in the second cropping of
JA than in the wheat field and the first cropping of JA
(P < 0.05).

Principal coordinates analysis showed that soil bacterial
function profiles at KEGG level 3 differed among samples
from the wheat field, the first, second, and third cropping of
JA (Figure 3C). PerMANOVA analysis also demonstrated that

continuous cropping of JA significantly changed the function of
soil bacterial communities (F = 6.478, R2 = 0.708, P < 0.001).

Relationships Between Soil Bacterial
Communities and Soil Chemical
Properties
The RDA analysis and Mantel test were conducted to identify the
key drivers of soil bacterial community structure and function
profile. In the RDA plots of both bacterial community structure
and function, soil SOC, inorganic N, and Olsen P had longer
arrows than the soil pH (Figure 6). Mantel test demonstrated that
soil bacterial community structure was significantly correlated
to SOC (r = 0.339, P = 0.002) and Olsen P (r = 0.395,
P = 0.004) but not to inorganic N (r = 0.395, P = 0.105) and
soil pH (r = 0.075, P = 0.238); soil bacterial function profile
was significantly correlated to SOC (r = 0.406, P = 0.003) and
Olsen P (r = 0.426, P = 0.004) but not to inorganic N (r = 0.126,
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FIGURE 4 | Changes in soil bacterial community functional profiles. Histograms (A,B) showed the LDA scores calculated for the differentially abundant biomarkers at
KEGG level 1 and 2, respectively (P < 0.05). W represents the wheat field; F, S, and T represent the first, second, and third cropping of Jerusalem artichoke (JA),
respectively.

P = 0.220) and soil pH (r = −0.085, P = 0.692). Spearman’s rank
correlation test showed that the relative abundances of bacterial
class Gammaproteobacteria was negatively correlated with SOC
(r = −0.85, P < 0.05), and genus Caenimonas spp. was positively
correlated with SOC (r = 0.82, P < 0.05) and Olsen P (r = 0.83,
P < 0.05). The relative abundance of the relative abundances of
KO terms neutral alpha-glucosidase C and inosose dehydratase
were positively correlated with SOC (r = 0.75, P < 0.05; r = 0.75,
P < 0.05, respectively). The relative abundance of KO term
ammonia monooxygenase subunit C was positively correlated
with Olsen P (r = 0.71, P < 0.05).

Soil Ammonia-Oxidizing and Denitrifier
Community Abundances
Quantitative PCR analysis showed that the ammonia-oxidizing
abundance, expressed as amoA gene copy number, was
significantly lower in the third cropping of JA than in other
treatments (P < 0.05) (Figure 7). However, the denitrifier
community abundance, expressed as nirS and nirK gene copy
numbers, was significantly higher in the third cropping of JA
than in other treatments (P < 0.05). Meanwhile, nirS gene copy
number was higher in the second cropping of JA than in the
wheat field and the first cropping of JA (P < 0.05).

DISCUSSION

The productivity and sustainability of agricultural system
depend greatly on the functional processes carried out by
soil microorganisms (Bever et al., 2012). Mounting evidences
demonstrated that agricultural practices, such as fertilization,
tillage, crop rotation, and intercropping, could alter soil microbial
community (Garbeva et al., 2008; Zhou et al., 2011, 2017a;
Bever et al., 2012). The present study stressed the influences
of continuous monocropping on soil bacterial communities by
amplicon sequencing of the 16S rRNA marker gene. PCoA and
PerMANOVA analyses revealed that soil bacterial community
composition and function profile changed during continuous
monocropping of JA, which supported our first hypothesis.

It has been observed that soil microbial community can
become compositionally adapted to utilize certain plant litter
type (Ayres et al., 2009). Some bacterial taxa [such as Gemmata
spp. (Bastian et al., 2009)], that were involved in degrading
wheat residues, were enriched in the wheat field. These results
indicate that long-term wheat cultivation selected for specific
microorganisms that can degrade wheat residues. Several other
bacterial taxa that associated with decomposing plant-derived
organic matters were also enriched in other treatments. For
example, Bosea and Pseudonocardia spp. were enriched in the
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FIGURE 5 | Relative abundances of significantly changed predicted KEGG Orthologs related to carbon, nitrogen, phosphorus, and sulfur cycling. Different letters
indicate significant difference based on Kruskal–Wallis test (P < 0.05). W represents the wheat field; F, S, and T represent the first, second, and third cropping of
Jerusalem artichoke (JA), respectively.

first cropping of JA; Adhaeribacter and Gemmatimonas spp.
were enriched in the second cropping of JA; Lysobacter and
Nocardioides spp. were enriched in the third cropping of JA.
Previous studies demonstrated that Adhaeribacter (Bastian et al.,
2009), Gemmatimonas (Bastian et al., 2009), Pseudonocardia
(Espana et al., 2011), Lysobacter (Chavez-Romero et al., 2016)
were involved in decomposition of crop residues, such as potato
(Solanum tuberosum L.), rice, maize and wheat; Species in
Bosea (Houfani et al., 2017) have cellulolytic activities. Moreover,
continuous monocropping of JA altered the predicted bacterial
functions related to lignocellulose degradation. This would be
possibly explained by the species-specific effects of plants on
soil microbial communities through varying quantities and
qualities of plant-derived organic matters, which can be used as
substrates by soil microorganisms, as the chemistries of plant-
derived organic matters were shown to differ among plant species

(Fierer et al., 2007; Meier and Bowman, 2008; Eilers et al., 2010;
Bever et al., 2012; Birouste et al., 2012).

Linear discriminant effect size analysis revealed that the
first cropping of JA were enriched with bacterial species
with pathogen-antagonistic and/or plant growth promoting
potentials, including Bosea (Cavalca et al., 2010), Microbacterium
(Bhattacharyya and Jha, 2012), Mycobacterium (Hayat et al.,
2010), and Pseudonocardia spp. (Nimnoi et al., 2010). In our
experiment, soils from the wheat field mainly contained wheat
debris while soils from the JA-cultivated fields contained crop
debris from both wheat and JA. It was found that most wheat
residues (more that 80%) was decomposed within 320 days after
wheat residues incorporated into the soil (Cookson et al., 1998).
Thus, the diversity of plant-derived organic matters may be
higher in the first cropping of JA, which also had higher soil
SOC (Zhou et al., 2017b). Therefore, our results were in line
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FIGURE 6 | Ordination plots of the results from the redundancy analysis. (A) Relationship between soil bacterial community structures at the OTU level (97%
sequence similarity) with soil chemical properties. (B) Relationship between soil bacterial function profiles at KEGG level 3 with soil chemical properties. W represents
the wheat field; F, S, and T represent the first, second, and third cropping of Jerusalem artichoke (JA), respectively.

FIGURE 7 | Abundances of amoA, nirS, and nirK genes in the wheat field (W), the first (F), second (S), and third (T) cropping of Jerusalem artichoke (JA) as
determined by quantitative PCR. Different letters indicate significant difference based on Tukey’s HSD test (P < 0.05).

with previous studies showing that increasing resource quantity
and quality through increasing the temporal and spatial plant
diversity can enhance the function of soil microbial communities
(Rosenzweig et al., 2012; Tiemann et al., 2015). In our experiment,
the first cropping of JA can be viewed as a wheat-JA rotation
system. Thus, wheat-JA rotation may be used in production to
stimulate soil bacteria beneficial to plants.

Quantitative PCR showed that the third cropping of JA
has the lowest amoA gene copy number but had the highest
nirS and nirK gene copy number. The second cropping of
JA had higher nirS gene copy number than the wheat field
and the first cropping of JA. This may be attributed to the
lower available P in the third cropping of JA since soil P
availability play an important in modulating soil N cycle. For
example, it has been reported that nitrification was dependent
on P availability (Sierra et al., 2003) and poor P availability
can promote denitrification at higher N fertilizer inputs

(Baral et al., 2014). PICRUSt revealed that continuous
monocropping of JA altered the predicted bacterial functions
related to nitrogen cycling. Specifically, the relative abundances
of one KO term related to ammonification (ammonia
monooxygenase subunit C) was lower in the third cropping of
JA than in other treatments. Meanwhile, the relative abundances
of KO terms of nitrate reductase and nitrite reductase were
higher in the third cropping of JA. The relative abundances
of KO terms of nitrous-oxide reductase and nitric oxide
reductase were higher in the second cropping of JA. Caenimonas,
Gemmatimonas, and Rhodopirellula spp. were enriched in
the second cropping of JA. Haliangium, Marmoricola, and
Nocardioides spp. were enriched in the third cropping of
JA. Members of these taxa were reported to be involved in
denitrification. For example, Gemmatimonas (Coyotzi et al.,
2016) and Rhodopirellula spp. (Coyotzi et al., 2016) were
shown to possess nitrite reductase gene and nitrous-oxide
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reductase gene, while Arenimonas spp. (Remmas et al., 2016)
harbors nitrite reductase gene. Denitrifying strains have been
described in Caenimonas (Ryu et al., 2008), Haliangium
(McIlroy et al., 2016), Marmoricola (Dastager et al., 2008),
and Nocardioides spp. (Woo et al., 2012). These indicated
that soil nitrogen cycling may be changed by continuously
monocropped JA.

Several studies have reported that soil edaphic properties,
especially soil pH, were important determinants of soil bacterial
community structures (Fierer and Jackson, 2006; Liu et al.,
2014). However, the present study found that soil bacterial
community structure was not correlated to soil pH. This may
be due to the fact that soil pH was relatively stable in our
cropping system (Zhou et al., 2017b). The first cropping of JA
had higher soil SOC (Zhou et al., 2017b) and was characterized
with higher relative abundance of Actinobacteria and lower
relative abundance of Acidobacteria, which was in agreement
with others’ finding that Actinobacteria responded positively
while Acidobacteria responded negatively to exogenously applied
labile carbon resources (Fierer et al., 2007; Eilers et al., 2010).
The third cropping of JA had lower soil Olsen P (Zhou et al.,
2017b) and higher relative abundance of Marmoricola spp., which
was consistent with previous studies reporting that these bacterial
taxa had negative relationship with soil P (Sun et al., 2014;
Bainard et al., 2016). Our RDA analysis and Mantel test also
confirmed that soil SOC played an important role in shaping
soil bacterial communities, which was in accordance with the
observation that soil carbon and P status are important factors in
structuring soil bacterial communities (Griffiths et al., 2011; Liu
et al., 2014).

Generally, it is suggested that intensive agricultural practices,
such as continuous monocropping, had adverse effects on
soil microbial community diversity (Zhou et al., 2011, 2017a;
Tiemann et al., 2015; Tsiafouli et al., 2015). Our results showed
that the third cropping of JA had lower bacterial community
diversity indices than the first cropping of JA. However, the
wheat field and the first cropping of JA had similar bacterial
community diversity indices. Therefore, our second hypothesis
was only partially validated. Accumulating evidence suggests
that increasing soil microbial diversity can have positive effects
on pathogen suppression, nutrient cycling, and plant growth
(Bever et al., 2012). Therefore, the declined bacterial community
diversity in the third cropping of JA maybe associated with
the soil sickness in JA production. Long-term monocropping of
several crops can induce soil suppressiveness against soil-borne
diseases (Berendsen et al., 2012). For example, the decline of take-
all of wheat, caused by Gaeumannomyces graminis var. tritici,
has been observed during wheat monocropping (de Souza et al.,
2003). The induction of soil suppressiveness was associated with
the build-up of antagonistic microorganisms, such as fluorescent
Pseudomonas spp. and increased bacterial community diversity
(de Souza et al., 2003; Rosenzweig et al., 2012). However, it was
not known whether suppressive soil was induced in our wheat
field and its relationship with soil bacterial diversities, which
should be stressed in future studies.

One shortcoming of this experiment was that soil samples
in only one time point were analyzed. Environmental variables,

which change across seasons, are main governors of soil microbial
communities (Bell et al., 2009). It has been demonstrated that
there were seasonal variations in the effects of agricultural
practices on soil microbial communities (Spedding et al., 2004;
Wolsing and Prieme, 2004). Therefore, seasonal changes in soil
bacterial communities in our continuously monocropped JA
system should be investigated in more detail. Agricultural weeds
were shown to affect soil microbial functional group abundance
and community composition (Wortman et al., 2013). However,
weeds were only manually removed in the early growth season of
JA and the total amount of weeds on the field was not measured in
this study. Therefore, there was possibility that the total of weeds
differed among treatments and contributed to the changes in soil
bacterial communities observed in our cropping system.

CONCLUSION

In summary, our results demonstrated that continuous
monocropping of JA changed soil bacterial community
composition and function profile, and soil bacterial community
diversity was lower the third cropping of JA. Soil SOC and Olsen
P were the important predictors of soil bacterial community
in our cropping system. Our results also suggested that wheat
rotated with JA can stimulate potentially beneficial bacteria.
Soil microbial community composition and function are
tightly linked (Bever et al., 2012). However, we only predicted
bacteria function from a taxonomy assignment in this study
(Langille et al., 2013). Further researches should focus on getting
direct evidence of changes in soil microbial functions in our
continuously monocropped JA system through approaches such
as metagenomic or metatranscriptomic sequencing (Choi et al.,
2017; Ofaim et al., 2017).
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