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Mesenchymal stromal cells (MSCs) have been widely investigated for regenerative
medicine applications, from treating various inflammatory diseases as a cell therapy
to generating engineered tissue constructs. Numerous studies have evaluated the
potential effects of MSCs following therapeutic administration. By responding to their
surrounding microenvironment, MSCs may mediate immunomodulatory effects through
various mechanisms that directly (i.e., contact-dependent) or indirectly (i.e., paracrine
activity) alter the physiology of endogenous cells in various disease pathologies. More
specifically, a pivotal crosstalk between MSCs and tissue-resident macrophages and
monocytes (TMϕ) has been elucidated using in vitro and in vivo preclinical studies. An
improved understanding of this crosstalk could help elucidate potential mechanisms
of action (MOAs) of therapeutically administered MSCs. TMϕ, by nature of their
remarkable functional plasticity and prevalence within the body, are uniquely positioned
as critical modulators of the immune system – not only in maintaining homeostasis
but also during pathogenesis. This has prompted further exploration into the cellular
and molecular alterations to TMϕ mediated by MSCs. In vitro assays and in vivo
preclinical trials have identified key interactions mediated by MSCs that polarize the
responses of TMϕ from a pro-inflammatory (i.e., classical activation) to a more anti-
inflammatory/reparative (i.e., alternative activation) phenotype and function. In this
review, we describe physiological and pathological TMϕ functions in response to various
stimuli and discuss the evidence that suggest specific mechanisms through which
MSCs may modulate TMϕ phenotypes and functions, including paracrine interactions
(e.g., secretome and extracellular vesicles), nanotube-mediated intercellular exchange,
bioenergetics, and engulfment by macrophages. Continued efforts to elucidate this
pivotal crosstalk may offer an improved understanding of the immunomodulatory
capacity of MSCs and inform the development and testing of potential MOAs to support
the therapeutic use of MSCs and MSC-derived products in various diseases.

Keywords: macrophages (M1/M2), mechanism of action (MOA), immunomodulation, cell therapy, mesenchymal
stromal (or stem) cells
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INTRODUCTION

Mesenchymal stromal cells (MSCs), also referred to as
Mesenchymal Stem Cells or Medicinal Signaling Cells, have
garnered attention as cell therapies against various diseases,
including graft versus host disease (GvHD) (Ball et al., 2013),
neurological disorders (Riordan et al., 2019; Sun et al., 2020),
and cardiovascular disease (Hare et al., 2009). For decades,
MSCs have been investigated for their immunomodulatory,
anti-inflammatory, and regenerative functions revealing several
potential modalities for mediating therapeutic effects. A large
body of literature has demonstrated that MSCs are highly
responsive to environmental cues and elicit their effects through
direct [i.e., cell–cell contact (Quaedackers et al., 2009; Galipeau
and Sensebe, 2018)] and indirect (i.e., paracrine signaling
(Caplan and Correa, 2011; Salgado and Gimble, 2013; Serejo
et al., 2019)] interactions resulting in suppression of pathogenic
cells (Ren et al., 2008; Quaedackers et al., 2009), induction of
regulatory cells (Luz-Crawford et al., 2013; Lee et al., 2017),
cytoprotection (Block et al., 2009), trophic support (Zhang et al.,
2007), and tissue repair (Wu et al., 2007). Thus, the therapeutic
capacity of exogenously administered MSCs relies on their innate
ability to respond to surrounding pathophysiological cues and
orchestrate cellular and molecular changes to restore local and
systemic homeostasis.

Although MSCs hold promise for clinical use, our knowledge
of MSCs has been gained primarily through in vitro assays
and pre-clinical animal studies, leaving gaps in translation
and an inability to demonstrate definitive efficacy in human
clinical trials (Galipeau and Sensebe, 2018). How we characterize
MSCs and test their therapeutic “potencies” ex vivo may be
the reason for these disparities that are observed between
preclinical and clinical trial results. Further elucidations into
cellular and molecular interactions mediated by MSCs will
better inform future investigations of key endogenous cellular
targets and, ultimately, bridge the gaps to advance clinical use
of MSCs by understanding how, when, and where to deliver
therapeutic MSCs.

MSCs have been isolated from various tissues of the body
including bone marrow, adipose, and umbilical cord tissue. By
harnessing the plastic-adherence property of MSCs and with
the addition of a tailored media formulation for sustaining
their growth, the residual tissue-resident cells can be eliminated
and MSCs can be obtained for investigational use (Secunda
et al., 2015; Palumbo et al., 2018). Culture systems enable
expansion of MSCs for acquiring the necessary cell numbers
(i.e., yield) for therapeutic dosages in humans or animal
studies. Regardless of the tissue source, plastic-adherent MSCs
are further characterized by a specific set of criteria such as
their expression profile of positive (e.g., CD73, CD90, and
CD105) and negative (e.g., CD11b, CD14, CD19, CD34, CD45,
CD79a, and HLA-DR) surface markers and in vitro multi-lineage
differentiation capacity (i.e., induced osteogenesis, adipogenesis,
and chondrogenesis) (Dominici et al., 2006). The caveat, however,
is that ex vivo manipulation to isolate, expand, and interrogate
MSCs may introduce transcriptional, epigenetic, metabolomic,
and proteomic changes – and these characteristics of cultured

MSCs likely do not parallel those of endogenous stromal cells
(Caplan, 2008). Moreover, delivery of therapeutic MSCs back
to an in vivo environment makes it additionally challenging to
anticipate outcomes and demonstrate reproducible results. For
these reasons, we will primarily focus on MSCs infused as therapy
and the consequential effects on endogenous cells.

Autologous or allogeneic MSCs delivered as therapy may
exert multiple effects to mitigate local and systemic pathologies.
These potential therapeutic modalities are a result of the dynamic
ability of MSCs to respond to various stimuli (Caplan and
Correa, 2011). The caveat, however, is that these multimodal
effects of MSCs make it challenging to identify specific
mechanisms of action (MOA) that, if realized, can then be
exploited in developed testing platforms. In fact, there is a
strong need to develop and test a multivariate set of assays
to evaluate mechanistic outcomes of MSCs using co-cultures
with immune cells. Not only would understanding biological
variation, evaluating manufacturing processes, and evaluating
tissue sources be improved, these assays would help predict
in vivo “therapeutic potencies” of infused MSCs, ultimately
facilitating the translation and standardization necessary to
advance cell manufacturing and regulatory approval for clinical
use (Bianco et al., 2008; Chinnadurai et al., 2018). In vitro
and in vivo preclinical studies have, thus far, provided
compelling evidence for key interactions, referred to as molecular
crosstalk, between MSCs and immune cells, most notably
monocytes, macrophages, and T lymphocytes (Bianco et al., 2008;
Chinnadurai et al., 2018; Antebi et al., 2019). These vital immune
cells are at the crux of immune system functions, transmitting
information in the form of molecular signals from a site of
pathology to the rest of the body. Here, we take a more in-
depth look into evidence that suggests an integral crosstalk
between MSCs and specifically monocytes and tissue-resident
macrophages (TMϕ) to get us one step closer to identifying
potential MOAs by MSCs.

CHANGING DOGMA DELINEATE
MONOCYTE AND MACROPHAGE
POPULATIONS

First, understanding the physiological roles of TMϕ during
steady-state (i.e., homeostasis) and pathology is necessary to
realize the alterations mediated by MSCs, and vice versa.
Monocytes and macrophages, as well as dendritic cells, comprise
the mononuclear phagocytic system (MPS). More in-depth
physiological roles will be further described herein, but the
most simplified term that captures the functions of MPS
cells is “SHIP” – Sample, Heal, Inhibit, and Present (antigen)
(Mills et al., 2014). Together, MPS cells are essential cells
of the innate immune system that acquire information from
their surroundings (e.g., by phagocytosis) and communicate
the information (e.g., by antigen-presentation) to the adaptive
immune system for a coordinated resolution of pathology.
Thus, physiological plasticity (i.e., functional heterogeneity)
is the underlying propensity of these cells to regulate tissue
microenvironments (Wynn et al., 2013). With the dynamic
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nature of both MSCs and TMϕ, determining the mechanistic
effects resulting from this integral crosstalk continues to be an
ongoing exploration.

The literature depicting the physiology of macrophages
often pays homage to the pioneering work of Ilya Metchnikoff,
a Russian zoologist turned immunologist and Nobel Prize
laureate. He not only described these “large devouring cells”
in the late 19th century but, more importantly, suggested
the role of these cells as part of the host’s defenses, the first
implications of the innate immune system, deeming him the
father of cellular immunity (Hoeffel and Ginhoux, 2015).
Discoveries after that showed commonalities in cellular
responses and phagocytic functions between bone marrow-
derived monocytes and tissue-resident macrophages that
led many to believe that monocytes were the predecessors
of macrophages. Although these physiological similarities
are still appreciated, fate mapping and lineage tracing
technologies have more recently delineated their ontogenies.
Hematopoiesis in the bone marrow generates myeloid precursors
that differentiate into monocytes upon emigration to the
bloodstream. TMϕ can develop from circulating monocytes
that have infiltrated into tissues. However, most of them
originate from either yolk sac-derived erythro-myeloid or fetal
liver progenitors during embryogenesis, i.e., hematopoietic
stem cell-independent precursors (Dey et al., 2014; Hoeffel
and Ginhoux, 2015). Further delineation of monocytes
and macrophages describes differentiation into subsets and
transitional phenotypes, respectively, with distinct functions
influenced by spatiotemporal cues.

Monocytes are generally categorized into subsets
corresponding to surface markers and functional activities,
some of which are shared with TMϕ. Interestingly, the frequency
of each monocyte subset is inversely related to their lifespan
during a steady state. Classical monocytes (CD14highCD16−)
make up about 85% of the circulating monocytes, and 15%
consist of both intermediate (CD14highCD16+) and non-
classical monocytes (CD14lowCD16high) (Patel et al., 2017;
Ong et al., 2019). Classical monocytes are considered less
mature and emerge from the bone marrow, where they enter
the circulatory system with a propensity for phagocytosis
of debris or foreign invaders, with the shortest lifespan of
1 day. The majority of these cells die or extravasate into
tissues, whereas a small portion transition into intermediate
monocytes. Intermediate monocytes are generated in response
to an initial stimulus and function to propagate inflammatory
signaling over a lifespan of a little over 4 days. Intermediate
monocytes then transition to non-classical monocytes, with
have an extended lifespan of approximately 7.5 days, allowing
them to patrol the vasculature and potentially infiltrate affected
tissues to resolve the inflammatory stimulus (Thomas et al.,
2015; Patel et al., 2017). Thus, intermediate and non-classical
monocytes are considered the mature “inflammatory” subsets
as their frequency is elevated in the blood during inflammation
or pathogenesis (Hamilton and Tak, 2009; Thomas et al.,
2015). Although circulating monocytes have been observed to
extravasate into tissues, especially during pathological activities,
the majority provide short-term surveillance as a host’s first line

of defense and are then replenished by continued hematopoiesis
(van Furth and Cohn, 1968).

In contrast, tissue-resident macrophages possess dynamic
phenotypes and functions, some of which exhibit tissue-specific
functions. Here, TMϕ self-renew and persist for months to even
years in steady-state. Upon activation by inflammation or other
pathological stimuli, naïve macrophages (M0) differentiate into
classical or alternative activation macrophages, formerly M1 or
M2 phenotypes, respectively, according to their surrounding
microenvironment. Initially, the M1 or M2 phenotypes denoted
a pro- or anti-inflammatory function, respectively, and this
paradigm was synonymous with the polarized responses of toll-
like receptor (TLR) signaling observed with T lymphocyte subset
(i.e., type 1 or 2 helper T cells) (Mills et al., 2000). Although
this macrophage nomenclature is still used, emergent evidence
now suggests a spectrum of spatiotemporal identifiers, ultimately
relinquishing these finite conventions (Nahrendorf and Swirski,
2016). The dynamic phenotypes of the classical or alternative
activation macrophage subsets have been identified to capture
physiological functions closely correlated to metabolic programs
(Mills et al., 2000; Vasandan et al., 2016). A burgeoning research
area endeavors to ascertain their spatiotemporal role, however,
this review will collectively consider macrophages regardless of
the nomenclatures describing subsets, phenotypes, and tissue-
specific names to describe their crosstalk with MSCs (Table 1).

FUNCTIONAL HETEROGENEITY OF
MACROPHAGES

TMϕ are vital cells of the body that are integral to the
development and homeostatic maintenance of all tissues
(Figure 1). These professional phagocytes have shared roles
and responses across tissues, including clearance of dead cells
and debris, presenting antigen, remodeling of tissue, and
metabolic regulation but also functions that serve tissue-specific
demands related to each organ. Interestingly, some physiological
functions enable others. For instance, one of the primary TMϕ

of the bone, osteoclasts, are responsible for bone resorption
which is fundamental to bone remodeling during development;
thus, osteoclasts sculpt the bone cavity, enabling hematopoiesis
to ensue. Consequently, the generation of monocytes and
subsequently immune system functions rely on these bone
resident TMϕ. Throughout the body, these shared roles act
specifically to maintain steady state functions of resident cells and
organ system functions.

During erythropoiesis, macrophages surround maturing
erythroblasts, ingest extruding nuclei and essentially permit
formation of erythrocytes, or red blood cells. The depletion of
erythrocytes for natural turnover is also a steady state function of
splenic and hepatic TMϕ. The liver, pancreas, and adipose tissue
are organs that maintain metabolic homeostasis. TMϕ of the
liver, called Kupffer cells, facilitate the metabolism of hepatocytes
during caloric intake, regulating the uptake, synthesis, and
oxidation of fatty acids. Similarly, TMϕ support β-cell function
in the pancreas, although their precise role during steady state
remains to be determined since discoveries so far appear to be a
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TABLE 1 | Nomenclature used to denote monocyte and macrophage subsets with associated phenotypic markers and functions found in humans.

Nomenclature Phenotypic markers Function Citation

Classical monocytes
(Naïve)

HLA-DR+, CD11b+, CD14high, CD16−,
CCR2high, CXC3R1low

Phagocytosis Ong et al., 2019; Thomas et al., 2015

Intermediate
monocytes (activated)

HLA-DR+, CD11b+, CD14high, CD16+,
CCR2+, CXC3R1high CCR5+

Pro-inflammatory Thomas et al., 2015; Ong et al., 2019

Non-classical
monocytes (activated)

HLA-DR+, CD11b+, CD14lowCD16high,
CCR2low, CX3CR1high

Patrolling Thomas et al., 2015; Ong et al., 2019

Classical activation
(M1) TMϕ

HLA-DR+, CD68+, CD80high,
CD206low CD40+, CCR7+, CXCL9+,
IL-10low, IL-12high

Pro-inflammatory, microbicidal, Th1
differentiation, tumor resistance

Martinez et al., 2008; Raggi et al.,
2017; Shapouri-Moghaddam et al.,
2018

Alternative activation
(M2) TMϕ

HLA-DR+, CD68+, CD86+, CD80low,
CD206high, CD36+

Anti-inflammatory, reparative Martinez et al., 2008; Raggi et al.,
2017; Shapouri-Moghaddam et al.,
2018

M2a subset CD206+, IL-1R+, CCL17+ Anti-inflammatory, promote cell growth,
wound healing

Martinez et al., 2008;
Shapouri-Moghaddam et al., 2018

M2b subset CD86+, CCL1+, IL-10R+, IL-12R+,
IL-6R+, IL-10high, IL-12low

Immunoregulation, promote tumor
progression, Th2 differentiation,
microbial infections

Martinez et al., 2008;
Shapouri-Moghaddam et al., 2018

M2c subset CD206+, CD163+, CXCL13+, TLR-1+,
TLR-8+

Immunosuppression, phagocytosis,
tissue remodeling

Martinez et al., 2008;
Shapouri-Moghaddam et al., 2018

M2d subset IL-10R, IL-12R, IL-10high, IL-12low,
TNFαlow

Angiogenesis, tumor progression Martinez et al., 2008;
Shapouri-Moghaddam et al., 2018

Alternative activation (M2) TMϕ are further delineated into four subsets (a–d) with specific markers and functions.

consequence of pancreatic dysfunction, such as insulin resistance.
Insulin and other hormone sensitivities are maintained by
TMϕ in adipose tissue for systemic metabolic regulation and
thermogenic control of the body (Hamilton and Tak, 2009; Wynn
et al., 2013).

Microglia are the main brain-resident TMϕ responsible for
neuronal patterning, survival, and function while other TMϕ

in the brain are localized to key areas for maintaining fluid
balance and the integrity of the blood-brain barrier (Chen et al.,
2015). Understandably, TMϕ are fundamental constituents of the
heart, lungs, and other organ systems, playing key roles during
development and throughout adulthood; however, it is mostly
through inflammatory and pathological conditions that their
roles are elucidated. It is of no surprise that TMϕ are involved
in almost every disease and crosstalk with neighboring stromal
cells serves as a vital connection to restore homeostasis of tissues.

CELLULAR CROSSTALK WITH MSCs

Several of the proposed MOAs that have been implicated as
the underlying therapeutic effects of administered MSCs directly
or indirectly acts on TMϕ (Figure 2). Initial pathogenesis or
physical insult mount a “SOS” response, recruiting cells (e.g.,
TMϕ) that are proximal and distal to the site of pathology by
chemotactic and tropic factors. MSCs, too, have demonstrated
an ability to home to sites of pathology once infused as therapy
(Shi et al., 2007). However, the most common route of delivery
for MSCs is currently by intravenous infusion, rendering MSCs
lodged in the capillaries of the lungs soon after and no evidence
of engraftment to date (Giri and Galipeau, 2020). This evidence
has markedly shaped approaches to investigate and exploit
alternative mechanisms that may be employed by MSCs to

mediate therapeutic effects. We now recognize that the effects
of MSCs following infusion could be largely paracrine mediated,
and not by direct cell–cell contact (Caplan and Dennis, 2006;
Caplan and Correa, 2011).

Soluble mediators may play more than one role in resolving
tissue damage or pathology. These signals can be released directly
into extracellular spaces to incite local responses or packaged
in extracellular vesicles, e.g., exosomes, which travel to distal
sites for systemic responses. The constituents of this cellular
crosstalk described here are, in many cases, likely produced
by MSCs that then directly influence the metabolic program
and, in turn, the physiological function of TMϕ. Alterations
in macrophages are detected as skewed phenotypes as a result
of metabolic reprogramming, although the duration of these
temporal changes, downstream targets, and overall in vivo
effects during pathology remain to be fully elucidated locally
and systemically.

COX/PGE2/EP4 Axis
One of the most well-known soluble mediators that has been
attributed to the therapeutic effects of MSCs is prostaglandin
E2 (PGE2). PGE2 is a homeostatic factor derived from the
metabolism of arachidonic acid by prostaglandin synthases
and cyclooxygenases (constitutively active COX1 and inducible
COX2) in both myeloid and stromal cells (Kalinski, 2012).
Both human and mouse MSCs constitutively produce PGE2,
and upon pro-inflammatory challenge with interferon-γ
(IFNγ), tumor necrosis factor-α (TNFα) or interleukin
(IL)-1β, induced elevation of PGE2 has been demonstrated
(Noronha et al., 2019). PGE2 promotes the production of
interleukin-10 (IL-10) from TMϕ and has a synergistic effect
with indoleamine 2,3-dioxygenase (IDO) to elicit MSC-induced
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FIGURE 1 | Schematic of the potential mechanisms of action mediated by MSCs on TMϕ. The range of mechanisms important in MSC effects on macrophages
(a–f) and the resulting effector molecules/effects seen in macrophages (g–m). miRNA, microRNA; AhR, aryl hydrocarbon receptor; PGE2, prostaglandin E2; TGFβ,
transforming growth factor beta; TSG-6, TNF alpha-stimulated gene 6; IDO-1, indoleamine 2,3 dioxygenase; LL-37, antimicrobial peptide; AREG, amphiregulin;
Tregs, regulatory T cells; IL-10, interleukin-10; CCR2, monocyte chemotactic protein −1 receptor; CXCL8, chemokine C-X-C motif chemokine ligand 8; SDF-1,
stromal cell derived factor 1; Runx2, Runt-related transcription factor 2; ALP, alkaline phosphatase; LPS, lipopolysaccharide; TNFα, tumor necrosis factor alpha;
ROS, reactive oxygen species; HSP, heat shock protein; STC1, stanniocalcin-1; Image created with BioRender.

immunosuppression on various immune cells in vitro (Spaggiari
et al., 2008; Nemeth et al., 2009). An MSC-dependent PGE2
has been demonstrated to alter monocyte-to-macrophage
differentiation, promoting the survival of monocytes activated
by macrophage colony stimulating factor (M-CSF), by trans-
activation of the M-CSF receptor (Digiacomo et al., 2015)
and, more importantly, polarized to an alternative activation
(M2-like) phenotype (increased CD163 and CD206 and reduced
MHCII/HLA-DR expressions) of TMϕ (Figure 3F). Alternative
activation macrophages upregulated secretion of amphiregulin
(AREG) (Ko et al., 2020), showed bolstered functions of
scavenging and phagocytic activities and enhanced production
of immunomodulatory cytokines IL-10 and transforming growth
factor-β (TGFβ) in vitro (Chiossone et al., 2016). MSCs from
multiple tissues have reproducibly polarized macrophages of
various sources by this PGE2-dependent mechanism resulting
in the suppression of pro-inflammatory factors, e.g., tumor
necrosis factor α (TNFα), IL-12p70, and IL-17, while promoting
anti-inflammatory IL-10, ultimately inhibiting perpetuation

of immune responses by antigen presentation (Melief et al.,
2013; Deng et al., 2016; Manferdini et al., 2017). PGE2 binding
to EP4 activates adenylate cyclase and intracellular cAMP
levels are elevated. This in turn activates PKA and this has
been shown to phosphorylate CREB (cyclic AMP-responsive
element binding). Phosphorylated CREB leads to transcription
of C/EBP-β which promotes anti-inflammatory gene expression
(Na et al., 2015). Of all the PGE2 receptors, only EP4 was
found to facilitate the production of IL-10 and suppression of
TNFα (Yasui et al., 2015). Furthermore, the secreted molecules
released by the M2-like macrophages induced regulatory T
cells (Tregs), a T cell subset essential for immune tolerance
(Schmidt et al., 2016).

Tregs and AREG
MSCs skew TMϕ phenotype via the secretome, with the resulting
pro-regenerative macrophages demonstrating heightened release
of IL10 and TGFβ (Francois et al., 2012; Mittal et al., 2016;
Vasandan et al., 2016). However, MSC-conditioned macrophages
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FIGURE 2 | TMϕ-associated pathologies. Diagram of TMϕ functions described during physiological (inside) and pathological presentations of disease (outer)
corresponding to organs. Image created with BioRender.

are known to influence T cell activation in vitro, by inducing
the differentiation of FoxP3+ Tregs from CD4+ helper T
cells (Schmidt et al., 2016). Tregs are mediators of self-
tolerance, essential to prevention of autoimmunity, and are
immunosuppressive of inflammatory and allergic responses to
infection. Tregs are recognized as significant contributors to
immunomodulatory responses mediated by MSCs and in-depth
descriptions of these interactions are described by Burr et al.
(2013) and English (2013). MSC-primed macrophages, utilize
TGFβ, IL-10 and other immunomodulatory factors that alter the
differentiation of T cell subsets, dendritic cells and B cells in vitro
as well as new in vitro and in vivo evidence points to epidermal
growth factor receptor ligand AREG as another signaling moiety
(Ko et al., 2020).

AREG has been implicated in the resolution of inflammation,
regeneration of tissues, and restoration of homeostasis after
injury. There are several ways that MSCs can promote the
secretion of AREG from macrophages. These include the
uptake of mitochondria from MSCs and the use of the COX-
2/PGE2/EP4 signaling axis (Ko et al., 2020). In a mouse model
of retinal inflammation, AREG suppressed immune responses by
upregulating Tregs and downregulating Th1 cells. Recombinant
AREG, administered alongside MSCs in macrophage depleted
mice, showed some level of recovery of retinal pathology
(Ko et al., 2020).

Metabolic Reprogramming of TMϕ by
MSCs
The metabolic profile of the macrophage could be a key
determinant of phenotype and function. Steady state
macrophages exhibit a metabolism that utilizes glucose and
oxygen for mitochondrial oxidative phosphorylation to generate
energy in the form of ATP. Stimulation toward the classical
activation phenotype in vitro demonstrated that a metabolic
switch to glycolysis facilitated pro-inflammatory functions
in vitro (El Kasmi and Stenmark, 2015). Classical activation
(M1-like) macrophages stimulated by lipopolysaccharide
treatment in vitro, indicated an upregulation of 31 metabolic
enzyme/transporter-related genes which confirmed increased
glycolysis, the citric acid cycle intermediate succinate, and
release of pro-inflammatory IL-1β. Succinate was inferred as
a key metabolite that enhances pro-inflammatory signaling
during inflammation (Tannahill et al., 2013). This switch can
be mitigated by the anti-inflammatory cytokine IL-10 (El
Kasmi and Stenmark, 2015), suggesting multiple ways that
MSCs modulate macrophage metabolism and thus phenotypic
function. The reliance of M1 macrophages on glycolysis and
the pentose phosphate pathway (PPP) appears to be related
to two interruptions in the tricarboxylic acid (TCA)/Krebs
cycle, which cause accumulation and exit of itaconate, succinate
and citrate from the cycle. These metabolites are released
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FIGURE 3 | Schematic of a selection of the proposed signaling pathways which result from MSC or MSC derived factors interacting with macrophages. (A) The
signaling of extracellular vesicles (EV) via negative regulation of the TLR4 (toll-like receptor 4) (Abdi et al., 2018); (B) metabolite signaling via the TCA cycle (Viola
et al., 2019); (C) CD200-CD200R1 interaction (Manich et al., 2019); (D) TSG-6 via negative regulation of TLR2 (Choi et al., 2011); (E) AhR via TLR4 signaling (Hinden
et al., 2015; Zhu et al., 2018); and (F) PGE2 (Na et al., 2015; Xu et al., 2017). miRNA, microRNA; TLR4, toll-like receptor 4; EV, extracellular vesicle; MyD88, myeloid
differentiation primary response 88; IRAK, interleukin-1 receptor-associated kinase; TAK, TGF-β activated kinase; TRAF, TNF receptor-associated factor; p65, NF-κβ

p65 subunit; p50, NF-κβ p50 subunit; IKβ, NFKβ inhibitor; NFKβ, nuclear factor kappa light chain enhancer of activated B cells; IL1β, interleukin-1 β; IL-8,
interleukin-8; CCL-2, C-C motif chemokine ligand 2; TNFα, tumor necrosis factor α; IL-6, interleukin-6; MSC, mesenchymal stromal cell; HIF1α, hypoxia-inducible
factor 1-α; TCA, tricarboxylic acid cycle; ETC, electron transport chain; ATP, adenosine triphosphate; CD200, cluster of differentiation 200; CD200R1, CD200
receptor 1; Crkl, Crk-like protein; Erk, extracellular signal regulated kinase; PI3K, phosphoinositide 3-kinase; TSG-6, TNFα-stimulated gene 6; CD44, cluster of
differentiation 44; TLR2, toll-like receptor 2; IKK, inhibitor of nuclear factor NF-κβ kinase, LPS, lipopolysaccharide; AhR, aryl hydrocarbon receptor; Src,
proto-oncogene c-Src; Src-P, phosphorylated Src; STAT3, signal transducer and activator of transcription 3; LIF, leukemia inhibitory factor; IL-10, interleukin-10;
M-CSF, macrophage colony-stimulating factor; COX-2, cyclooxygenase 2; PGE2, prostaglandin E2; EP4, E-type prostanoid receptor 4; AC, adenylate cyclase; Akt,
protein kinase B; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; CREB, cAMP response element binding protein; IL-1RA, interleukin-1 receptor
antagonist; CD206 (mannose receptor). Image created with BioRender.

from mitochondria, which both limits coupling of TCA to
the electron transport chain (ETC) and also renders them
capable of regulating cell metabolism. Succinate can stabilize
HIF1α (Figure 3B) and thereby activate transcription of
glycolytic genes, such that glycolysis is favored. Conversely, M2
macrophages appear to have an intact TCA cycle and so ROS
are kept low and metabolites are not released to the cytoplasm
(Viola et al., 2019). Upon receiving mitochondria from MSCs,
M1-like (classical activation) macrophages polarized to M2-like
(alternative activation) which resulted in a switch from glycolysis
to oxidative phosphorylation. Therefore the exposure of MSCs to
macrophages, and subsequent polarization to M2, is concomitant
with a lower bioenergetic state with emphasis on catabolic

pathways in vitro (El Kasmi and Stenmark, 2015; Vasandan et al.,
2016). These catabolic pathways, involving β-oxidation of fatty
acids, enhanced activity of 5′ AMP-activated kinase and reduced
mTOR phosphorylation, are thought to rescue the macrophage
from low tryptophan levels but have the obvious advantage of
switching to energy conservation as well as a pro-regenerative
TMϕ state in vitro and in vivo (Phinney et al., 2015; Vasandan
et al., 2016). During pathology, neural stem cells scavenge
extracellular succinate, thwarting its utility by macrophages,
in order to reduce infiltration of mononuclear phagocytes
in neuroinflammation (Peruzzotti-Jametti et al., 2018). MSCs
releasing insulin-like growth factor-2 under hypoxic conditions
reprogram maturing macrophages to OXPHOS metabolism
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to improve neuroinflammation in a mouse model of Multiple
Sclerosis (Du et al., 2019). These studies allude to targeting
the metabolic programs of macrophages to regulate or
restore the homeostatic balance of the milieu as potential
therapeutic approaches.

Macrophages are in large part responsible for the development
of atherosclerotic plaques since their activation by IFNγ produces
foam cells, which will proceed to form unstable lesions in the
intima of arteries. The elevated expression of scavenger receptors
and CD36 on foam cells allows for increased uptake of low
density lipoprotein (LDL) (Murray and Wynn, 2011) and release
of cytokines locally that influence atherosclerosis pathology
in vivo (Tedgui and Mallat, 2006). Other macrophage phenotypes
have been identified in the plaque and can be atheroprotective
(i.e., Mhem) (Boyle et al., 2009), pro-atherogenic (i.e., Mox)
(Kadl et al., 2010) or both (i.e., M4) (Erbel et al., 2015). In an
atherosclerotic mouse model, the use of skin-derived or human
amnion-derived MSCs decreased plaque size in the arteries
in vivo (Li et al., 2015; Wei et al., 2019). MSCs are implicated
in reducing the aggregation of TMϕ in the arterial intima (Shoji
et al., 2011), inhibiting the formation of foam cells by elevating
the number and function of Tregs in vivo (Wang et al., 2015) and
by decreasing TNFα release (Li et al., 2015). All of these steps
require regulation of TMϕ polarization and modulation of the
phenotypes in the plaque (Yang et al., 2020). In this way, MSCs
sense the inflammatory environment and attempt to mitigate
TMϕ inflammatory responses.

Oxidative Stress
MSCs counter oxidative insult by expressing antioxidant enzymes
and heat shock proteins and upregulating redox-sensitive factors,
such that lipid peroxidation and hydrogen peroxide (H2O2)
and superoxide (O·−2 ) radical species are decreased in vitro (Oh
et al., 2014). If free radical quenching, antioxidant production,
switching of TMϕ bioenergetics and mitochondrial transfer
is all viewed as management of oxidative stress then this
constitutes a significant feature of the interaction of MSCs
with TMϕ at sites of inflammation. Stanniocalcin-1, secreted
by MSCs, decreases reactive oxygen species (ROS) generation,
including mitochondrial ROS and suppresses the activation of
the nucleotide-binding domain and leucine-rich repeat pyrin
3 (NLRP3) inflammasome in vitro (Oh et al., 2014). The
NLRP3 inflammasome in activated macrophages senses damage-
associated molecular patterns (DAMPS) and generates IL-
1β to initiate the inflammatory cascade. Its activity can be
quenched by co-culture with umbilical cord blood MSCs (Shin
et al., 2016). Furthermore, when these MSCs were incubated
with recombinant human IL-1β, their COX-2 expression
was upregulated, and this suggests the idea of a feedback
loop between the IL-1β from the inflammasome and MSC
immunosuppression. In this case direct COX-2/PGE2 signaling is
responsible for immunosuppressive effects on the inflammasome,
in the absence of NO and IDO effects (Shin et al., 2016).

Reactive oxygen species also play a role in macrophage
polarization in the heart. Resident cardiac TMϕ are thought to be
lost with age or after myocardial infarction (MI) and replacement
may be inferior, due to lack of resident cells to engage in

proliferation or the pro-inflammatory activity of monocytes
recruited from the bone marrow (Weinberger and Schulz, 2015).
In an MI study in mice, less apoptotic cardiomyocytes were
observed in the infarct zone, after MSC infusion, and although
both M2 and M1 macrophage levels were decreased, M2 was
proportionately increased in the heart but not bone marrow
in vivo (Dayan et al., 2011). Rat and mouse models of MI, with
MSC administration, observed increases in alternative activation
(M2-like) TMϕ at the transplant site in vivo (Ben-Mordechai
et al., 2013; Ishikane et al., 2013). CD146+ MSCs performed
better than MSCs alone in a model of myocardial regeneration
and this was attributed to a reduction in reactive oxygen
species by the expression of CD146, an integral perivascular
marker (Zhang et al., 2019a). In a follow up study, the total
number of macrophages in the hearts of the mice did not vary
after MSC transplantation but the ratio of M2:M1 increased
(Zhang et al., 2019b). Injection of TNFα alongside the MSC
transplantation abrogated the reparative effects of the MSCs
in vivo. Although much is still unknown about macrophage
subsets in the heart, MSCs appear to drive regeneration by
reprogramming TMϕ phenotypes.

Message in a Bottle – MSC-Derived
Extracellular Vesicles
The paracrine-mediated immunomodulatory factors secreted by
MSCs are not solely attributed to the release of soluble molecules
that act directly on cells in the local environment but also by
uptake of those packaged in extracellular vesicles (EVs). MSC-
derived EVs (MSC-EVs) are implicated as a cell-free product
with, in some cases, comparable effects to infused MSCs, thus
rendering MSC-EVs attractive candidates as therapy. Cultured
MSCs secrete EVs that can be collected and subsequently
isolated from the conditioned media (CM), enabling studies
to perform comparisons using MSC-CM and MSC-EVs to
determine the direct influences of MSC-EVs. Together, the ability
to harness the therapeutic effects of MSCs without the need to
deliver the cells make MSC-EVs attractive treatment alternatives
under growing investigations in pre-clinical and clinical trials
(Harrell et al., 2019a).

Apoptotic bodies (>1,000 nm in diameter) are the largest of
the EVs which bud from MSCs during apoptosis. Microvesicles
(MVs) are typically 100-1,000 nm in diameter and bud from
the plasma membrane, and exosomes are the smallest EVs with
diameters measuring 30–200 nm and result from budding of
the late endosome membranes (Harrell et al., 2019b). The cargo
packaged into MSC-EVs include many of the soluble cytokines
and molecules discussed herein as well as other proteins,
enzymes, organelles, lipids, metabolites, nucleic acids, and non-
coding RNAs, all of which are comprehensively discussed in the
context of inflammatory disease by Harrell et al. (2019b). The
cargo that relays the “messages” to distant sites is still elusive yet
is suggested to be highly specific (Baek et al., 2019).

MSC-derived exosomes are capable of inducing macrophage
polarization to the alternative activation phenotype by several
proposed mechanisms. MSC-derived exosomes have been
attributed to macrophage polarization to the alternative
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activation phenotype with increased production and secretion of
AREG by the described PGE2-dependent mechanism in vitro (Ko
et al., 2020), suppression of the infiltration of classical activation
macrophages and associated pro-inflammatory signaling (Mao
et al., 2017; Willis et al., 2018a), and improved histoarchitecture
by TMϕ remodeling in vivo (Willis et al., 2018a) demonstrating
alternative immunomodulatory delivery modalities that too can
be supplied by MSCs (Figure 3A). Although the MSC-derived
exosome-mediated effects are the result of the comprehensive
mediators contained, depicting specific microRNA (miRNA)
(Essandoh et al., 2016), cytokines, metabolites, and other
molecules (Willis et al., 2018b) of which the EVs are comprised,
may serve to identify other targeted therapeutics.

MSC-derived exosomes have been widely investigated in a
number of pre-clinical studies of inflammatory diseases. TMϕ

induced to a classical activation phenotype and pro-inflammatory
function that perpetuates inflammatory signaling were altered by
MSC-derived exosomes to the alternative activation phenotype,
resulting in attenuation of pathological severity in lung injury
(Morrison et al., 2017; Wang et al., 2020), colitis (Mao et al.,
2017), cardiomyopathy (Sun et al., 2018), retinal damage
(Yu et al., 2016a), musculoskeletal conditions (Zhang et al.,
2016; Cosenza et al., 2017), chronic wounds (Lo Sicco et al.,
2017) and spinal cord injury (Lankford et al., 2018). MSC-
derived exosomes not only mediated cellular improvements
through TMϕ, but also promoted the survival (Sun et al.,
2018) and cytoprotection (Cosenza et al., 2017) of other
vital tissue-specific cells in vivo. The mechanisms of action
for MSC-derived exosomes remain to be fully elucidated, as
multiple mediators are involved, and thus presumably more
than one mechanistic effect, exerting comprehensive benefits
during pathology.

Organelle Donation and Bioenergetics
Organelles such as mitochondria too can be shuttled from
MSCs to TMϕ to support higher demands of macrophage
physiological functions. For example, stimulation of TMϕ

phagocytosis in acute respiratory distress syndrome (ARDS)
was elicited via nanotube transfer of MSC mitochondria
to macrophages in vivo (Jackson et al., 2016). In addition,
MSCs under intracellular oxidative stress in vitro will shuttle
damaged mitochondria (containing an excess of oxidized and
nitrosylated proteins) into microvesicles for extrusion to improve
their bioenergetics in vitro. Simultaneous de-sensitization via
miRNA-containing exosomes from the MSCs mitigates the
activation of TMϕ, which permits phagocytosis and re-use
of the donated mitochondria by TMϕ, a mechanism that
promotes the survival of MSCs by outsourcing mitophagy
(Phinney et al., 2015). Macrophages co-cultured with MSCs
have shown enhanced phagocytic activity and this may be
orchestrated by nanotube/EV-mediated mitochondrial transfer
from MSCs (Ibrahim et al., 2014; Phinney et al., 2015; Ko et al.,
2020). Although more evidence is necessary to determine the
advantage of using MSC-EVs over MSCs, alternative strategies
to elicit the comprehensive effects from MSC-macrophage
crosstalk are promising.

CONTACT-DEPENDENT
COMMUNICATION

The complexities of the intercommunication between MSCs
and TMϕ may never be completely teased apart, and therefore
we should expect possibilities of both indirect and direct
mechanisms working in tandem to promote improvements
to a pathological milieu. Moreover, the spatiotemporal
microenvironment will continue to be altered to resolve
inflammation and restore homeostasis, necessitating multiple
functions of both the macrophages and MSCs. The dynamic
heterogeneity of functions of both cell types are no coincidence;
the integral crosstalk is the forefront to not only resolving
pathology but improving our understanding of prophylactic
measures to prevent disease. The observations of a number of
in vivo investigations are presented in Table 2.

Phagocytosis of Dead/Apoptotic Cells
Mechanisms involved in recognition of apoptotic cells and
the consequential removal by phagocytosis, involve receptors
classed as C-type lectin, vitronectin (with assistance from CD36
and thrombospondin on apoptotic cells), phosphatidylserine,
scavenger proteins (bind apoptotic, necrotic cells, opsonized
pathogens and cell debris), TLRs and macrophage antigens.
Phagocytosis of apoptotic cells has been shown to inhibit
macrophage production of a range of cytokines, except TGFβ1,
PGE2 and platelet activating factor (PAF) in vitro (Fadok et al.,
1998). In general, the result of phagocytosis appears to be
immunosuppression. Recently, a novel cell contact-dependent
mechanism demonstrated a lipoprotein receptor protein
mediated uptake of MSC-derived cytoplasmic components,
or processing bodies, by monocytes and macrophages
resulted in reprogramming to an anti-inflammatory function.
Reprogrammed monocytes and macrophages were able to
significantly suppress activated helper T cells proliferation in
vitro and mitigate inflammation in a small animal model of LPS-
induced lung inflammation (Min et al., 2020). In a pre-clinical
model of asthma, polarization of alveolar TMϕ was accompanied
by phagocytosis of PKH26 + MSC and upregulation of TGFβ and
IL-10 mRNA (Braza et al., 2016) and M2 markers ex vivo were
only expressed on macrophages which had ingested MSCs.

Indeed the daily clearance of fetal apoptotic stromal cells
by maternal resident lung macrophages, stimulating IL-10
release and IL-1β suppression, facilitates immunotolerance
in vivo (Abumaree et al., 2006; Galipeau and Sensebe, 2018).
Efferocytosis, a term originally coined in 2003, is the targeted
removal of apoptotic cells, as well as cells dying through the
many other forms of cell death (Henson, 2017). Phagocytosing
macrophages clear apoptotic MSCs, and this process precipitates
intracellular signaling in macrophages to downregulate TNFα

and NO production, in favor of TGFβ1 and IL-10 in vitro (Braza
et al., 2016; de Witte et al., 2018). Therefore, MSCs may take part
in immunoregulation and macrophage polarization even after
becoming apoptotic.

These studies allude to the state of MSCs when delivered
in vivo. Freshly thawed cells, in general, have a higher metabolic
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TABLE 2 | A selection of in vivo studies using therapeutic MSCs with described pathology, source of MSCs, delivery route and outcomes.

Pathology MSC source Delivery route Results/mediators observed Citation

Acute lung injury mBM-MSC Intratracheal ↓neutrophils, NOS2, ↑Ym1,
Arg1

Ionescu et al., 2012

Allergan-induced
inflammation

mBM-MSC IV ↓total cell count, IL-4,
IL-13,IL-17 in BAL,
↓eosinophils, neutrophils in
airway, ↑MSC in lungs

Xu et al., 2015

Asthma mBM-MSC IV ↑MSC in airways, ex vivo ↓IL-6,
IL-1β, NOS2

Cui et al., 2020

Atherosclerosis mBM-MSC IV ↑Tregs, TGFβ, IL-10 Wang et al., 2015

Cardiomyopathy mMSC-Exos IV ↓apoptosis cardiomyocytes
↓M1, IL-1, IL-6, TNFα

Sun et al., 2018

Colitis hUC MSC-Exos IV ↓TNFα, IL-1β, IL-6, ↑IL-10 Mao et al., 2017

Colitis canine ADMSCs IP ↑TSG-6, IL-10, M2 ↓TNFα,
IL-6,

Song et al., 2018

Collagen-induced arthritis mBM-MSC IV ↓serum TNFα, IL-1β Luz-Crawford et al., 2016

Corneal allotransplantation hBM-MSC Peritransplant IV ↓IL-6, IL-1β, IL-12, ↓actn
APCs, ↑TSG-6

Oh et al., 2012

Corneal injury mBM-MSC IV ↓IL-1β, inflam cell infiltration Amouzegar et al., 2017

Cutaneous wound hUC-MSC-Exo Injected into wound ↓inflam cell infiltration, TLR4,
p-P65, M1

Ti et al., 2015

Dermal injury mBM-MSC IV ↑transdifferentiation to skin
cells

Sasaki et al., 2008

Dust mite asthma mBM-MSC IV ↑M2, IL-10, TGFβ1, ↓IL-6,
MSCs only in M2s.

Braza et al., 2016

E. coli pneumonia hBM-MSC IV/intranasal ↓MIP-1α, MIP-1β, IL-27, IL-6,
TNFα, ↑phagocytosis

Jackson et al., 2016

Experimental autoimmune
encephalomyelitis

hUCMSC IV ↓IL-1β, IFNγ, IL-17, ↑PD-L1,
IGF-2

Du et al., 2019

GvHD hBM-MSC IP ↓GvHD effector T cells Galleu et al., 2017

Intracerebral hemorrhage rBM-MSC IV ↓apoptosis, TM8, neutrophils,
iNOS, MMP-9

Chen et al., 2015

Ischemia-reperfusion injury Cardiac MSC Intracardiac injection ↑CCR2+, CXCR1 + TM8, Vagnozzi et al., 2020

Kidney
ischemia-reperfusion

mBM-MSC IV ↑MCP-1, MIP1α, IL-1β, 1L-10,
TGFβ

Luk et al., 2016

LPS-induced abortion mBM-MSC IP ↓TNFα, IFNγ, IL-1β, IL-27, IL-6,
↑TSG-6

Li et al., 2019

Lung injury mBM-MSC IV ↓TNFα, IL1-RA Ortiz et al., 2007

Lung injury hBM-MSC IV ↓neutrophils, ↑IL10, KGF Devaney et al., 2015

Lung injury hADMSC-Exo IV, intratracheal ↓neutrophils in BAL, NFκβ,
↑IL-10, Arg1, miR-27a-3p in
alveolar TM8

Wang et al., 2020

Myocardial infarction hBM-MSC/hUC-MSC IV ↓IL-1β, IL-6, apop
cardiomyocytes, ↑IL-10,
CD206+

Dayan et al., 2011

Osteoarthritis hBM-MSC-CM Intra-articular ↓MMP-13/TIMP-1, ↑autophagy
chondrocytes

Chen et al., 2019

Retinal inflammation hBM-MSC IV ↓CD3+ cells ↑Treg Ko et al., 2020

Retinal injury mADMSC-Exos Intravitreal ↓apoptosis, MCP-1, M9

infiltration
Yu et al., 2016a

Sepsis mBM-MSC IV ↓TNFα, IL-6, ↑IL-10 Nemeth et al., 2009

Sepsis Apoptotic rADMSC IP ↓TNFα, MMP-9, NFκβ Chang et al., 2012

Spinal cord injury rMSC-Exos IV Exos in CD206 + Mψ only Lankford et al., 2018

Spinal cord injury hBM-MSC Injected into injury ↑IL-4, IL-13, M2 TM8, ↓TNFα,
IL-6, M1 TM8

Nakajima et al., 2012

Spinal cord injury Dental pulp MSC-CM Injected into injury ↑TGFβ, VEGF,
CD206+, MCP-1, ED-Siglec 9,

Matsubara et al., 2015

Traumatic brain injury hBM-MSC IV ↑TIMP-3, ↓VEGF-A, blood
brain barrier permeability

Menge et al., 2012
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activity, greater percentage of apoptotic cells and a higher
necrotic fraction than culture rescued cells (Antebi et al., 2019).
MSCs used within 24 h of thawing, show compromised T cell
suppression, increased susceptibility to lysis by complement or
immune cells and shortened persistence in vivo with intravenous
(IV) administration (Moll et al., 2016). It has also been shown
that roughly 50% of IV transfused mouse MSCs become trapped
in the lung and are ultimately phagocytosed by lung resident
macrophages (Nemeth et al., 2009). In an ischemia-reperfusion
injury model in mice, cardiac MSC injection improved heart
function, not by production of new cardiomyocytes but by
induction of CCR2+ and CX3CR1+ TMϕ. Changes in the
local extracellular matrix content of the peri-infarct border zone
in vivo occurred whether the MSCs were live or freeze-thawed
(non-viable) and could be substituted by a chemical inducer of
the innate immune response (zymosan) (Vagnozzi et al., 2020).
Therefore, this may be an indirect effect of the MSCs and
not paracrine-mediated, but nevertheless, MSCs whether viable,
intact or even apoptotic, cell signaling still produces a beneficial
effect on the resulting macrophage functional output.

It is therefore possible that MSCs can be apoptotic,
metabolically inactivated or fragmented even (membrane
particles) and still exert immunomodulation (Luk et al., 2016;
Goncalves et al., 2017). Apoptotic adipose-derived MSCs were
able to improve survival of rats in a model of sepsis by decreasing
TNFα levels in circulations as well as the frequencies of systemic
and splenic helper and cytotoxic T cells (Chang et al., 2012).
Evidence supports that apoptotic cells were more potent than
viable cells in lung, kidney injury and ischemia-reperfusion
models (Sung et al., 2013). Furthermore, the deliberate perforin-
mediated induction of apoptosis of MSCs by cytotoxic cells
in a murine model of GvHD, appeared necessary for the
success of the MSC infusion (Galleu et al., 2017). Induction of
caspase 8 and apoptosis was necessary for immunosuppression
in vivo and patients with high cytoxicity were more likely to
respond to MSCs, indicating a bifurcation of patient responses.
Intraperitoneally (IP)-delivered MSCs were sequestered in the
phagocytes in lymph nodes and IV-delivered MSCs homed to the
lungs. These apoptotic MSCs only improved GvHD outcomes
when delivered IP, and not IV, and no IDO was induced by
IV-administered MSCs. Regulation of pro-inflammatory Th1
and Th17 cells by MSC-derived PGE2 only occurred in the
presence of CD14+ cells in PBMC cultures, therefore indicating
a reliance on myeloid cells for immunoregulatory mechanisms
(Rozenberg et al., 2016).

The heat inactivation (HI) protocol of Luk et al. (2016)
introduced in 2016 incubated MSCs for 30 min at 50◦C (HI
MSCs) and this resulted in the lack of a secretory profile, no
proliferative or metabolic activity and a disintegration of the cell
without heat shock protein release. HI MSCs did not inhibit T cell
proliferation but were able to reduce TNFα release by monocytes
challenged with LPS in vitro (Luk et al., 2016). This points
to a non-specific immunosuppression, i.e., independent of cell
viability, by the reticuloendothelial system of the host (Poon et al.,
2014). Indeed, studies in our laboratory, using MSC suppression
of TNFα release by THP-1 macrophages, have found both freshly
thawed and cultured MSCs able to exert immunosuppressive

effects and yet the culture-rescued cells generally have few
apoptotic and necrotic cells post harvest, as mentioned earlier
(Pradhan P et al. BioRxiv doi: https://doi.org/10.1101/2020.09.12.
294850).

Aryl Hydrocarbon Receptor on MSCs
Aside from the secretome and engulfment of MSCs, a proposed
mechanism mediated by MSCs resulting in macrophage
polarization, or macrophage phenotype “plasticity,” is by the
activation of the aryl hydrocarbon receptor (AhR). This MSC
receptor responds to environmental stimuli and contributes to
both physiological cell development and immune regulation
(Abney and Galipeau, 2020). The AhR, when bound by ligands
of environmental pollutants, translocates from the cytoplasm to
the nucleus and facilitates AhR-related transcription of genes,
which typically elicit immunotoxicological effects. For example,
MSCs upregulate cytochrome P450 isoforms, cyp1a1 and cyp1b2
genes in response to cockroach allergen in vitro (Xu et al., 2015).
This AhR receptor activation is kynurenine-mediated and results
in immunosuppressive alterations [decreased IL-6 expression
and enhanced leukemia inhibitory factor (LIF) ex vivo (Hinden
et al., 2015)] (Figure 3E). This suggests an immunomodulatory
potential of MSC directly regulated by AhR.

In mice treated with MSCs prior to intratracheal cockroach
extract (CRE) challenge, there was a significant decrease in
bronchial inflammation and goblet cell hyperplasia. Isolated
lung TMϕ showed a significant increase in alternative activation
(M2-like) marker expressions (e.g., Arg1, FIZZ1, and Ym1)
relative to CRE treatment alone, suggesting treatment with MSCs
polarized macrophages to an alternative activation phenotype
under allergen-induced pulmonary inflammation in vivo (Cui
et al., 2020). The IDO inhibitor 1-methyl tryptophan can
activate AhR in MSCs in vitro (Lewis et al., 2017) and the
AhR-Src-STAT3-IL10 signaling pathway has been pivotal to
controlling inflammatory macrophages in vitro (Zhu et al.,
2018). The correlation between this signaling pathway and
immunomodulatory mechanisms by MSCs may be a key axis for
targeted approaches.

CD200, TSG-6, and Hormone Receptors
Another contact-dependent interaction implicated in
macrophage polarization is the CD200/CD200R1 receptor
complex. CD200 (OX-2) is a transmembrane glycoprotein
and its counterpart, CD200-R1, is found on myeloid cells
and T cells. Interestingly, the role of CD200 cannot be fully
extricated from soluble tumor necrosis factor stimulated
gene-6 (TSG-6) signaling. In an LPS-induced abortion
mouse model, TSG-6-silenced or CD200-silenced MSCs
exhibited a higher embryo resorption rate and both had
higher levels of TNFα, IFNγ, and induced nitric oxide
synthase (iNOS) in the decidua than non-silenced control
MSCs supporting the CD200- (cell-mediated) and TSG-6-
dependent (i.e., paracrine-mediated) mechanism (Li et al., 2019)
(Figure 3C). This evidence gives credence to the idea that
MSCs exert immune tolerance by both cell-contact as well as
paracrine-mediated mechanisms.
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The ability of bone marrow MSCs to suppress TNFα release
by IFNγ-primed THP-1 macrophages appeared correlated to
the levels of CD200 (Pietila et al., 2012). High expression
of CD200 on umbilical cord derived MSCs was associated
with improved immunomodulatory effects in vitro and lack of
CD200 expression was correlated to poor suppressive capacity
of the MSCs, suggesting a link between CD200 expression
on MSCs and suppression of pro-inflammatory macrophage
signaling (Pietila et al., 2012). TSG-6 released by MSCs is a
signaling molecule that has been the focus of several pathological
conditions. TSG-6 deletion in MSCs abrogated the ability to
repair corneal damage, myocardial infarct and aid in corneal
allograft survival (Oh et al., 2012). The role of TSG-6 signaling
has been explored in inflammatory bowel disease (IBD), where
canine adipose tissue-derived MSCs induced polarization of
TMϕ in murine IBD, resulting in more M2 TMϕ released into
the colon and improvements in disease activity index (Song
et al., 2018). TSG-6, released by the MSCs, prevented blood
brain barrier (BBB) disruption in intracerebral hemorrhage
in rats and reduced the density of microglia/macrophages
at the hemorrhage site (Chen et al., 2015). TSG-6 has a
known interaction with the CD44 receptor on TMϕ, which
blocks TLR2-mediated translocation of nuclear factor kappa κβ

(NFκβ) to the nucleus alleviating inflammatory signaling in vitro
(Choi et al., 2011).

In pathological conditions, MSCs have been shown to block
the translocation of NFκβ to the nucleus, indicative of the
TSG6/TLR2/NFκβ pathway. LPS and IFNγ trigger intracellular
signaling pathways, via degradation of Iκβ, which frees NFκβ

to translocate to the nucleus to bind promoters of pro-
inflammatory mediators (Figure 3D). LPS-induced lung injury
was lessened by treatment with MSCs or MSC-CM, with alveolar
macrophages showing heightened Ym1 and decreased iNOS
(NOS2) compared to untreated controls ex vivo (Ionescu et al.,
2012). However, the signaling pathways of activated resident
macrophages are complex and difficult to study in vivo, with
considerable heterogeneity of response to different stimuli.
The transcriptome of activated macrophages revealed nine
distinct activation programs, a spectrum of activation much
more advanced than the M1/M2 classification conventions
(Xue et al., 2014).

Apart from modulation of TMϕ phenotypes, MSCs also
play a role in blocking the differentiation of steady state
myeloid progenitors under inflammatory conditions and the
subsequent infiltration of inflammatory effector cells at the
site of inflammation. Under homeostatic conditions, bone
marrow-derived MSCs support hematopoiesis, maintaining
hematopoietic stem cells (HSCs) in an undifferentiated state
via trophic factor release. Under inflammatory conditions
(i.e., high levels of IFNγ, IL1β, and TNFα), however, HSCs
undergo myelopoiesis, resulting in their differentiation
to macrophages and neutrophils. CD200 expressed on
MSCs is proposed to be responsible for the suppression of
inflammation and the maintenance of myeloid progenitors
in an undifferentiated state in vitro and in vivo (Amouzegar
et al., 2017). In a mouse model of corneal injury, systemically
administered control MSCs showed a fivefold induction

of myeloid progenitors in the cornea and a concomitant
reduction in inflammatory cells and IL-1β, compared to
mice injected with (silenced) CD200-shRNA-treated MSCs
(Amouzegar et al., 2017).

Besides PGE2-EP4, TSG-6-CD44, and CD200-CD200R1,
signaling between progesterone receptors (PR) and
glucocorticoid receptors (GR) on microglia, the macrophages
of the CNS, has been implicated in the triggering of microglial
polarization in vivo (Xu et al., 2017). Progesterone has
been shown to be neuroprotective in pre-clinical models
of traumatic brain injury, by inhibition of microglial
activation and prevention of inflammatory cytokine release
(Lopez-Rodriguez et al., 2015). Inhibition of PR and GR
by mifepristone partly blocked human placental MSC-
driven polarization of macrophages. In this study, the
basal release of soluble factors by MSCs suggested TGFβ

as a key mediator of the resulting immunomodulation
(Abumaree et al., 2013).

MSC-macrophage interactions in bone (re)modeling appear
to be paracrine- and contact-mediated via CD200/CD200R
in vitro (Varin et al., 2013). Osteoclasts (bone resorbing
cells) can differentiate from hematopoietic precursor cells
or other macrophage lineage cells. Activated TMϕ, which
release pro-inflammatory cytokines, can disrupt the balance
of osteoclast-mediated bone resorption and osteoblast-
mediated bone formation, resulting in bone loss (Yang
and Yang, 2019). However, depletion of TMϕ during
intramembranous bone deposition in fracture repair led to
impaired healing (Alexander et al., 2011). Soluble CD200 can
inhibit differentiation of osteoclast precursors and inhibit
receptor activator of nuclear factor kappa-β ligand (RANKL)
signaling. MSCs expressing CD200 can block osteoclast
formation and resorption pit activity in vitro (Varin et al.,
2013) and CD200R inhibition can result in hyperactivation
of macrophages and increased susceptibility to autoimmune
diseases (Wright et al., 2003). Future research should unravel
the reliance on contact dependent vs. soluble mediators for bone
regulation and pathology.

MSCs ALTERED BY MACROPHAGES

Macrophage conditioned media, as well as co-culture with
MSCs, can influence MSCs viability and secretome (Freytes
et al., 2013). M2 macrophages are reported to produce more
osteoactivin/gpnmb and thereby activate the ERK/JNK signaling
pathway to assist MSC survival, proliferation and migration (Yu
et al., 2016b; Xu et al., 2017). LPS-induced TNFα release by
macrophages can stimulate MSCs to secrete growth factors that
promote tissue repair (Crisostomo et al., 2008) and drive MSCs
to release inflammatory cytokines (Abumaree et al., 2013).

It is notable that M1 macrophage-MSC co-cultures
demonstrated markedly higher upregulated genes compared to
than equivalent M2 macrophage-MSC co-cultures (Espagnolle
et al., 2017), verifying that the macrophage program can
specify gene expression and cell-mediated immune responses.
Upregulated genes in M1-MSCs cultures included IDO,
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COX2 (immunosuppressive genes), PDL-1, CD54 (MSC and
T lymphocytes), CXCL9 and CXCL10 (involved in T cell
trafficking). M1-primed MSCs showed stronger inhibition of
T cell proliferation, likely through a homotypic CD54 synapse
between M1 macrophage and MSC (Espagnolle et al., 2017).

Other evidence of the effects of macrophage-primed MSCs
can be found in orthopedic research, and relate to the multi-
tissue compartment of the joint. M2 macrophages, co-cultured
with MSCs, drive the expression of alkaline phosphatase,
osteogenic markers and bone mineralization to regenerate bone
(Champagne et al., 2002) and the expression of chondrogenic
and clonogenic genes, to aid cartilage formation (Sesia et al.,
2015). Similarly, exosomes isolated from LPS-treated monocytes
increased gene expression of Runx2 and BMP-2 in human
MSCs upon exposure in vitro (Ekstrom et al., 2013). Synovial
M1 macrophages promote upregulation of proteolytic enzymes
in osteoarthritis and negatively impact MSC chondrogenic
effects on chondroprogenitors (Fahy et al., 2014). These key
investigations shed light on the potential MOAs of MSCs
in musculoskeletal indications, however, the dark side of the
molecular crosstalk between MSCs and TMϕ reveals how these
potential MOAs can be exploited during carcinogenesis.

Although this review is intended to focus on MSCs
administered as therapy, several studies have also reported a
central crosstalk between MSCs and TMϕ in the context of
cancer. Given that MSCs are defined as a cultured cell type
and their in vivo identity prior to isolation still remains unclear
[i.e., pericyte-like (Caplan, 2008)], explorations to reveal the
influences of MSCs within the tumor microenvironment are
limited. Often, culture expanded MSCs are co-cultured with
cancer cells and TAMs isolated from tumors or injected directly
into the in vivo tumor microenvironment to investigate the
influences of MSCs. Furthermore, it is challenging to elucidate
the phenotypes, functions, and crosstalk attributed to the various
cells within the in vivo tumor microenvironment that may,
collectively, promote or mitigate cancer progression.

Like TMϕ, the paradigm of polarized responses resulting
from TLR signaling has also been described for MSCs (i.e.,
MSC1 and MSC2), suggesting pro- or anti-inflammatory effects
(Tomchuck et al., 2008; Waterman et al., 2010). Waterman
et al. (2012) suggested that MSC1 attenuated tumor growth
in vitro and in vivo, whereas MSC2 had the opposite effect of
promoting tumor growth and metastasis, linking the secretory
profiles of MSCs directly to alterations to cancer cells. The
changing tumor microenvironment likely alters, “educates,” or
even “hijacks” (Quail and Joyce, 2013) MSCs as well as tumor-
associated macrophages (TAMs). For example, key findings have
linked inflammation and cancer progression by elucidating the
roles of polarized TAMs and their activation of MSCs. Anti-
tumor effects have been attributed to M1-like TAMs and, in
contrast, multiple aspects of tumor progression are correlated
with the suppressive program of M2-like TAMs. Inflammation
in the tumor microenvironment produced an M1 phenotype
of TAMS which, in turn, induced an immunosuppressive
profile of MSCs, expressing high levels of iNOS and MCP1.
Further recruitment of TAMs mediated by MCP1 secreted
from MSCs along with IL-6 led to polarization into an

M2-like phenotype which promoted tumor growth (Jia et al.,
2016). Our contextual understanding regarding the crosstalk
between TAMs and endogenous cells during carcinogenesis
is far from being fully understood. A greater appreciation
of the crosstalk between MSCs and TAMs as well as the
development of cancer stem cells in cancer research can be
found in more focused reviews by Papaccio et al. (2017)
and Ridge et al. (2017).

CONCLUSION

Scientific understanding is continually enriched and reshaped
by technological advancements, research methodologies and
new discoveries. As our understanding of monocytes and
macrophages has evolved recently, so has our viewpoint about
MSCs. There is now broad agreement that MSCs are not in fact
stem cells and likely do not exhibit multipotency when delivered
in vivo; rather, they are potent signaling cells with great plasticity,
that interact dynamically with their microenvironment, e.g.,
with TMϕ, to modulate and control immune homeostasis and
produce, or help produce, various pro-regenerative signals.

As with current assays that evaluate in vitro functional or
therapeutic potencies of MSCs, a developed assay based on an
identified MOA needs to account for many considerations that
may obscure the reproducibility of results – highlighting the
importance of standardization of all processes from harvest to
delivery of MSCs. One must consider the biological variation of
each donor and alterations imparted by different manufacturing
processes including, how the cells were isolated, stored, shipped,
cultured, expanded, and delivered (e.g., route, timing, and dose).
A major realization is that MSCs are mainly administered by
intravenous infusion, destined for entrapment in the lungs –
a tissue that may be far from the site of pathology. Thus,
the applicability of a given MOA with respect to the route of
delivery and site of pathology for treatment must be considered,
although the predominant therapeutic effects of MSCs could be
via paracrine activities (Giri and Galipeau, 2020). Furthermore,
we refer to therapeutic MSCs as a culture-based cell type confined
by an identity characterized ex vivo that are then re-introduced to
an in vivo milieu that is highly variable from patient to patient.
This alludes to the difficulty in developing in vitro assays that
are predictive of in vivo outcomes. The complexity of identifying
and validating potential MOAs mediated by therapeutic MSCs
bolster the need for deep and broad characterization of the cells
especially using multi-omic analyses, better understanding of
the critical process parameters that can help produce cells with
consistent and reproducible quality, identification of the critical
quality attributes that are predictive of the product quality and
patient outcomes, standardization of processes and analytical
methods, pertinent in vitro potency and safety assays, appropriate
animal models for in vivo pre-clinical validation, and well-
designed randomized controlled trials to evaluate clinical efficacy.

The evidences from pre-clinical studies, to date, suggest that
MSC-macrophage crosstalk may play a critical role in their in vivo
function and can be a potential MOA. These interactions are
largely a result of the MSC secretome, including soluble factors,
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mitochondrial donation, mediating complex pathological milieus
characterized by pro-inflammatory, metabolic, proliferative,
differentiative, hypoxic, REDOX mediators, along with some
cell contact-dependent mechanisms. Together, these studies shed
light on the various modes in which MSCs alter macrophage
phenotype and, in so doing, can modulate local and systemic
immunopathology to promote repair and restore homeostasis.

As mentioned earlier, the majority of mechanisms by which
macrophages and MSCs interact have been discovered in vitro
and much more in vivo studies are needed to tie in these
ex vivo observations to those occurring in the body upon
administration. Through correlation of in vitro functional assays
to qualitative and quantitative in vivo effects, we should be able to
identify potency assays which are more representative of in vivo
performance and employ these to inform the manufacturing of
MSCs for mainstream clinical therapy. The potential for MSC
therapeutics lies in the ability to improve our understanding of
how we can best harness their key communication mechanisms
with other cells, and reproducibly promote the beneficial effects,
ultimately translating benchtop discoveries to bedside MOAs to
advance these promising therapies into clinic and the industry.
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