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ABSTRACT
Objective  Identifying components of 
immuneparesis, a hallmark of chronic liver failure, 
is crucial for our understanding of complications 
in cirrhosis. Various suppressor CD4+ T cells 
have been established as potent inhibitors of 
systemic immune activation. Here, we establish the 
presence, regulation and mechanism of action of a 
suppressive CD4+ T cell subset expressing human 
leucocyte antigen G (HLA-G) in patients with acute 
decompensation of cirrhosis (AD).
Design  Flow cytometry was used to determine the 
proportion and immunophenotype of CD4+HLA-G+ 
T cells from peripheral blood of 20 healthy controls 
(HCs) and 98 patients with cirrhosis (28 with stable 
cirrhosis (SC), 20 with chronic decompensated 
cirrhosis (CD) and 50 with AD). Transcriptional and 
functional signatures of cell-sorted CD4+HLA-G+ 
cells were delineated by NanoString technology 
and suppression assays, respectively. The role of 
immunosuppressive cytokine interleukin (IL)-35 in 
inducing this population was investigated through in 
vitro blockade experiments. Immunohistochemistry 
(IHC) and cultures of primary human Kupffer cells 
(KCs) were performed to assess cellular sources of IL-
35. HLA-G-mediated T cell suppression was explored 
using neutralising antibodies targeting co-inhibitory 
pathways.
Results  Patients with AD were distinguished by 
an expansion of a CD4+HLA-G+CTLA-4+IL-35+ 
immunosuppressive population associated with 
disease severity, clinical course of AD, infectious 
complications and poor outcome. Transcriptomic 
analyses excluded the possibility that these were 
thymic-derived regulatory T cells. IHC analyses and 
in vitro cultures demonstrate that KCs represent 
a potent source of IL-35 which can induce the 
observed HLA-G+ phenotype. These exert cytotoxic 
T lymphocyte antigen-4-mediated impaired 
responses in T cells paralleled by an HLA-G-driven 
downregulation of T helper 17-related cytokines.
Conclusion  We have identified a cytokine-driven 
peripherally derived suppressive population that may 
contribute to immuneparesis in AD.

Significance of this study

What is already known on this subject?
	► Disturbed peripheral immune mechanisms and 
susceptibility to developing infections are common 
features of acute decompensation of cirrhosis (AD).

	► Despite advances in understanding various 
mechanisms of innate immune dysfunction 
leading to infectious complications in cirrhosis, 
dysregulation of the adaptive arm of the immune 
system remain partially explored.

	► Several subsets of regulatory T cells have been 
shown to play an important role in T cell-
mediated suppression in immune dysregulated 
diseases.

	► Here, we assess the presence and the role of novel 
regulatory CD4+HLA-G+ T cells in failure to mount 
effective immune responses in AD.

What are the new findings?
	► Expansion of non-classical regulatory CD4+HLA-G+ 
T cells which are (1) induced by lipopolysaccharide-
driven immunosuppressive cytokine interleukin-35 
from Kupffer cells (2) suppressive to T cells 
functions through a cytotoxic T lymphocyte 
antigen-4-dependent pathway and displays an 
human leucocyte antigen G (HLA-G)-mediated 
attenuation of T helper 17-related cytokines (3) 
associated with complications in cirrhosis.

	► We provide novel insights into identifying key 
targeted immunotherapy-based strategies to 
restore pivotal immune responses and improve 
patient outcomes.

How might it impact on clinical practice in the 
foreseeable future?

	► This study provides novel cellular and 
mechanistic insights into defective peripheral 
immune responses in AD.

	► This is essential to understanding pathophysiology 
of immune dysfunctions in AD and exploiting 
potential biomarkers, predictors of AD clinical 
progression and therapeutic targets in reversing 
immunosuppression in these patients.
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INTRODUCTION
Cirrhosis is a progressive disease of the liver characterised by diffuse 
fibrosis, disruption of intrahepatic venous flow and portal hyper-
tension, which may progress to liver failure.1 2 It is categorised 
into asymptomatic stable cirrhosis (SC) and symptomatic acutely 
decompensated cirrhosis (AD). Decompensation defines patients 
with a failure in liver synthetic function (jaundice) or the develop-
ment of complications related to their cirrhosis and portal hyper-
tension, such as variceal bleeding, ascites or hepatic encephalopathy. 
Patients with AD can present without or with acute-on-chronic-
liver failure (ACLF), a syndrome characterised by extrahepatic 
organ failure and high short-term mortality3 (AD-No ACLF and 
AD-ACLF, respectively).4 5 A progressive dysfunctional immune 
response, referred to as cirrhosis-associated immune dysfunction, 
arising from persistent or episodic systemic inflammation together 
with defects in immune response to microbial cues, termed 
immuneparesis, represents a key component of the pathogenesis of 
cirrhosis. Independent of cirrhosis stage and aetiology, these alter-
ations in immune responses engender a marked susceptibility to 
infections, estimated to occur in 35%–45% of hospitalised patients. 
In particular, the development of immuneparesis is associated with 
infectious complications in cirrhosis.6–9 Thus far, the contribution 
of defects in innate monocyte/macrophage-mediated immune 
responses to immuneparesis has been well studied and proven to 
be an important contributor to impaired antimicrobial responses 
in these patients.8 10–14 Exploring implications of dysfunctions in 
adaptive host immunity in the pathophysiology of cirrhosis is an 
increasing focus of research. Indeed, we recently made progress in 
understanding the impact of adaptive immune defects in systemic 
immunity in cirrhosis by showing dysfunction in the CD8+ T cell 
population, with an expansion of a suppressor peripheral CD8+ 
T cell populations in patients with cirrhosis, characterised by high 
human leucocyte antigen (HLA)-DR and TIM-3 surface expression, 
associated with concomitant infections and disease severity, respec-
tively.15 We therefore suggest a key role of suppressive regulation as 
a mediator of impairment of systemic adaptive immune responses 
in patients with liver disease.

It is well known that dysregulation in immune responsiveness 
can be governed by several mechanisms including suppression 
of immune activation through regulatory T cells (Tregs).16–18 
Multiple subsets of Tregs with specialised activities have been 
described to suppress antimicrobial responses. The best char-
acterised Tregs feature in the CD4+ T cell subset. Besides the 
major population of suppressor CD4+CD25+CD127low Tregs 
(termed thymus-derived Tregs (tTregs)), novel peripherally 
derived regulatory CD4+ T cells have been described.19 Iden-
tified based on surface expression of HLA-G, a non-classical 
HLA class I tolerogenic molecule, CD4+HLA-G+ T cells have 
been described to dampen the extent of an immune response 
and play a role in tissue tolerance.20–24 They were reported to 
inhibit allogeneic responses, induce regulatory cells, inhibit the 
functions of natural killer (NK) cells and cytotoxic T lympho-
cytes, upregulate inhibitory receptor expression and inhibit 
dendritic cell maturation.25 26 HLA-G expressing CD4+ T cells 
were further characterised by the expression of interleukin (IL)-
35, a potent anti-inflammatory cytokine linked to suppression of 
T cell function.27–29 In this study, we identify a T cell population 
with potential contribution to unbalanced immune responses 
in AD in the expansion of an IL-35-induced CD4+HLA-G+ T 
cells displaying a cytotoxic T lymphocyte antigen-4 (CTLA-4)-
dependent suppressive capacity of T cell functions and an HLA-
G-mediated downregulation of cytokines required for a T helper 
17 (Th17) pro-inflammatory immune response.

MATERIALS AND METHODS
Patient characteristics
Ninety-eight patients with cirrhosis were included in this study and 
categorised into: ambulatory patients with SC (n=28), chronic 
decompensated cirrhosis (CD, n=20, including both ‘unstable 
decompensated cirrhosis’ requiring readmission and ‘stable decom-
pensated cirrhosis’ admitted only for elective procedures (as per 
definition of PREDICT study))5 and patients with acute decompen-
sation of cirrhosis (AD, n=50) (defined as patients who presented 
to hospital with acute decompensation±organ failure (25 (AD 
without organ failure (AD-No ALCF) and 25 with organ failure 
(AD-ACLF)). Their clinical and biological parameters are presented 
in table 1. Patients were recruited from February 2016 to December 
2020. Cirrhosis was diagnosed by a combination of clinical exam-
ination, laboratory and radiological information, and histology 
where available. Detailed patient criteria are described in online 
supplemental methods. Twenty healthy volunteers served as healthy 
controls (HCs).

Phenotyping and intracellular cytokine staining using flow 
cytometry
Cell surface and intracellular cytokine staining of periph-
eral blood mononuclear cells (PBMCs) were carried out using 
fluorochrome-labelled monoclonal antibodies (online supple-
mental table S1), as detailed in online supplemental methods.

Cell sorting and NanoString gene expression profiling
Using FACS Aria II flow cytometer (Becton Dickinson, Oxford, 
UK), viable CD3+CD8−CD4+ T cells from patients with AD 
(AD-ACLF, n=4) were subject to a three-way sort (gating strategy 
in online supplemental figure S1A). NanoString nCounter 
GX Human Immunology V2 assay (NanoString Technologies, 
Seattle, Washington, USA) was carried out as described in online 
supplemental methods.

HLA-G+ cell isolation using magnetic bead cell separation
CD4+ T cells were isolated from PBMCs by negative selection 
using magnetic-activated cell sorting (MACS) microbeads 
(Miltenyi Biotec, Surrey, UK) according to manufacturer’s 
instructions. Purified CD4+ T cells from patients with AD 
(AD-ACLF, n=3) were then stained with FITC-conjugated 
anti-HLA-G monoclonal antibody (clone MEM-G/9) (Invit-
rogen, Carlsbad, USA) for 25 min at 4°C. Fluorescein isothio-
cyanate (FITC)-labelled HLA-G+ T cells were then washed, 
incubated with anti-FITC microbeads (Miltenyi Biotec), then 
positively selected following manufacturer’s protocol. Gene 
expression levels of HLA-G mRNA were assessed in the 
isolated CD4+ cells and compared with the CD4− fraction as 
detailed in the online supplemental methods.

Suppression assays
Bead-isolated CD4+HLA-G+ T cells from patients with AD 
(AD-ACLF, n=3) were tested for their suppressive capaci-
ties in co-cultures with allogeneic PBMCs isolated from HCs. 
Prior to co-culture, allogeneic PBMCs were stained with 10 
μM cell proliferation dye (CPD) eFluor 670 (eBioscience, 
Hatfield, UK) as per manufacturer’s protocol. Cells were 
cultured at different responder:HLA-G+ suppressor ratios 
(16:1, 8:1, 4:1 and 2:1) in TexMACS serum-free medium 
(Miltenyi Biotec) in the presence of anti-CD3 monoclonal 
antibody stimulation (α-CD3, 0.5 μg/mL) (eBioscience) for 5 
days at 37°C in 5% CO2. Proliferation was then measured on 
gated CD3+ T cells by dilution of the CPD-eFluor 670 dye 
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using flow cytometry. Suppressive capacity was measured as 
percentage of suppression calculated as: [100−(% prolifera-
tion of responders:suppressors/% proliferation of responders 
only)×100].30

Measurement of IL-35 in sera samples and cell culture 
supernatants using ELISA
Concentrations of IL-35 in human sera samples or superna-
tants collected from cultured cells were measured using ELISA 
(Elabscience, Bethesda, MD, USA), according to manufacturer’s 

instructions. The optical density was measured at 450 nm using 
the Multiskan Go plate reader (Thermo Fisher Scientific, Hemel 
Hempstead, UK).

Sera conditioning of isolated CD4+ T cells
CD4+ T cells were seeded at 2.5×105 cells/well on 24-well plates 
(Starlab, Milton Keynes, UK) and cultured for 48 hours in the pres-
ence of 25% sera derived from patients or HCs (n=15 per group). 
The effect of IL-35 present in the sera (n=12) on driving an HLA-
G-positive phenotype was tested through sera pretreatment with 

Table 1  Demographics and clinical parameters of patients with SC, CD and AD and HCs

Parameter HCs (n=20) SC (n=28) CD (n=20) AD (n=50)

Age—years 38.00 (32.00–50.50) 58.00† (49.50–63.50) 55.50† (47.25–62.00) 49.50 (42.00–58.00)

Gender—n (%)

Male 14/20 (70%) 21/28 (75%) 14/20 (70%) 37/50 (74%)

Female 6/20 (30%) 7/28 (25%) 6/20 (30%) 13/50 (26%)

Aetiology—n (%)

 � Alcoholic liver disease (ALD) NA 19/28 (67.8%) 12/20 (60%) 32/50 (64%)

 � Hepatitis C** NA 2/28 (7.14%) – 3/50 (6%)

 � Hepatitis C+ALD NA – – 1/50 (2%)

 � Autoimmune hepatitis NA – 2/20 (10%) 2/50 (4%)

 � NAFLD NA 3/28 (10.7%) – 6/50 (12%)

 � Cryptogenic NA 3/28 (10.7%) – 3/50 (6%)

 � Other†† NA 1/28 (3.5%) 6/20 (30%) 3/50 (6%)

White cell count—×109/L NA 4.65‡*** (3.75–6.03) 4.415§*** (2.648–6.155) 8.52‡***§*** (6.30–15.14)

Neutrophils—×109/L NA 2.92‡*** (2.10–4.20) 2.50§*** (1.88–4.01) 6.20‡***§*** (3.78–10.52)

Monocytes—×109/L NA 0.410‡*** (0.30–0.60) 0.33§*** (0.21–0.487) 0.87‡***§*** (0.47–1.20)

Lymphocytes—×109/L NA 1.19 (0.82–1.61) 0.93 (0.70–1.41) 1.10 (1.57–0.61)

MELD score NA 10.90‡***¶* (7.85–15.68) 16.53¶* (10.92–23.13) 26.10‡*** (15.8–33.00)

SOFA score (CLIF-SOFA score in ACLF) NA NA 3.50§*** (3.00–4.00) 12.00§*** (8.50–14.50)

CLIF AD score (in AD)
CLIF ACLF (in ACLF)

NA NA NA 54.50 (45.75–62.13)
58.90 (52.00–64.10)

Child-Pugh score NA 8.00‡*** (6.00–9.00) 8.50§** (7.00–10.00) 11.00‡***§** (9.00–12.00)

Creatinine—µmol/L NA 72.00¶*** (57.75–88.75) 66.50§***¶*** (54.00–88.75) 78.50*** (58.5–131.8)

Bilirubin—µmol/L NA 26.5¶*** (16.50–50.25) 2.54§***¶*** (1.50–7.58) 59.00§*** (26.0–154.0)

CRP—mg/L NA 5.05‡*** (2.40–15.58) 13.60§*** (6.60–17.80) 33.80‡***§*** (16.90–68.00)

INR NA 1.28‡*** (1.10–1.60) 1.36§* (1.190–1.783) 1.72‡***§* (1.46–2.02)

Ammonia—µmol/L NA ND 56.00§*** (46.00–111.0) 133.80§*** (126.0–136.0)

Type of precipitating events—n (%)‡‡

 � GI bleed 19 (38%)

 � Infection 13 (26%)

 � Acute alcohol injury NA NA NA 3 (6%)

 � Any of the events in combination 7 (14%)

 � Unknown 8 (16%)

Number of precipitating events—n (%)

 � 1 35 (70%)

 � ≥2 7 (14%)

Mortality from enrolment—n (%) NA NA NA 24 (48%)

90-day mortality

Values represent medians (IQR) unless otherwise stated.
Multiple comparison testing between more than two groups was carried out using Kruskal-Wallis test with Dunn’s test post hoc intergroup comparison. Mann-Whitney U test used for comparison 
between two groups.
*P<0.0005 and ***p<0.0001.
†Significant differences in age compared with HCs, p=0.0005.
‡Comparison between AD and SC.
§Comparison between AD and CD.
¶Comparison between SC and CD.
**Treated hepatitis C.
††Other aetiologies include Wilson’s disease, Alagille syndrome, chronic Budd-Chiari syndrome and primary sclerosing cholangitis.
‡‡Numbers and percentages presented are in GI bleed alone versus infection alone versus acute alcohol injury alone. Seven patients (14%) had more than one type of event (three patients 
presented with infection and GI bleed/two with acute alcohol injury and infection, one with GI bleed and acute alcohol injury and one with the three precipitating events).
ACLF, acute-on-chronic-liver failure; AD, acute decompensation of cirrhosis; CD, chronic decompensated cirrhosis; CLIF-SOFA, chronic liver failure-sequential organ failure assessment; CRP, 
C reactive protein; HCs, healthy controls; INR, international normalised ratio; MELD, model for end-stage liver disease; NA, not applicable; NAFLD, non-alcoholic fatty liver disease; ND, not 
determined; SC, stable cirrhosis.
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0.5 µg/mL anti-IL-35 neutralising antibody (α-IL-35) (Bio-Techne, 
Abingdon, UK) prior to culture isolated CD4+ T cells for 45 min 
at room temperature. Similarly, controls were carried out in the 
presence or absence of anti-IL-10 neutralising antibody (α-IL-10, 
at 1 µg/mL) (Bio-Techne). The phenotype of the cells following sera 
conditioning was screened using flow cytometry.

Immunohistochemistry
Immunohistochemistry (IHC) of liver explants obtained from liver 
transplantation of patient with AD with ACLF and patient with SC 
was carried out as depicted in online supplemental methods.

Primary human Kupffer cell cultures
Cryopreserved Kupffer cells (KCs) (Thermo Fisher Scientific) 
were stimulated for 48 hours in the presence of 100 ng/mL Esch-
erichia coli lipopolysaccharide (LPS) (Sigma-Aldrich, Dorset, 

UK) or human high mobility group box 1 (HMGB1) (R&D 
Systems, Abingdon, UK). Prior to LPS or HMGB1 stimulation, 
KCs were treated with or without blocking antibodies against 
toll-like receptor 4 (α-TLR4) or CD14 as detailed in the online 
supplemental methods. Cell culture supernatants were collected 
for assessment of IL-35 concentrations using ELISA.

Proliferation assays and multiplex cytokine detection system
Following 48-hour sera treatment, CD4+HLA-G+ generated in 
response to AD sera were collected and incubation with carboxy-
fluorescein succinimidyl ester-labelled PBMCs and α-CD3 stim-
ulation (0.5 µg/mL) (eBioscience) in the presence or absence of 
either α-CTLA-4 (10 µg/mL) (eBioscience), α-HLA-G (10 µg/mL) 
(Miltenyi Biotec) or α-IL-35 (0.5 µg/mL) (Bio-Techne, Abingdon, 
UK) neutralising antibodies. Cells were co-cultured for 5 days to 
allow measurement of proliferation in CD3+ responder T cells. 

Figure 1  Expansion of CD4+HLA-G+ T cell population in patients with acute decompensation of cirrhosis (AD). Peripheral blood mononuclear cells 
(PBMCs) from healthy controls (HCs) (n=20) and patients (stable cirrhosis (SC), n=28; chronic decompensated cirrhosis (CD), n=20 and AD, n=50) 
were assessed for surface levels of human leucocyte antigen G (HLA-G) using flow cytometry (gating strategy online supplemental figure S1A). (A) 
Representative flow cytometry histograms used to determine HLA-G levels, all gated based on fluorescence-minus-one (FMO) controls (left panel). 
Percentage of HLA-G expressing cells in CD3+CD4+CD8-T cells in HCs compared with patients with SC, CD and AD (right panel). (B) Representative 
histograms of immunoglobulin-like transcript 4 (ILT4) levels on monocytes in HCs and patients (SC, CD and AD) (left panel). Distribution of ILT4+ 
monocytes in HCs and in patients (right panel). (C) Correlation of the frequency of CD4+HLA-G+ T cells with clinical parameters and disease severity 
scores in patients with AD (model for end-stage liver disease (MELD) scores, Child-Pugh (CP), white cell count (WCC) and C reactive protein (CRP)). 
(D) Distribution of CD4+HLA-G+ T cells with increasing disease severity in patients within the AD cohort (AD-No ACLF, n=25; AD-acute-on-chronic-
liver failure (ACLF), n=25) compared with SC (n=28) (top panel). Distribution of CD4+HLA-G+ T cells across the clinical phenotypes of AD (stable 
decompensated cirrhosis (SDC), n=8; unstable decompensated cirrhosis (UDC), n=13) and AD-ACLF (n=25) (no analyses of the pre-ACLF were 
performed due to the limited number of this phenotype in the patient cohort) (bottom panel). (E) Distribution of CD4+HLA-G+ T cells in non-surviving 
(n=24) and surviving patients (n=23) with AD within 90 days following admission. (F) HLA-G expression was assessed in patients with AD who 
developed culture-positive primary infections (n=11) and the ones who developed culture-negative infections (n=9) (left panel). Distribution of 
HLA-G+ T cells was compared in patients withh AD who developed short-term secondary infections (n=9) (<28 days) and the ones who developed 
it in >28 days (n=6) (right panel). Non-parametric statistical analysis was used (Mann-Whitney U test for two group comparison and Kruskal-Wallis 
followed by a Dunn’s test for multiple comparisons between more than two groups). Data are presented as median values with IQR. Correlation 
coefficients (r) and correlation p values were tested using non-parametric Spearman’s correlation test. *P<0.05; ***p<0.0005.
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Supernatants were collected to assess cytokine secretion in the T 
helper 1 (Th1)/T helper 2 and Th17 pathways using multiplex 
cytokine detection system (Meso Scale Discovery System, Rock-
ville, USA) (see online supplemental methods).

Statistical analyses
Following assessment of normality for continuous data, the 
Mann-Whitney U test was used for non-parametric data and 
Wilcoxon matched pairs signed rank test was used for paired 
tests. Multiple comparison testing between more than two 
groups was carried out using Kruskal-Wallis test with Dunn’s 
test post hoc intergroup comparison. Spearman’s correlation 
coefficients were calculated for correlation analyses. Statistical 
significance was assumed for p values ≤0.05. Data analysis was 
performed using GraphPad Prism 5 (GraphPad Software, San 
Diego, California, USA).

RESULTS
Patient characteristics
Age and gender were similar in the pathological groups. When 
patients were compared with HCs, there were no differences in 
gender proportion. However, patients with SC and CD were older 
than HCs (table  1). The most common underlying disease in all 
patient groups was alcohol-related liver disease (ALD) (67.8%, 60% 
and 64% in SC, CD and AD, respectively). White cell count (WCC), 
creatinine, bilirubin, C reactive protein (CRP) and international 
normalised ratio (INR), and were all significantly elevated in patients 

with AD compared with SC and CD (table 1). Patients with AD had 
higher disease severity indices including Child-Pugh (CP) and model 
for end-stage liver disease (MELD) scores (table 1). GI bleed and 
infection were the main precipitating events (PE) of AD (38% and 
26%, respectively) (table 1).

Increased proportion of circulating CD4+ T cells exhibiting 
high levels of HLA-G in patients with AD
Phenotypic analyses to evaluate the expression of HLA-G on 
circulating CD4+, CD8+ T cells and monocytes from HCs, 
patients with SC and AD were carried out (gating strategies 
described in online supplemental figure S1B). Data revealed a 
distinct elevation of HLA-G expression within the CD4+ T cell 
subset (figure  1A) but not CD8+ T cells or monocytes where 
no detectable HLA-G expression was seen (online supplemental 
figure S1C). The expansion of the CD4+HLA-G+ population was 
markedly predominant in patients with AD compared with HCs, 
SC and CD (median 23.54%; IQR (13.28–29.69) vs 4.61%; 
(2.18–8.81) 7.09%; (1.83–12.25) and 5.14 (2.62–6.97)), respec-
tively (Kruskal-Wallis p<0.0001) (figure  1A). Although there 
was some variation between patients, expression of HLA-G on 
the CD4+ T cell subset was further confirmed at the transcrip-
tional level (online supplemental figure S1D). While HCs were 
significantly younger than patients with SC and CD, propor-
tions of CD4+HLA-G+ did not vary with age (online supple-
mental figure S1E). On the other hand, monocytes (defined as 
HLA-DR+CD14+CD1a-CD11c+CD86+) from patients with AD 

Figure 2  Immunophenotyping to characterise CD4+HLA-G+ population in patients with acute decompensation of cirrhosis (AD) demonstrates that 
the population is CTLA-4highIL35highIL-10low. (A) Representative flow dot plots and histograms of surface levels of inhibitory marker CTLA-4 assessed in 
CD4+HLA-G+ (left panel). CTLA-4 levels on CD4+HLA-G+ T cells in healthy controls (HCs) and in patients with AD (right panel). (B) Representative dot 
plots of intracellular cytokine staining used to define levels of interleukin (IL)-35 in the CD4+HLA-G+ population (left panel). Co-expression of HLA-G 
and IL-35 in HCs compared with patients with AD (right panel). (C) CD4+HLA-G+ T cells assessed for their co-expression of IL-35 and IL-10 in patients 
with AD (n=14). Mann-Whitney U test for two group comparison. Data are presented as median values with IQR. HLA-G, human leucocyte antigen G; 
CTLA-4, cytotoxic T lymphocyte antigen-4; FMO, fluorescence minus one.
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displayed elevated levels of immunoglobulin-like transcript 4 
(ILT4), an HLA-G-associated receptor25 (figure 1B).

Proportions of CD4+HLA-G+ T cells correlate with disease 
severity and poor outcome
In patients with AD, HLA-G expression on CD4+ T cells 
correlated positively with MELD score (r=0.422, p=0.002), CP 
score (r=0.449, p=0.001), WCC (r=0.401, p=0.004) and CRP 
(r=0.314, p=0.03) (figure  1C). The correlations with disease 
severity scores were further corroborated by the increased 
frequency of the CD4+HLA-G+ population with increasing 
severity of disease (figure 1D). Among patients who died within 
90 days of admission, the proportion of CD4+HLA-G+ T 
cells at baseline was significantly higher than in patients who 
survived (p≤0.0001) (figure 1E). Analyses among patients with 
AD with infectious complications revealed that percentage of 
HLA-G+ cells was significantly elevated in patients with culture-
positive primary infections compared with culture-negative ones 
(p=0.003) (figure  1F). Additionally, patients who later devel-
oped secondary infections in <28 days from hospital admission 
had increased frequency of HLA-G+ cells (p=0.01) (figure 1F).

Distinct distribution of CD4+HLA-G+ T cells in different clinical 
courses of AD
In addition to the two distinct clinical presentations of AD depending 
on the absence or presence of organ failure (AD-No ACLF and 

AD-ACLF, respectively),31 the recent PREDICT study identified 
that AD-No ACLF is a heterogenous condition with three distinct 
clinical courses.5 We have assigned all patients in the AD-No ACLF 
group to one of the three clinical trajectories as per the PREDICT 
study (stable decompensated cirrhosis (SDC), unstable decompen-
sated cirrhosis (UDC) and pre-ACLF). Thirty-two per cent of the 
patients with AD did not require any hospital readmission within 
the 3-month follow-up period (SDC). Fifty-two per cent developed 
UDC without ACLF and either had a high mortality rate at 3 months 
or required at least one readmission within the 3 months follow-up 
period. No patients were assigned to the pre-ACLF trajectory (16% 
of the AD group were not included in any of the trajectories due 
no recorded deaths and no-readmissions during the first 3-month 
follow-up period). The expansion of the CD4+HLA-G+ T cells was 
most significant in the UDC group, the second most severe course 
of AD. Analyses in the pre-ACLF group corresponding to the most 
severe course of AD were not feasible due to the limited sample 
size in this clinical phenotype. No differences in the distribution of 
CD4+HLA-G+ T cells were observed according to the number or 
type of PE to AD (online supplemental figure S2).

CD4+HLA-G+ T cells from patients with AD display a CTLA-
4highIL-35highIL-10low phenotype
We further defined this population in the AD group with regard 
to the expression of cell surface inhibitory markers (Tim3, PD1, 
CD40L and CTLA-4) and found that CTLA-4 was significantly 

Figure 3  Transcriptional and functional features of CD4+HLA-G+ T cells from patients with acute decompensation of cirrhosis (AD). (A) Quantitative 
analysis of immune-related gene in HLA-G+ compared to thymus-derived regulatory T cells (tTregs) and or HLA-G- counterparts from patients with 
AD (n=4) using NanoString Technologies. Data show Venn diagrams of significantly differentially expressed (DE) genes. (B) Volcano plots comparing 
HLA-G+ T cells to either tTregs or HLA-G- T cells. Gene names are listed for DE genes showing that gene expression pattern of immune-related genes 
in circulating CD4+HLA-G+ T cells are distinct from Tregs and HLA-G-negative counterparts. (C) HLA-G+ cells suppressive capacity on CPD-labelled 
responder peripheral blood mononuclear cells (PBMCs) proliferation. Representative histograms of live CD3+ T cells proliferating in the absence or 
presence of α-CD3 stimulation (top left panel). Representative flow histograms of proliferating CD3+ T cells in the presence of HLA-G+ fractions at the 
tested ratios (bottom left panel). Suppressive capacity of HLA-G+ (n=4) isolated from patients with AD after 5 days of co-culture (right panel). HLA-G, 
human leucocyte antigen G.
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co-expressed by CD4+HLA-G+ T cells in patients with AD 
compared with HCs (figure 2A). This was not observed in the 
HLA-G-negative fraction (online supplemental figure S3A). No 
significant changes were detected in the expression of the other 
tested inhibitory markers (online supplemental figure S3B). 
When screened for anti-inflammatory/suppressive cytokines 
(IL-35 and IL-10), CD4+HLA-G+ cell subsets from patients 
with AD demonstrated increased IL-35 expression compared 
with HCs (figure 2B). Unlike IL-35, IL-10 was expressed in a 
significantly lower proportion of the HLA-G+ cells (figure 2C). 
In addition, we noted that IL-35 was mostly elevated in HLA-
G+ cells when compared with CD25highCD127low tTregs (online 
supplemental figure S3C).

Transcriptional and functional characteristics of CD4+HLA-G+ T 
cells from patients with AD
Next, we performed gene expression profiling of the CD4+H-
LA-G+ population and to determine whether it was distin-
guishable from tTreg population and the HLA-G-negative 
counterpart. Three distinct populations were cell sorted based 
on the gating strategy depicted in online supplemental figure 
S1A. First, CD4+ T cells from four different patients with AD 
were separated into two main populations: CD25highCD127Low 
tTregs and CD25-CD127high non-tTregs. HLA-G+ and HLA-G- 
T cells were then sorted from the tTreg-depleted population. 
Differential expression of the analysed genes between the three 
subsets was revealed (figure 3A).

The HLA-G+ subset displayed a distinct gene expression pattern 
from tTregs. This was evidenced by significant downregulation 

of tTreg-specific signature genes FOXP3 and IL2RA, regulators 
of tTreg function genes (FCRL3, EZH2, CD27, TRAF3 and 
TIGIT) and an upregulation in IL7R (CD127) gene (figure 3B 
and online supplemental figure S4A). Genes involved in suscep-
tibility to apoptosis/necrosis (CASP3, RIPK3, FAS) and prolif-
eration, differentiation and IL-2 production (TRAF1, TRIM21) 
were also downregulated in HLA-G+ compared with tTregs, 
while regulators of inflammation such as LTB and SOCS3 were 
significantly upregulated (figure  3B and online supplemental 
figure S4A).

Compared with the HLA-G- subset, HLA-G+ cells exhibited 
increased expression of genes important for the induction of 
regulation and suppression (TNFRSF1B and CD52), epigenetic 
regulators (HIST1H4H, HIST1H2BK, HIST1H2BF) and markers 
of activation (NKG7, FCGR3A/B). Notably, HLA-G+ popula-
tion showed an upregulation in genes involved in exocytosis of 
CTLA-4 (ARF1 and PLD), supporting the phenotypic findings of 
enhanced CTLA-4 surface levels (figure 3B and online supple-
mental figure S4A).

HLA-G+ cells from patients with AD exhibit suppressive 
properties
CD4+ T cells expressing HLA-G have been shown to act as 
suppressive cells by dampening lymphocyte-driven immune 
responses.32 33 To explore their regulatory capacity in patients 
with AD, magnetically cell-sorted CD4+HLA-G+ T cells were 
incubated at increasing ratios with CPD-labelled allogeneic 
PBMCs in the presence of anti-CD3 polyclonal stimulation. Here, 
we show that purified HLA-G+ cells had a strong suppressive 

Figure 4  Sera conditioning and the role of interleukin (IL)-35 in inducing CD4+HLA-G+ suppressor cells. (A) Assessment of the effect of sera at 
inducing HLA-G+ phenotype in cultured CD4+ T cells from healthy controls (HCs) following 48 hours of culture in the presence of 25% sera from HCs 
and patients with acute decompensation of cirrhosis (AD) (n=15 per group). (B) Proliferation of HC peripheral blood mononuclear cells (PBMCs) in the 
presence of HC or AD sera-induced human leucocyte antigen G (HLA-G) expression in CD4+ T cells (results are representative of seven independent 
experiments). (C) Concentrations of IL-35 in sera samples were measured in HCs (n=25) and patients with AD (n=25). (D) Measurement of the role 
of IL-35 in driving the HLA-G-positive phenotype (left panel) and its effect on proliferation responses (right panel). Anti-IL-35 neutralising antibody 
(α-IL-35, used at 10 µg/mL) (n=12) was used to block IL-35 prior to sera exposure. This was suppressed when sera from patients with AD were 
pretreated with neutralising IL-35 antibody. Mann-Whitney U test for two group comparison and Wilcoxon matched pairs signed rank test was used 
for all paired non-parametric tests. Data are presented as median values with IQR.
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activity on proliferating responder CD3+ T cells with a more 
pronounced percentage of suppression at lower responder-to-
HLA-G+ ratio of 16:1 and 8:1 (55% (27.12–74.33) and 69.73% 
(39.68–85.54), respectively) (figure  3C). Despite the loss of a 
suppressor ratio-dependent suppressive effect at higher ratios, 
HLA-G+ cells still retained a strength of suppression above 50% 
(figure  3C). Furthermore, HLA-G+ cells were up to 2.5-fold 
more suppressive than the non-HLA-G expressing cell fraction 
(online supplemental figure S4B,C).

In vitro conditioning in AD-derived sera induces the 
suppressive CD4+HLA-G+

We have previously reported that soluble mediators in the sera 
of patients with liver disease can induce phenotypic and func-
tional properties resembling those detected ex vivo in circulating 
leucocytes from patients.15 34 As shown in figure  4A, in vitro 
exposure of healthy CD4+ T cells to sera from patients with AD 
resulted in enhancement of HLA-G surface expression; no such 
elevation was observed after exposure to sera from HCs or a 
pathological control (online supplemental figure S5A). Similar to 
HLA-G+ cells from patients with AD, in vitro AD sera-induced 
CD4+HLA-G+ had a suppressive capacity to significantly inhibit 

PBMCs proliferation as detected by reduction in the percentages 
of proliferating responder lymphocytes (figure 4B).

Elevated circulating IL-35 in decompensated disease 
mediates induction of CD4+HLA-G+ suppressor T cells
Having detected high levels of intracellular IL-35 in the HLA-G 
expressing cells, we measured the levels of this immunosup-
pressive cytokine in the circulation. Concentrations of IL-35 
were mostly elevated in sera from patients with AD compared 
with HCs (figure 4C). Notably, levels of IL-35 were markedly 
increased in patients with AD when compared with a patholog-
ical control (online supplemental figure S5B).

In addition to its production by several peripherally derived 
Tregs, IL-35 has also been reported to be involved in their devel-
opment and expansion.27 29 35 Thus, we then examined whether 
elevated IL-35 levels present in sera from patients with AD 
were capable of inducing the HLA-G+ phenotype. To test this, 
we neutralised IL-35 in AD sera before exposure to CD4+ T 
cells and demonstrated that this abolished sera-induced HLA-G 
upregulation (figure 4D) and yielded cells with a substantially 
reduced suppressive function as demonstrated by restored prolif-
eration in responder T cells (figure 4D). These changes were not 

Figure 5  Immunohistochemical and in vitro evaluation of sources of interleukin (IL)-35 from diseased liver. (A) Immunohistochemistry (IHC) was 
used to detect and quantify IL-35 (EBI3) in liver explants tissues of patients with acute decompensation of cirrhosis (AD) compared with pathological 
stable cirrhosis (SC) control (alcohol-related cirrhosis). Single stain for IL-35, detected using DAB (brown), nuclei detected using haematoxylin (blue) 
with 200× magnification. (B) Double stain for IL-35 (brown) and intrahepatic CD68+ tissue Kupffer cells (KCs) (CD68 detected using Permanent Red 
(red)). Nuclei were detected using haematoxylin (blue) with 200× magnification (top panels). For pseudofluorescence, IL-35, CD68 and nuclei were 
visualised by red, green and blue, respectively. Co-localisation of IL-35 and CD68 was visualised by yellow (bottom panels). (C) Human primary KCs 
were assessed for their capacity to secrete IL-35 in vitro following no stimulation (n=9), stimulation with high mobility group box 1 (HMGB1) (n=9) 
or Escherichia coli lipopolysaccharide (LPS) (n=10) and simultaneous stimulation with both LPS +HMGB1 (n=9). ELISA was used to detect IL-35 
concentrations in collected supernatants following 48 hours incubation. (D) Receptors involved in the signalling pathways were tested for their role in 
the LPS-induced IL-35 secretion through blockade of CD14 (n=6) and toll-like receptor 4 (TLR-4) receptors (n=6). Kruskal-Wallis followed by a Dunn’s 
test for multiple comparisons between more than two groups. Data are presented as median values with IQR. *P<0.05; **p<0.005; ***p<0.0005.
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observed with blockade of IL-35 prior to conditioning in sera 
from HC or SC (online supplemental figure S5C,D). Further-
more, we show that IL-10, another immunosuppressive cyto-
kine, was not relevant in the induction of this phenotype (online 
supplemental figure S5E).

Cellular sources of IL-35
Elevated levels of IL-35 in sera suggested that other cell popu-
lations may contribute to the release of this immunosuppressive 
cytokine. Using IHC analyses we detected high expression of 
IL-35 that co-localised with KCs in liver sections from patients 
with AD (figure  5A and B). Levels were undetectable in SC. 
To further dissect this finding, we investigated the capacity 
of isolated human primary KCs to produce IL-35 in vitro and 
tested the contribution of key triggers of liver injury comprising 
danger-associated or pathogen-associated molecular patterns 
(DAMPS or PAMPS) towards this secretion. Only stimula-
tion with a well-known PAMP (LPS), but not a major DAMP 
(HMGB1) led to a significant increase in IL-35 secretion from 
cultured KCs (figure 5C). No further increase in the concentra-
tion of LPS-induced IL-35 was detected by concurrent treatment 
with HMGB1 (figure 5C). TLR4 and CD14 are pivotal recep-
tors required for cytokine production from KC in response to 
LPS signalling.36 Similar to LPS, HMGB1 capacity to induce 
cytokine secretion requires signalling through TLR4.37 In this 
regard, we sought to confirm the role of the two receptors in 
the LPS-induced secretion of IL-35 using blocking antibodies 
and demonstrated that IL-35 induction was abrogated following 
CD14 blockade (figure 5D).

CD4+HLA-G+ cells suppression of responder T cell responses is 
CTLA-4-mediated
Given the detected upregulation of key negative regulator CTLA-4 
as well as genes involved in its membrane recycling and expres-
sion, we decided to assess its role in the suppressive mechanism 

of the HLA-G+ population. Blockade of CTLA-4 attenuated the 
capacity of AD-sera-induced, but not HC-sera-induced, HLA-G+ 
T cells to suppress responder T cells proliferation (figure 6A and 
online supplemental figure S6A). Furthermore, it restored key 
T cell proliferation cytokine secretion, including interferon-γ, 
tumour necrosis factor-α and IL-2 (figure 6B). Of note, blockade 
of immunomodulatory factors HLA-G and IL-35 did not abro-
gate the suppressive capacity of the described population (online 
supplemental figure S6B). However, neutralisation of HLA-G, 
but not CTLA-4 or IL-35, specifically restored production of 
Th17-related cytokines/chemokines including IL-17, IL-21 and 
macrophage inflammatory protein-3alpha (figure 6C and online 
supplemental figure S6C).

DISCUSSION
This study identifies an expansion of an IL-35-induced HLA-G-
expressing regulatory CD4+ T subpopulation exerting suppres-
sive properties via distinct and specific mechanisms of action, 
namely (1) a CTLA-4-dependent pathway delineated by the 
capacity to reduce T cell proliferation and diminish production of 
cytokines essential for T cell functions and (2) an HLA-G-driven 
inhibition of cytokines specifically related to Th17 responses. 
Proportions of the CD4+HLA-G+ T cells were associated with 
disease severity, susceptibility to infections and poor outcome.

HLA-G, a non-classical HLA class I molecule, was originally 
described as a regulator of tolerance; conferring protection 
against foetal rejection, tolerance to allografts and contributing 
to immune escape mechanisms in cancer and viral infections.38 39 
Reports on expression of HLA-G on lymphocytes were first 
described in patients with HIV.40 Studies led by Feger et al were 
the first to report HLA-G expression by T cells with regulatory 
capacity present at low levels in healthy blood.32 The same group 
further defined cellular and molecular characteristics of this 
population and demonstrated its important role in peripheral 
immune regulation in inflammatory disorders such as multiple 

Figure 6  CD4+HLA-G+ T cells suppressive capacity is reversed following blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4), whereas blockade 
of human leucocyte antigen G (HLA-G) impairs T helper 17 (Th17)-related cytokine secretion. (A) HLA-G expressing cells generated following 
preconditioning of CD4+ T cells in sera from patients with acute decompensation of cirrhosis (AD) were tested for their capacity to suppress 
proliferating peripheral blood mononuclear cells (PBMCs) in the presence of absence of α-CTLA-4 (10 µg/mL) (n=8). (B) Levels of cytokines playing a 
role in T cell proliferation/function in supernatants collected following 5-day co-cultures of CD4+HLA-G+ T cells with PBMCs with or without α-CTLA-4 
were measured using multiplex cytokine detection system (n=8). (C) Blockade of HLA-G restored production of Th17-related cytokines/chemokines. 
Wilcoxon matched pairs signed rank test was used for all paired non-parametric tests. Data are presented as median values with IQR.
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sclerosis and in graft-versus-host disease.41 42 In line with these 
previously reported suppressive HLA-G+ T cells,32 cells from 
patients with AD were clearly distinguished from tTregs by their 
immunological gene signature demonstrating a lack of FOXP3 
and IL2RA (coding gene for CD25) and marked upregulation of 
IL7R (gene encoding for CD127).

In previous studies, CD4+HLA-G+ cells from healthy indi-
viduals were reported to produce high levels of IL-10 and 
exert their suppression in an IL-10-dependent manner.33 In 
contrast, CD4+HLA-G+ T cells from patients with AD were 
weak producers of IL-10 suggesting that their suppressive func-
tions were unlikely to be supported by IL-10. Here, using in 
vitro suppression assays, we demonstrated that the inhibition of 
alloreactive T cell proliferation by HLA-G+ subset was mediated 
through CTLA-4 signalling. We have previously identified and 
characterised negative regulation of adaptive immune responses 
mediated by CTLA-4-expressing CD4+ T cells in the settings of 
acute liver failure (ALF).34 Taken together, our studies suggest a 
major immunomodulatory role of CTLA-4 in ALF and chronic 
liver failure and that blockade of this pathway may be benefi-
cial in restoring T cell-mediated responses. Growing clinical 
experience of the risks of immune-mediated adverse reactions 
using established targeted anti-CTLA therapies (eg, checkpoint 
inhibitor (CPI)-induced liver injury) has given pause to this 
strategy of immune modulation,43 and would require signifi-
cant caution in end-stage liver disease. Modulation of immune 
cell metabolism has been considered as an adjunct to immune 
CPI in patients with cancer.44 This suggests the need for further 
studies to explore whether the loss of HLA-G+ T cells’ inhib-
itory capacity through CTLA-4 blockade is accompanied by 
changes in cellular metabolites to determine possible metabolic 
targets in decompensated cirrhosis. In tumour-bearing mouse 
models, HLA-G was shown to promote immune evasion through 
expansion of myeloid-derived suppressor cells and alteration of 
cytokine balance through inhibition of Th1/Th17 responses.45 
Indeed, our findings support an important role for HLA-G 
in suppressing Th17 responses; a crucial immune response in 
host defence against a variety of pathogens, including bacteria 
and viruses.46 Further investigations are needed to dissect how 
myeloid lineages, particularly antigen-presenting cells exhibiting 
elevated levels of ILT4 (HLA-G receptor), may account for the 
impairment in promoting Th17 differentiation.

This work has established a role of the anti-inflammatory 
cytokine IL-35 in inducing the HLA-G+ phenotype in patients 
with AD. Although secreted by the HLA-G+ cells, higher levels 
of IL-35 seemed to originate in KCs following challenge from 
LPS. We therefore postulate that continuous exposure to gut-
derived bacterial products through increased bacterial translo-
cation in AD47 is likely to explain the induction and release of 
IL-35 from specialised cells in the inflamed liver which can reach 
the circulation. Consistent with our observations, Collison et al 
demonstrated that IL-35 promoted Tregs induction and mainte-
nance and that IL-35-treated cells were also capable to secrete 
IL-3535. Interestingly, a population of IL-35-induced CD4+ 
Tregs, named iTr35 did not express IL-10 and were suppressive 
of responder T cells proliferation primarily through an IL-35-
dependent manner. In our study however, in vitro blockade 
of IL-35 failed to disable the suppressive function of CD4+H-
LA-G+ cells, suggesting that IL-35 might not be required for 
their suppressive capacity but for the generation and possibly 
the maintenance of this population. However, further studies are 
required to investigate possible roles of IL-35 in initiating the 
suppressive cascade and in contributing to the maximal HLA-
G+ T cell suppressive function. Evidence also suggests a role for 

IL-35 in generating IL-35-secreting regulatory B cells, which can 
then induce Tregs.48 It is therefore pertinent to further investi-
gate the effect of the IL-35-secreting-HLA-G+ subpopulation on 
modulating other adaptive cell functions, such as B cells.

Clinically, when examined for correlation with infectious 
complications, the studied T cell subset was elevated in patients 
who developed culture positive and short-term infections. Addi-
tionally, it correlated with indicators of infection and inflamma-
tion, such as CRP and WCC. HLA-G-expressing CD4+ T cells 
could therefore be used as a useful marker alongside currently 
used surrogate indicators of disease severity and adverse outcome 
in patients with AD and might have potential prognostic impli-
cations. Therapeutic effectiveness of HLA-G blockade using 
TTX-080, a monoclonal antibody targeting HLA-G, is currently 
underway in clinical trials of patients with solid tumours.49 In 
addition, combination therapy targeting HLA-G concomitantly 
with other immune CPIs has been suggested in non-responder 
patients with cancer to CPI monotherapy.50 However, early 
results from the current clinical trials are required before 
further consideration of this treatment strategy. Additionally, the 
frequency of circulating CD4+HLA-G+ T cells could be used as a 
potential predictor of the three newly identified clinical courses 
of AD.5 However, these findings require further investigations in 
larger patient populations with the view to better understand all 
three clinical courses of AD.

In addition to quantitative impairment in circulating T cells 
reported in AD, including AD-ACLF,51 our findings indicate 
that elevated proportions of the remaining T cells are typified 
by increased inhibitory receptor expression. Understanding the 
combination of the quantitative and qualitative impairments in 
the T cell compartment and its contribution to immuneparesis 
in chronic liver failure is of crucial importance in providing 
insights into potential therapeutic targets. Here, we report a 
potential mechanism of dysregulation in immune responsiveness 
in patients with AD governed by a CD4+HLA-G+CTLA-4+IL-
35+suppressive population associated with possible risk to infec-
tions through defects in the systemic adaptive immune system.
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