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Fluctuation spectra of large random dynamical
systems reveal hidden structure in ecological
networks
Yvonne Krumbeck1, Qian Yang2, George W. A. Constable 3 & Tim Rogers 1✉

Understanding the relationship between complexity and stability in large dynamical systems

—such as ecosystems—remains a key open question in complexity theory which has inspired

a rich body of work developed over more than fifty years. The vast majority of this theory

addresses asymptotic linear stability around equilibrium points, but the idea of ‘stability’ in

fact has other uses in the empirical ecological literature. The important notion of ‘temporal

stability’ describes the character of fluctuations in population dynamics, driven by intrinsic or

extrinsic noise. Here we apply tools from random matrix theory to the problem of temporal

stability, deriving analytical predictions for the fluctuation spectra of complex ecological

networks. We show that different network structures leave distinct signatures in the spec-

trum of fluctuations, and demonstrate the application of our theory to the analysis of eco-

logical time-series data of plankton abundances.
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‘W ill a large complex system be stable?’ asks the title of
Robert May’s seminal 1972 paper1 that threw fuel
on the fire of the complexity-stability debate and

popularised the use of random matrix theory (RMT) in theore-
tical ecology. At first sight, answering this question with mathe-
matics seems impossible. The huge number of interactions in
real-world ecosystems hampers any attempt to create a precisely
calibrated model, as the challenge of measuring all necessary
parameters seems insurmountable. What May pointed out was
that it might in fact not be necessary to know exact parameter
values; knowledge of their statistical distribution could be suffi-
cient. Combining the random model ecosystems proposed by
Gardner and Ashby2, with results of Ginibre3 in RMT, May
showed how complexity—measured in terms of the number of
species and the connectance of their interaction network—could
decrease ecosystem stability.

Although modelling ecosystems using random community
matrices has been criticised4,5—with some arguing that these
serve best as a null model for ecosystem structure6—this growing
field has continued to provide insights into the mechanisms that
promote ecosystem stability. For instance, Allesina and Tang7,8

generalised the community matrix model to account for different
interaction types, elucidating the important stabilising role of
predator-prey interactions. We now have quite a detailed view on
the extent to which high-level ecosystem information (such as
trophic9 or community10 structures) can be incorporated into the
RMT framework to give more accurate predictions of the stability
boundary.

The notion of stability referred to by May and these later works
is that of asymptotic linear stability of an equilibrium point.
While this definition is a natural mathematical choice, it belies the
rich array of interpretations of ‘ecological stability’ present in the
empirical ecological literature11. In order to make clear the dif-
ferences between these interpretations, Grimm and Wissel12

created an inventory for different types of stability measures used
in ecology. Some of these in particular are more attuned to the
measures favoured by empirical ecologists. One such measure is
‘temporal stability’, often described as the constancy of ecological
variables relative to their mean, which is commonly used as an
indicator for ecological stability13–20. In ref. 21, Suweis et al.
proposed to study the attenuation of perturbations as they pro-
pagate through ecological networks, introducing measures of
reactivity and localization. Taking a different approach, recently
Arnoldi et al.22 employed the term ‘variability’ to describe the
inverse of temporal stability in a random community matrix
model. In that work, they consider the scale of response to per-
sistent external (environmental) noise applied to an ecosystem.
While this is an important and useful measure, it does not capture
anything of the temporal characteristics of fluctuations in eco-
systems, which can drive a system away from equilibrium,
and thus are important precursors to linear and nonlinear
instabilities23.

In this paper, we seek to bridge empirical and theoretical
measures of stability by developing a theoretical framework for
the analysis of temporal stability of ecosystems. Our key object of
study is the ‘power spectral density’, a statistical measure that
captures the frequency and amplitude of noisy fluctuations in
time series (see Fig. 1 for examples). The relationship between
such power spectra and temporal notions of ecological stability is
multifaceted. Particular points of interest are the height of spec-
trum, which gives information about the magnitude of stochastic
fluctuations, the locations of non-zero peaks corresponding to
quasi-cyclic signals, or a peak at zero indicating baseline wander.
Moreover, the Fourier transform of the spectrum yields the
autocorrelation structure of the stochastic trajectories. We pro-
vide a brief guide to these concepts in the Methods section

'Interpreting the power spectral density in the context of temporal
stability', though in the main text we will refrain from ascribing
overly simplified interpretations to power spectra.

Beyond providing a more detailed view of temporal stability, an
investigation of power spectra yields a number of further
advantages. For instance, power spectra are readily computed
from empirical data and provide detailed information about
intrinsic fluctuations and (via the fluctuation dissipation
theorem24) response to external perturbations. Previous theore-
tical studies of power spectra in low-dimensional systems have
yielded important and sometimes surprising results in fields
including epidemiology, game theory, and ecology25–27. The
method is particularly powerful in explaining the emergence of
persistent quasi-cyclic oscillations driven by noise. Until now,
however, a major limitation of this theory has been its restriction
to models with very small numbers of interacting elements for
which the approach is analytically tractable with existing meth-
ods, while the applicability of the theory to larger systems is
limited by comparatively slow numerical schemes, and difficulty
parameterising large models. Here, by applying techniques from
the statistical physics of complex systems, we demonstrate the
possibility of deriving exact analytic formulae for the power
spectra of large random and noisy dynamical systems.

We apply our method to characterise the stochastic fluctua-
tions of species abundances in random Lotka–Volterra type
ecosystem models. As a result, we find that their temporal sta-
bility is universally characterised by a few key parameters,
including the proportion of predator-prey interactions and the
rate of population turnover. This result is a temporal analogue of
the famous Winger semi-circle law for random matrix eigenvalue
distributions28 and points to the wide applicability of the theory
we develop. Importantly, the universal character of the power
spectrum we derive is independent of the choice of random
variables in the model, and only depends on the aggregate
properties we identify.

Just as May’s RMT calculations are open to generalisations and
refinements, so too is our approach to temporal stability. We
illustrate this flexibility of the theory by incorporating trophic
structure to our ecosystem models. Subsequently, we discover a
distinct signature of this type of structure: the confinement of
fluctuations to a fixed band of frequencies. Taken together, these
results raise the exciting prospect of being able to draw conclu-
sions about the internal structure of an ecosystem through the
analysis of its fluctuations.

The paper is structured as follows. First, we demonstrate how
to compute the mean power spectral density of a large random
Lotka–Volterra system in the section ‘Interaction types deter-
mine fluctuation spectra’, showing how different dominant
interaction types result in distinct fluctuation power spectra. We
then show how to compute the spectrum for an individual
species within the large random ecosystem system in the section
‘Species fluctuations exhibit strong heterogeneity’, and further
generalise the method in the section ‘Trophic structure induces
fluctuation frequency gap’ to consider bipartite interaction net-
works, showing how a two-level trophic system can leave a
distinct fingerprint in the power spectrum of an ecosystem.
Readers interested in the potential of our results as a tool for
analysis of real-time series data may wish to jump to the section
‘Confronting RMT in theoretical ecology with time-series data’
which provides a proof of concept in this direction. Here we
explore an ecological time-series dataset of plankton abundances,
showing how our results provide a technique to infer the
structural details of real ecosystems. Full derivations of our
analytic results are provided in the Methods section, along with
detailed descriptions of the models that we use for demonstra-
tion throughout this paper.
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Results
Interaction types determine fluctuation spectra. Our approach
enables the computation of the power spectral density of fluc-
tuations in large random systems of a very general class; a full and
detailed derivation is given in the Methods. In the case of eco-
system stability, the dynamical system in question is that
describing the interactions of different species. Many modelling
choices are possible in this context. For clarity, we will focus here
on an established modelling paradigm—large Lotka-Volterra type
ecosystems—and explore the extent to which the nature of the
species interactions affects the shape of the fluctuation spectrum.

Following classic models of ecosystem dynamics, we consider
N species occupying a domain of size V, writing xi(t) for the
density of individuals of species i at time t. For large but finite V,
standard techniques (see Methods) allow us to describe the
change of the species densities by a set of stochastic differential
equations (SDEs) :

dxi
dt

¼ xi bi þ∑
N

j
αijxj

� �
þ 1ffiffiffiffi

V
p ηiðtÞ: ð1Þ

Here, the coefficients αij for i ≠ j describe the interaction
between species i and j, and the ηi(t) are Gaussian noise terms
with correlations hηiðtÞηjðt0Þi ¼ δðt � t0ÞBijðxÞ.

We parameterise the model as follows. For simplicity (and to
isolate the effect of interaction types) we model each species as
having the same birth rate bi≡ b and density-dependent mortality
rate αii≡−b. The other interaction coefficients αij are chosen at
random so that (i) each species interacts with an average of c
others (for each possible interaction we include it with probability
c/N, independent of all others), (ii) interactions have mean
strength Ejαijj ¼ μ and second moment Eα2ij ¼ σ2, (iii) the
correlation is controlled by the symmetry parameter
γ ¼ E½αijαji�=σ2 2 ½�1; 1�. Crucially, the full details of the
distribution of the parameters αij are not required, thanks to
the universality property of large random matrices29,30.

In the methods, we show how these rates can be derived from a
simple model of pairwise species interactions which can be
mutualistic, competitive, or predatory. The proportion of
predator-prey type interactions is tied to the symmetry parameter

γ. At γ=−1 all interactions are of the predator-prey type (αij=
−αji), at γ= 1 only purely mutualistic (αij= αji > 0) or compe-
titive (αij= αji < 0) are present, and between these extremes, there
is a random mix of interaction types.

With this choice of (random) parameters, each species density
will fluctuate around the scaled carrying capacity x�i ¼ 1, which,
following8, is stable provided b >

ffiffiffiffiffiffiffi
cσ2

p
ð1þ γÞ (we refer to31,32 for

stability and feasibility of equilibrium states with heterogeneous
species abundance distributions). Around this fixed point, species
in the stochastic system in Eq. (1) will exhibit approximately
linear fluctuations ξi, described by an Ornstein-Uhlenbeck
process of the form

dξ
dt

¼ Aξ þ ζðtÞ : ð2Þ

Here A is the Jacobian of Eq. (1), known as the community
matrix in the context of theoretical ecology, and ζ is an N-vector
of Gaussian white noise with correlation matrix B= B(x*). We
assume that the equilibrium point at x= x* is linearly
asymptotically stable (i.e. stable in the mathematical sense
described by May1) and now proceed to investigate its temporal
stability as characterised by the power spectra (see Methods
section Interpreting the Power Spectral Density in the Context of
Temporal Stability).

The power spectral density of fluctuations Φ(ω) is defined as
the Fourier transform of the covariance E½ξðtÞξðt þ τÞT �. For
multivariate Ornstein-Uhlenbeck processes one can show (see
e.g.33) that

ΦðωÞ :¼
Z 1

�1
e�iωτE ξðtÞξðt þ τÞ½ �dτ

¼ ðA� iωIÞ�1BðAT þ iωIÞ�1
:

ð3Þ

In the Methods we show how to apply random matrix theory
techniques to compute the power spectral density, via a complex
Gaussian integral representation of the above matrix equation.
The approach provides a general framework for computing the
fluctuations in large systems specified by random matrices A and
B. We derive an expression for the mean-field power spectral
density ϕðωÞ ¼ E½Φii� in terms of the resolvent function r.
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Fig. 1 Fluctuation spectra in predator-prey systems. Left: a mixed community of species with randomly assigned predation relationships. Right: a model
ecosystem with two trophic levels—200 predators and 800 prey species. In both cases fluctuations are illustrated via a typical single-species time series (ξ
(t), upper) and the mean power spectra (ϕ(ω), lower), where circles are simulation results, and solid lines our theory. Parameters are: Nx= 200,Ny= 800,
cx= 20, cy= 5, α= 10, b= 1, d= 1; full details of all simulations are found in Methods section.
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Specifically,

ϕ ¼ jrj2 E½Bii� þ 2ReðrÞcE½AijBij�
1� jrj2cE½A2

ij�
; ð4Þ

where expectation is taken only over the non-zero entries of A
and B, and r 2 C solves the self-consistent equation

1
r
¼ �E½Aii� þ iω� rcE½AijAji� : ð5Þ

This result holds for general random matrix models in which
interaction parameters are drawn from the same distribution for
all species pairs (and we later show how the method can be
extended for other model types with species-specific parameters
using a single-defect approximation or partitioned networks). For
the present case of our Lotka-Volterra model, the community
matrix coincides with the interaction matrix (that is Aij= αij). In
the methods, we derive the rules E½Bii� ¼ 2bþ cμ, E½AijBij� ¼ 0
for the statistics of the noise correlation matrix. To get a sense for
the information contained in Eq. (4), we explore the result for
several cases with varying interaction structures.

First consider a weak interaction limit where the difference
between species is rather small, so that σ2≪ 1. In this case we find
a simple Lorentzian spectral density:

ϕðωÞ ¼ 2bþ cμ

b2 þ ω2
þOðσ2Þ: ð6Þ

Fluctuations of this type are indicative of a highly stable system
in which the balance of interaction types γ has no influence. Next
let us consider a limit where the power spectral density shows
significant differences depending on the proportion of predator-
prey interactions within the community, in particular, focusing
on ecosystems that are near the stability boundary.

In the case of a system with predator-prey interactions only, we
have γ=−1 and the ecosystem is stable for all positive birth rates
b. Expanding in small b we find that fluctuations are of order 1/b,
but are almost completely confined to a low-frequency window. If
ω2 < 4cσ2 then

ϕðωÞ ¼ 2bþ cμ
2cσ2

1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4cσ2 � ω2

p
� cμ

2bþ cμ

� �
þOðbÞ; ð7Þ

with an order 1/ω tail outside this range. Note that Eq. (7) has the
shape of a quarter-circle, to be viewed as a natural counterpart to

the Wigner semi-circle law in classical random matrix theory28.
The result is illustrated in Fig. 1, left panel.

For a random mixture of interaction types with γ= 0 no
approximations are necessary as Eq. (4) simplifies to

ϕðωÞ ¼ 2bþ cμ

b2 � cσ2 þ ω2
: ð8Þ

The stability boundary here is given by b2= cσ2. The above
result therefore implies the emergence of a 1/ω2 divergence in the
power spectrum at low frequencies when such a system is close to
instability (see Fig. 2).

When only mutualistic or competitive interactions are present
(i.e. γ=+1), the full solution to Eq. (7) in this case is
complicated, but for stable systems appears qualitatively similar
to the result Eq. (8) above. Near the stability boundary, however,
we find another behaviour. When b2= 4cσ2, we find

ϕðωÞ ¼
ffiffiffi
2

p ð4
ffiffiffiffiffiffiffi
cσ2

p
þ cμÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cσ2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16cσ2ω2 þ ω4

p � ω2Þ
q � ð4

ffiffiffiffiffiffiffi
cσ2

p
þ cμÞ

2cσ2
: ð9Þ

In contrast to the previous case, this power spectrum exhibits a
pole of order 1=

ffiffiffiffi
ω

p
at low-frequency, followed by a 1/ω2 tail at

high frequency (see Fig. 2).
Between these results, we are able to see how the proportion of

predator-prey interactions in an ecosystem leaves a signature in
the fluctuation spectrum. When predator-prey interactions are
dominant, the shape of the spectrum is pulled towards a quarter
circle law (Fig. 1, left panel); when they are rare, the low-
frequency pole near instability changes its character (Fig. 2).

Species fluctuations exhibit strong heterogeneity. So far, we
have considered only the mean power spectral density of fluc-
tuations. The cavity method technology employed in the deri-
vation of Eq. (4) can also yield detailed information about the
fluctuation spectra of individual species in an ecosystem model.
Suppose one is interested in a focal species i, and has data on the
type and strength of interactions this species has with others in its
ecosystem, as well as an estimate of the large scale ecosystem
parameters appearing in Eq. (4). It is possible to make use of this
data in a ‘single defect approximation’ (SDA) scheme in which
one considers the fluctuations of species i when embedded in a
large unknown ecosystem.
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Fig. 2 Fluctuation spectra in systems with lower predator-prey densisty. Left: stable systems with γ= 0 (purple diamonds) and γ= 1 (green circles) have
similar fluctuation spectra, with a higher proportion of predator–prey interactions in the γ= 0 case associated with higher overall excitation. Right upper:
near instability a pole emerges at ω= 0, corresponding to baseline drift in marginally stable systems. Right lower: In log–log axes we see the different
nature of the pole for mixed (γ= 0, purple diamonds) communities compared with those with only symmetric interactions (γ= 1, green circles). For γ=−1,
see Fig. 1, left panel. Common parameters are N= 1000, c= 50, σ2= 0.5.
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In the Methods, we show how to derive an SDA approximation
ϕSDAi to the spectral density of fluctuations for species i, given by
the expression

ϕSDAi ¼
ϕMF∑i�jA

2
ij þ 2ReðrMFÞ∑i�jAijBij þ Bii

jAii þ iωþ �rMF∑i�jAijAjij2
; ð10Þ

where ϕMF and rMF are the mean-field power spectrum and
resolvent obeying Eq. (4).

In Fig. 3 we compare the average power spectral density of all
species with the spectra of individual species as computed directly
and via the SDA approximation. We immediately notice that the
mean-field power spectral density is often not representative of
individual species, which show surprisingly strong heterogeneity in
their fluctuation spectra. Another interesting feature of these results
is the presence of peaks in the power spectral density away from
zero for some species — this implies quasi-periodic fluctuations in
these populations that are not observed in the ecosystem as a whole.

Finally, we observed the curious feature that (for this model at
least) the total power of fluctuations appears approximately
conserved, meaning that those species which do not have large
fluctuations at low frequencies are the same as those with
unusually large fluctuations at higher frequencies. At present we
do not have an intuitive explanation for this behaviour,
highlighting the richness of non-obvious information present in
these complex power spectral densities.

Trophic structure induces fluctuation frequency gap. In the
above investigations, we have employed a simple ecosystem
model in which species interactions are assigned completely at
random. In the past fifty years of research into random matrix
ecosystem models, far more sophisticated and realistic models
have been developed. Let us now illustrate how our methods may
be applied to more detailed models using the example of eco-
systems with explicit trophic structure. Here we focus on a
bipartite predator-prey network as an example.

Consider a large model ecosystem composed of Nx predator
species and Ny prey species, writing xi and yj for the density of
predator species i and prey species j, respectively. With no prey-
prey or predator-predator interactions, the interaction structure is
bipartite. Each predator species has an extrinsic death rate d and

depends upon the consumption of prey for reproduction. This
consumption may come from a selection of cx different prey
species for each predator, with Rij > 0 giving the predation rate of
predator i on prey j. Conversely, each prey has birth rate b, but is
hunted by cy predators, where Nxcx=Nycy. The SDEs for the
predator and prey densities are given by

dxi
dt

¼ xi �d � xi þ∑
Ny

j
Rijyj

 !
þ 1ffiffiffiffi

V
p ηiðtÞ;

dyj
dt

¼ yj b� yj �∑
Nx

i
Rjixi

� �
þ 1ffiffiffiffi

V
p ηjðtÞ;

ð11Þ

where ηi,j(t) are Gaussian noise with
hηiðtÞ; ηjðt0Þi ¼ δijðt � t0ÞBijðx; yÞ. In the Methods we show how
these equations (and the specific form of Bij) are derived from an
individual-based model.

This model has an equilibrium state (x*, y*), around which
linear-order fluctuations will occur, analogously to Eq. (2) above.
We compute a community matrix of the form

A ¼ �x�I x�R

�y�RT �y�I

� �
; ð12Þ

where the first i= 1,…,Nx rows and columns represent the
predator species, and the remaining j=Nx+ 1,…,Nx+Ny rows
and columns correspond to the prey species. The noise matrix is
derived from the underlying individual-based model (see
Methods) and given by

B ¼ 2x�ðx� þ dÞI �x�y�R

�x�y�RT 2y�bI

� �
: ð13Þ

In the Methods we develop a general approach to computing
the power spectral density of large random systems with bipartite
structure such as this. The method requires explicitly keeping
track of the contributions associated to each species group and
their interactions. In the mean-field, this approach delivers a set
of equations (61) to be solved for the mean contributions to the
resolvent rx, ry, and to the power spectrum, ϕx, ϕy. Figure 4 shows
the shape of the power spectrum for predator and prey species in
this bipartite ecosystem. Surprisingly, we find that fluctuations are
mainly confined to a narrow window of frequencies, with a gap in
excited frequencies around zero. Examination of the system in Eq.
(61) allows us to determine the window of excited frequencies to
be bounded by the critical frequencies

ω± ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bd

1
cx
þ 1

cy
±

2ffiffiffiffiffiffiffifficxcy
p

 !vuut : ð14Þ

The contrast between the power spectral density of this two-
trophic-level model to that of a mixed ecosystem with predator-prey
interactions was illustrated in Fig. 1. In Fig. 4 we show the spectrum
in more detail, highlighting the band of excited frequencies predicted
by Eq. (14). In the present context, it means that observed time
series will not exhibit baseline wander and can therefore be
considered to have a higher long-term temporal stability than the
mixed ecosystems explored above (see section Interpreting the
power spectral density in the context of temporal stability).

Comparisons between simulations and our analytical results
shows another interesting feature: an order 1/N disagreement at
frequency ω= 1, which is outside of the excited range. This can
be explained by considering an effective two-species model in
which we consider only a single ‘average’ predator and prey pair.
This 2D system has an eigenvalue pair with unit imaginary part,
giving rise to quasi-cycle behaviour as documented in ref. 27. It is
important to note that this contribution is small relative to the
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Fig. 3 Heterogeneity in species fluctuations. Thin lines show power
spectral densities for individual species in a predator-prey ecosystem
model, computed using the single-defect approximation of Eq. (10). Thick
lines show the power spectral density for comparison the two species with
extremal fluctuations at low frequency, computed directly via Eq. (17); the
dashed line shows the mean power spectral density. Parameters are: N=
500, c= 20, γ=−1, σ2= 1/4/c, b= 0.2.
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rest of the spectral density, meaning that the bulk of fluctuations
of a structured ecosystem cannot be inferred from considering a
low-dimensional representative model.

Confronting RMT in theoretical ecology with time series data.
Although hugely influential in the field of theoretical ecology over
the last 50 years, traditional work on RMT has so far led to rather
limited empirically testable insights. The central issue is that while
many ecological considerations can be incorporated in a random
matrix model, each leads to a binary outcome; the system is either
stable or unstable to small perturbations. Thus testing the pre-
dictions of these models demands the time-intensive task of
measuring real species interaction networks (which are assumed
to be stable) and asking whether they indeed tend to be weakly
connected (as suggested by May1), have a dominance of predator-
prey interactions (as suggested by Allesina and Tang7), or satisfy
some other prediction of the theory. In contrast, the approach
presented in this paper offers the tantalizing prospect of directly

linking the ecological RMT framework with comparatively easy-
to-obtain time series data.

To trial the use of our methods in the analysis of real ecological
data, we have investigated a high-resolution time series dataset for
the abundance of coastal plankton species, taken over a period of
88 consecutive days34. In Fig. 5 we show the estimated empirical
mean power spectrum from the data (circles), compared to that of
the best fit Lotka-Volterra random ecosystem model according to
our theory. Full details of the data analysis and fitting are given in
the Methods. Examination of this fit reveals several qualitative
features of the implied ecological interactions.

First, we note that the best fit value for the interaction
symmetry parameter is γ= 0.81, implying an ecosystem in which
predator-prey interactions are scarce, and is more likely
dominated by competition. Trust in this finding is strengthened
by the fact that the fit is quite sensitive to this parameter; the
dashed line in Fig. 5 gives the best fit under the constraint γ < 0,
which performs poorly, especially for low frequency.
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Fig. 5 Fluctuation spectra in plankton species abundance.We plot the power spectral density of data taken from34 (blue circles) alongside that of a fitted
Lotka-Volterra random ecosystem model (solid line). Fitted parameters are b= 0.6643, cσ2= 0.1316, γ= 0.8078, data averaged over n= 3 samples
per day. Also shown is the best fit under the restriction γ < 0 (dashed line). The lower right panel shows the spectral boundary inferred from the fit (black
ellipse), along with the eigenvalues of a sample random community matrix for illustration.

Fig. 4 Fluctuation spectra of bipartite systems. The exact power spectral densities (dots) for predator species in a two trophic level model are computed
numerically from Eq. (17), and the corresponding mean power spectral density (solid line) are obtained by solving Eq. (61) (inset shows the prey species).
Excited frequencies are confined to a band (shaded) between critical frequences given in Eq. (14). The order 1/N peak at ω= 1 in the simulation result
relates to the high-level bipartite structure. Its location is predicted by a corresponding 2D system, also shown here for comparison (dashed line).
Parameters: Nx= 100,Ny= 200, cx= 20, cy= 10, α= 5, b= 1, d= 1.
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Interestingly, when viewed in logarithmic axes (Fig. 5 main
panel), the plankton abundance power spectrum appears to
exhibit a similar change of scaling between high and low
frequency ranges to that seen in Fig. 2 for the case of symmetric
interactions near instability. We can assess the closeness to
instability by considering the spectrum inferred from the best fit
model, as shown in the lower right panel of Fig. 5. The rightmost
edge (λmax ¼

ffiffiffiffiffiffiffi
cσ2

p
ð1þ γÞ � b � �0:0086) is very close to zero,

implying ecosystem dynamics which are close to instability. This
feature corresponds to the large peak at zero in the power spectral
density, which suggests that low frequency perturbations to the
overall species abundances are very slow to relax.

One feature of the spectrum not reproduced by the simple
models considered thus far is the smaller additional peak around
ω ≈ 1.5. This peak has a few possible explanations: an external
effect of some sort; possible secondary structure in the ecological
interaction network, which could manifest on a system wide scale
such as the trophic structure analysed in the previous section; or a
feature isolated to a smaller number of more dominant species. A
further limitation of the model used here is the assumption of
uniform species abundance; in reality, species abundances tend to
be distributed log-normally, with few species contributing to the
majority of ecosystem biomass. Incorporating such model
refinements are well-within the bounds of analytical tractability
for our approach (see, for instance32 and31); we hope and expect
the theoretical groundwork we have developed here will pave the
way for the investigation of such features in future studies.

In the above, we have illustrated the use of our methods to infer
details of the structure and stability of real ecosystems from time
series data, as well as to identify departures from the unstructured
assumptions of standard RMT models. Indeed, such departures
are present in many real world ecosystems, with important
consequences for the validity of any predictions made within the
standard RMT framework4. In contrast, RMT has recently found
renewed attention in the field of microbiome research, where it is
believed that the key conceit of standard RMT models (that
communities are unstructured) holds35. However in this field, the
spectre of model parameterization again raises its head.

In ref. 35, a species-interaction network presented in ref. 36 was
used to parameterize an RMT model and show that ecological
interactions in the microbiome tended to be weak and non-
cooperative. The species interaction network determined in ref. 36

was itself the result of fitting mouse intestinal microbiome
abundances to a deterministic generalized Lotka-Volterra model.
However, fully fitting this model required disturbing the mouse
microbiota away from its equilibrium state using antibiotics (S
fixed point species abundances are insufficient to parameterize an
S × S species interaction network, so data on non-equilibrium
transient trajectories were required). While such experimental
manipulation may be permissible for studying the microbiota of
model organisms such as mice, the ethical issues of such
experimentation in humans have raised questions about the
informativeness of temporal data for understanding microbial
communities such as the human gut microbiota37.

In contrast to the approach taken in ref. 35, our methodology
requires no external perturbation to a host’s microbiome, relying
as it does solely on the natural demographic fluctuations present
in any finite population. In addition, our approach allows the
RMT model itself to be directly parameterized through data,
rather than requiring the fitting of an intermediate model.

Discussion
In this study we have revisited the complexity–stability question
in theoretical ecology with a fresh perspective that develops a

random matrix theory approach to temporal stability as captured
by the power spectrum of fluctuations. We have applied our
techniques to calculate analytic formulae describing the mean
power spectra of large Lotka-Volterra ecosystems. We find the
fluctuations are described by just a few key parameters: the mean,
variance and correlation of entries of the community matrix and
noise correlator. We further expanded the method to investigate
the role of trophic structures in determining temporal stability,
demonstrating the flexibility of the method and usage across a
broader range of models. Finally we fitted our model to existing
time series data, that suggest a majority of competitive or
mutualistic interactions within plankton ecosystems. In short, our
approach allows us to link the large scale statistical properties of
interaction parameters with the emergent fluctuations in species
dynamics.

Amongst the many results that this promising technique grants
access to, several findings from our investigation are worth
recapping here. Part of the power of random matrix theory is that
it uncovers universal properties of large classes of systems of a
certain type. In the present case we find that, in analogy to the
famous Wigner semi-circle law, the details of the distributions of
matrix elements are unimportant beyond the handful of key
parameters identified. Our parameter γ, which controls the pro-
portion of predator-prey interactions (and hence the correlation
of off-diagonal elements in the interaction matrix) is found to be
of crucial importance. At one extreme, we find a semi-circular
spectral profile, at the other we find a pole at zero frequency
which has either 1/ω2 or 1=

ffiffiffiffi
ω

p
divergence, depending on the

symmetry of interactions. When an explicit trophic structure is
incorporated into the model, it was necessary to adapt our
method to general bipartite networks. Here, we found a gap in the
power spectral density, implying that this high-level structure
leads to greater long-term temporal stability. Finally, going
beyond these universal results for the mean spectrum, we find a
huge variability in fluctuations at the individual species level.
These are not visible within the bulk but are captured by a single
defect approximation, showing that some species may exhibit
quasi-cyclic oscillations even when no such signal is present in
the larger system.

In each model investigated in this paper, we have characterised
stochastic behaviour emerging on a macroscopic scale from the
statistical properties of the underlying microscopic interactions.
We emphasise that, as illustrated in our section on trophic levels,
the fluctuations observed in large scale systems with a certain
structure are likely to be substantially different from those of
small scale models previously investigated. The models presented
here have been chosen for simplicity and clarity, and they only
scratch the surface of what can be achieved with this method.
More realistic models might include a consideration of e.g. the
dynamical assembling process of ecosystems38, heterogeneous
turnover rates39, or explicitly spatial models where spatio-
temporal patterning may persist40.

From an ecological perspective, it is desirable to connect our
theoretical work to empirical investigations into ecosystem sta-
bility. In contrast to the traditional viewpoint of asymptotic linear
stability, our methods directly address a fundamental empirical
quantity—timeseries of species abundance. Beyond simply pro-
viding more detail as to the temporal dynamics of an ecosystem
around an equilibrium point, our method has also opened up the
exciting possibility of identifying the signature of a certain
interaction structures in the power spectrum of oscillations in
data gathered in the field. We fitted our model to a highly
resolved time series data set on a plankton ecosystem. We found
that the empirical data is indicative of an ecology dominated by
competitive and mutalistic interactions, with far fewer predator-
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prey interactions. This insight is consistent with recent results
that suggest that self-regulation (competition) and facilitation
(mutualism) are widespread in phytoplankton communities41.

In order to realise this vision, some important further work is
needed. Real ecosystems do not exist in a vacuum—we must con-
sider the role of the surrounding environment, including interac-
tions with external factors such as seasonal variation or changing
climate. Our theoretical approach encourages further work focused
on the application to data sets gathered in field studies with mod-
ifications more suitable for the method we presented.

Finally, we wish to emphasise that—despite the ecological focus
in this paper—the models of the kind we analysed are ubiquitous
in many different fields, and the methods we use throughout the
paper offer a general framework for large dynamical systems with
random variables. Models of large interaction networks are
also used in fields as varied as deep learning42, finance43,
biochemistry44 and neuroscience45. All of these systems depend
on a high number of parameters that are often difficult to mea-
sure empirically. Our method provides a possibility to compute
the power spectral density and gain insight into the model, which
relies only on statistical meta parameters.

Methods
Power spectral density for a general Ornstein–Uhlenbeck process. In the
following we develop a method to compute the power spectral density of N-
dimensional Ornstein–Uhlenbeck processes,

dξ
dt

¼ Aξ þ ζðtÞ; ð15Þ

where ζ(t) is an N-vector of Gaussian white noise with correlations
E½ζðtÞζðt0ÞT � ¼ δðt � t0ÞB. The matrix A determines the mean behaviour of ξ
and is considered to be locally stable, i.e. all eigenvalues of A have negative real
part. Using the matrices A and B one can fully determine the power spectral
density of fluctuations for the Ornstein-Uhlenbeck process.

We are interested in the case that the coefficients Aij and Bij are derived from a
complex network of interactions with weights drawn at random, possibly with
correlations. This framework encompasses a very general class of models with a
wealth of real-world applications including but not limited to the ecological focus
we have here. The method we describe exploits the underlying network structure of
A and B to deduce a self-consistent scheme of equations whose solution contains
information on the power spectral density.

We start with the definition of the power spectral density Φ(ω) as the Fourier
transform of the covariance E½ξðtÞξðt þ τÞT � at equilibrium,

ΦðωÞ ¼
Z 1

�1
e�iωτE½ξðtÞξðt þ τÞ�dτ: ð16Þ

From ref. 33 on multivariate Ornstein–Uhlenbeck processes, we know that the
power spectral density can also be written in the form of the matrix equation,

ΦðωÞ ¼ ðA� iωIÞ�1BðAT þ iωIÞ�1
: ð17Þ

In practice, this equation is difficult to use for large systems as large matrix
inversion is analytically intractable and numerical schemes are slow and sometimes
unstable. We take an alternative route by recasting Eq. (17) as a complex Gaussian
integral reminiscent of problems appearing in the statistical physics of disordered
systems. Our approach in the following is to treat ω as a fixed parameter and drop
the explicit dependence from our notation. We begin by writing

ΦðωÞ ¼ jA� iωIj2
πN jBj

Z
C
e�uyΦ�1uuuy

YN
i¼1

dui : ð18Þ

Simplification of the integrand is achieved by unpicking the matrix inversion in
the exponent via a Hubbard-Stratonovich transformation46,47. To this end we
recast the system in the language of statistical mechanics by introducing N
complex-valued ‘spins’ ui and N auxiliary variables vi, with the ‘Hamiltonian’

Hðu; vÞ ¼ �uyðA� iωÞv þ vyðA� iωÞyuþ vyBv : ð19Þ
Introducing a bracket operator

h� � � i :¼
R
Ce

�Hðu;vÞð� � � ÞdudvR
Ce

�Hðu;vÞdudv
; ð20Þ

we can obtain succinct expressions for the power spectral density Φ= 〈uu†〉 as well

as the resolvent matrix R ¼ ðiω� AÞ�1 ¼ huvyi. Thus we may write,

Φ ¼ 1
Z
Z

C
e�Hðu;vÞuuy

YN
i¼1

duidvi ; ð21Þ

where Z ¼ jA� iωIj2=π2N .
This construction may seem laborious at first, but it unlocks a powerful

collection of statistical mechanics tools, including the ‘cavity method’.
Originally, the cavity method has been introduced in order to analyse a model
for spin glass systems48,49. Further applications of the method include the
analysis of the eigenvalue distribution in sparse matrices50–52. We will exploit
the network structure in a similar fashion in order to compute the power spectral
density.

In our analysis, we find that it is convenient to split the Hamiltonian in Eq. (19)
into the sum of its local contributions at sites i, Hi, and contributions from
interactions between i and j, Hij ,

H ¼ ∑
i
Hi þ ∑

i�j
Hij : ð22Þ

These terms can be decomposed as Hi ¼ wy
i χiwi and Hij ¼ wy

i χijwj , where we

introduce the compound spins wi ¼ ðui; viÞT and transfer matrices,

χi ¼
0 Aii þ iω

�Aii þ iω Bii

� �
;

χij ¼
0 Aji

�Aij Bij

 !
:

ð23Þ

Let us focus on the power spectral density of a particular variable ξi, obtained
from the diagonal element ϕi=Φii. For this we compute the single-site marginal fi
by integrating over all other variables,

f iðwiÞ ¼
1
Z
Z

C
e�HY

j≠i

dwj: ð24Þ

Alternatively, ϕi can be obtained as the top left entry of the covariance matrix
Ψi ¼ hwiw

y
i i. We write the covariance matrix as the integral,

Ψi ¼
Z

C
f iðwiÞwiw

y
i dwi ; ð25Þ

which could also be expressed in terms of a Gaussian integral,

Ψi ¼
1

π2jΨij
Z

C
e�wy

i Ψ
�1
i wiwiw

y
i dwi : ð26Þ

By comparing Eqs. (25) and (26) we find that

f iðwiÞ ¼
1

π2jΨij
e�wy

i Ψ
�1
i wi : ð27Þ

We now insert Eq. (22) into Eq. (24) and obtain,

f iðwiÞ ¼
1

π2jΨij
e�Hi

Z
C

Y
i�j

e�Hij�Hji f ðiÞj dwj

� �
; ð28Þ

where we write f ðiÞj for the ‘cavity marginals’,

f ðiÞj ðwjÞ ¼
1

ZðiÞ

Z
C
e�HðiÞ Y

k≠i;j

dwk : ð29Þ

In essence, the above discussion amounts to organising the 2N integrals in
Eq. (21) in a convenient way, with the advantage of providing a simple intuition for
the role of the underlying network. The superscript (i) is used to indicate that the
quantity corresponds to the cavity network where node i has been removed. We
will further use this notation for the ‘cavity covariance matrix’ ΨðiÞ

jl introduced in
the following.

Next we perform the integration in Eq. (28) and compare to the form in
Eq. (27). We thus obtain a recursion formula for the covariance matrix Ψi and the
cavity covariance matrices ΨðiÞ

jl ,

Ψi ¼ χi �∑
i�j
i�l

χijΨ
ðiÞ
jl χ li

 !�1

; ð30Þ

where the notation i ~ j indicates that we sum over nodes j connected to node i.
Unless there is some specific structure underlying the network, we assume that
most real world cases have a ‘tree-like’ structure from the local view point of a
single node i. Hence, it is highly unlikely that the nodes j and l are nearby in the
cavity network where node i is removed, and thus ΨðiÞ

jl only gives non-zero
contributions if j= l. We therefore reduce Eq. (30) and obtain for the covariance
matrix,

Ψi ¼ χi � ∑
i�j

χijΨ
ðiÞ
j χ ji

� ��1

: ð31Þ
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Similarly, the cavity covariance matrix obeys the equation,

ΨðiÞ
j ¼ χ j � ∑

j�k;k≠i
χjkΨ

ðjÞ
k χkj

� ��1

: ð32Þ

Here we use that Ψ(i, j)=Ψ(j) when the nodes i and k are not connected. In
other words, removing node j from the cavity network where node i is missing, has
the same effect as removing it from the full network. The system in Eq. (31)
describes a collection of nonlinear matrix equations that must be solved self-
consistently.

For networks with high enough connectivity (and to good approximation even
with modest connectivity), the removal of a single node does not affect the rest of
the network, as its contribution is negligible compared to the full system. Hence the
system in Eq. (31) can be reduced to a smaller set of equations approximately
satisfied by the matrices Ψi:

Ψi � χi � ∑
i�j

χijΨjχji

� ��1

: ð33Þ

The power spectral density ϕi can be obtained as the top left entry of Ψi.
In order to progress further, we now consider specific approximations that help

us compute the power spectral density. First, we take a mean-field approach in
order to obtain the mean power spectral density for all nodes part of the network;
we then use the result for the mean-field in order to compute a close
approximation to the local power spectral density of a single node. Later, we adapt
the method to partitioned networks where nodes belong to different types of
connected groups.

Mean field. For the following, we assume that all agents in the system behave the
same on average. In practice, the terms governed by self-interactions Aii are drawn
from the same distribution for all agents. Similarly, the terms including Bii are
governed by one distribution. Interaction strengths and connections with other
nodes in the network are also sampled equally for all agents (we have explored a
large Lotka-Volterra ecosystem as an example of such a network). In the mean-field
(MF) formulation we assume that the mean degree and excess degree are
approximately equal, and replace all quantities in Eqs. (31) and (32) with their
average. Ψi=ΨMF ∀ i. We then obtain the following recursion equation,

ΨMF ¼ E½χi� �E ∑
i�j

χijΨ
MFχji

� �� ��1

: ð34Þ

In order to solve this equation, we parameterise,

ΨMF ¼ ϕ r

��r 0

� �
; ð35Þ

where the top left entry ϕ corresponds to the mean power spectral density, and we
introduce r as the mean diagonal element of the resolvent matrix R. Finally by
inserting the ansatz of Eq. (35) into Eq. (34) we obtain,

ϕ r

��r 0

� ��1

¼ 0 E½Aii� þ iω

�E½Aii� þ iω E½Bii�

� �

þ c
0 �rE½AijAji�

�rE½AijAji� ϕE½A2
ij� þ ðr þ �rÞE½AijBij�

 !
;

ð36Þ

where c is the average degree (i.e. number of connections) per node. Moreover, the
expectations in the second term are to be taken over connected nodes i ~ j (i.e. non-
zero matrix entries).

From Eq. (36) above, we obtain the equations,

ϕ

jrj2 ¼ E½Bii� þ c ϕE½A2
ij� þ 2ReðrÞE½AijBij�

� �
;

�r

jrj2 ¼ �E½Aii� þ iω� crE½AijAji�:
ð37Þ

We solve the second equation in Eq. (37) for r and write the mean power
spectral density in terms of r,

ϕ ¼ jrj2 E½Bii� þ 2cReðrÞE½AijBij�
1� cjrj2E½A2

ij�
;

r ¼ 1
2cE½AijAji�

�E½Aii� þ iω
	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�E½Aii� þ iωÞ2 � 4cE½AijAji�

q i
ð38Þ

This equation informs the first part of the results presented in the main text.

Single defect approximation. The single defect approximation (SDA) makes use of
the mean-field approximation for the cavity fields, but retains local information
about individual nodes. We parameterise similarly to Eq. (35) for a single indivi-
dual. Moreover, we replace all other quantities with the respective mean-field

approximation. Specifically, we obtain

ϕSDAi rSDAi

��rSDAi 0

 !�1

¼ 0 Aii þ iω

�Aii þ iω Bii

� �

þ∑
i�j

0 �rMFAijAji

�rMFAijAji ϕMFA2
ij þ ðrMF þ �rMFÞAijBij

 !
:

ð39Þ

We solve this equation for ϕSDAi ; rSDAi , which delivers

ϕSDAi

jrSDAi j2 ¼ ϕMF ∑
i�j

A2
ij þ 2ReðrMFÞ∑

i�j
AijBij þ Bii ;

rSDAi ¼ Aii þ iωþ �rMF ∑
i�j

AijAji

� ��1

:

ð40Þ

Partitioned network. Previously we assumed that all nodes in a network are
interchangeable in distribution. However, many real-world applications feature
agents with different properties, imposing a high-level structure on the network.
We realise this by partitioning nodes into distinct groups that interact with each
other (see the section Trophic structure model for a simple example).

In order to handle different connected groups we make use of the cavity method
as in Eqs. (31) and (32). In particular, we split the sum in the second term on the
right-hand side of these equations into contributions from each group in the
partitioned network. Let M denote the number of subgroups Vm in a partitioned
network then we write,

Ψi ¼ χi �∑
M

m
∑
i�j

j2Vm

χijΨ
ðiÞ
j χ ji

0
@

1
A

�1

;

ΨðiÞ
j ¼ χj �∑

M

m
∑
j�k

k2Vm

χjkΨ
ðjÞ
k χkj

0
@

1
A

�1

:

ð41Þ

Similar to the previous sections we replace all quantities with a mean-field
average ΨMF

m , but for each group separately. Hence we obtain M equations of the
form

ΨMF
i ¼ E½χi� �E ∑

M

m
∑
i�j

j2Vm

χijΨ
MF
m χji

0
@

1
A

2
4

3
5
�1

: ð42Þ

In order to compute the mean power spectral density for different groups
separately, we use a parameterisation as in Eq. (35) for each group. Therefore we
have,

ΨMF
m ¼ ϕm rm

��rm 0

� �
; ð43Þ

for all m= 1,…,M. This delivers 2M equations to solve for all rm and ϕm.
Numerically this is straightforward, although algebraically long-winded for the
general case. However, the equations simplify for special cases. In the section
Trophic structure model we demonstrate this method for a bipartite network where
a lack of intra-group interactions simplifies the analysis.

Large Lotka-Volterra ecosystem
Model description. First, we define the framework for a general Lotka-Volterra
ecosystem with N species and a large but finite system size V≫ 1. Note that this
parameter can be interpreted as a scaling factor for the fluctuation amplitude and
thus, larger systems exhibit higher stability and quantitative reliability for our
analytic results. Let Xi denote the number of individuals and xi= Xi/V the density
of species i= 1,…,N. We start from the following set of reactions that define the
underlying stochastic dynamics of the system:

Xi !
bi

2Xi ðbirthÞ
2Xi !

Rii
Xi ðdeathÞ

Xi þ Xj !
Rij

2Xi þ Xj ðmutualismÞ;
Xi ðcompetitionÞ;
2Xi ðpredationÞ:

8><
>:

ð44Þ

The self-interactions are governed by the birth rate bi > 0 and density-
dependent mortality rate Rii > 0. Furthermore, we define three interaction types
between species i and j, namely mutualism, competition and predation. In the case
of mutualistic interactions, both species benefit from each other, whereas
competition means that both species have a higher mortality rate, depending on the
density of the other species. For predator-prey pairs, one predator species benefits
from the death of a prey species. The predator and prey species are chosen
randomly, such that species i is equally likely to be a predator or prey of species j.

With probability Pc we assign an interaction rate Rij > 0 to the species pair (i, j),
and with probability 1− Pc there is no interaction between species i and j (i.e. Rij=
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0). In other words, each species has on average c=NPc interaction partners. The
reaction rates are considered to be i.i.d. random variables drawn from a half-
normal distribution jN ð0; σ2Þj, where we write for the mean reaction rate μ ¼
E½Rij� ¼ σ

ffiffiffiffiffiffiffiffi
2=π

p
and raw second moment σ2 ¼ E½R2

ij�. For each interaction pair,
the interaction type is chosen such that the proportion of predator-prey pairs is
p∈ [0, 1], and all non-predator-prey interactions are equally distributed between
mutualistic and competitive interactions (i.e. the overall proportion of mutualistic/
competitive interactions is 1/2(1− p)). Lastly, we define the symmetry parameter
γ= 1− 2p, where γ=−1 if all interactions are of predator-prey type (p= 1), and
similarly γ=+1 if there are no predator-prey interactions (p= 0). In a mixed case
where predator-prey and mutualistic/competitive interactions have equal
proportion (p= 1/2), we have γ= 0. Later we will see that γ is equivalent to the
correlation of signed interaction strengths.

In the limit V→∞, the dynamics of the species density xi obey the ordinary
differential equations,

dxi
dt

¼ xi bi þ∑
N

j
αijxj

� �
; ð45Þ

where αij are the interaction coefficients with ∣αij∣= ∣αji∣= Rij. The signs of the
interaction coefficients are determined by the type of interaction between species i
and j. For mutualistic interactions we have αij= αji > 0, and αij= αji < 0 for
competitive interactions. In the case of predator–prey interactions the coefficients
have opposite sign αij=−αji. Hence the symmetry parameter as described above is
given by the correlation of interaction coefficients γ ¼ E½αijαji�. Furthermore, in
order to ensure bounded species densities, we require negative self-interactions
αii=−Rii < 0.

If species live in isolation (i.e. when αij= 0 ∀ i ≠ j), we see that the densities
approach the ‘effective’ carrying capacity Ki=−bi/αii. For the following
computations we consider a large Lotka-Volterra system. Since we are only
interested in the effects of interactions between species, we assume that all self-
interactions are approximately equal. Thus we write for the birth rate bi= b and
mortality rate αii=−b. This gives the effective carrying capacity K= 1 for all
species.

The fixed point x* at the deterministic equilibrium state is given by,

x�i ¼ 1þ∑
j≠i
αijx

�
j : ð46Þ

We assume a random mixture of mutualistic and competitive interactions with
equal proportions, and therefore the interaction coefficients αij have zero mean ( ∀
i ≠ j). Furthermore, we postulate that for large ecosystems where N→∞, the
equilibrium state x�i ¼ E½x�i � � x� . Hence we obtain the expected equilibrium
density x*= 1 for all species i. Note that the following computations are valid for
any known fixed point x*, and our assumptions are for mathematical simplification
only. The results are independent of the particular equilibrium configuration, as
long as a stable equilibrium can be measured and extracted from data (we discuss a
few caveats where we apply our method to time series data from a plankton

ecosystem). This assumption allows us to write the Jacobian matrix for a
linearisation around the equilibrium state, with elements,

Jiijx¼x� ¼ αii ¼ �b;

Jijjx¼x� ¼ αij:
ð47Þ

In other words, the community matrix of a large Lotka-Volterra system as
described above has the same form as the interaction matrix, i.e. Aij= αij. The local
stability of such community matrix A is given by the elliptic law7,8. It states that
with high probability all eigenvalues of the random matrix A are distributed on an
ellipse in the complex plane, centered at (−b, 0) on the real axis. Thus for a stable
matrix we require all eigenvalues to be negative, and hence the horizontal semi-axis
of the ellipse determines the allowed range for the centre. It follows the stability
criterion,

ffiffiffiffiffiffiffi
cσ2

p
ð1þ γÞ< b; ð48Þ

with the average number of connections c per species, and the correlation
γ ¼ E½AijAji�. For a random community matrix (i.e. γ= 0), we recover the stability

criterion that has been proven by May1,
ffiffiffiffiffiffiffi
cσ2

p
< b. If γ < 0, where the proportion of

predator-prey type interactions is larger, the horizontal semi-axis of the ellipse
becomes smaller. In other words, the stability criterion relaxes for predator-prey
interactions. For γ=−1 (i.e. Aij=−Aji ∀ i, j), all interactions are of predator-prey
type and all eigenvalues become purely imaginary. Therefore the stability criterion
becomes 0 < b, as the ellipse stretches vertically into the imaginary plane. The
opposite is true for mutualistic/competitive interactions (i.e. γ=+1), where
eigenvalues are distributed on an ellipse with large horizontal radius along the real
axis. Thus it is more likely that some eigenvalues have positive real part and the
system destabilises. We choose the parameter b for each case, such that the stability
criteria are fulfilled.

For a large but finite system size V, we write the stochastic differential
equations,

dxi
dt

¼ xi bþ∑
N

j
αijxj

� �
þ 1ffiffiffiffi

V
p ηiðtÞ; ð49Þ

where ηi(t) are Gaussian random variables with hηiðtÞ; ηjðt0Þi ¼ δðt � t0ÞBij . The
noise matrix B can be obtained from the reactions that determine the process. The
diagonal elements are given by the self-interactions and total interaction from all
other species, and the off-diagonal elements depend on the type of interaction
between species i and j. We assume that only predator-prey type interactions
contribute to the covariance of species fluctuations (i.e. that only predator-prey
interactions involve the simultaneous change in abundance of a species pair).

Fig. 6 Example of a bipartite predator–prey network. Here we have nx= 4 predators with cx= 3 prey each, and ny= 6 prey with cy= 2 predators each.
The bold lines illustrate the connections to the focal node before and after removing a node from the network. Predator nodes (black) only have local
contributions from prey nodes (white) and vice versa. In the mean-field approximation for the power spectral density, these contributions are replaced by
the average of each group.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23757-x

10 NATURE COMMUNICATIONS |         (2021) 12:3625 | https://doi.org/10.1038/s41467-021-23757-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Therefore, we write

BiiðxÞ ¼ xi bþ ∑
N

j¼1
Rijxj

� �
;

BijðxÞ ¼
�Rijxixj if αij ¼ �αji;

0 else:


 ð50Þ

We next linearise around the fixed point to obtain a new equation for the
fluctuations, ξ ¼ ffiffiffiffi

V
p ðx � x�Þ, which has the form of an Ornstein-Uhlenbeck

process as defined in Eq. (15). Recall that in our simplified model the equilibrium
abundance x*= 1 (note however, that in general the entries of the noise matrix B
depend on the particular fixed point of a given system). Therefore we write for the
noise matrix evaluated at the fixed point

Biiðx�Þ ¼ 2bþ cμ;

Bijðx�Þ ¼
�Rij if αij ¼ �αji;

0 else;


 ð51Þ

where μ is given as the mean (over non-zero entries) reaction rate
μ ¼ E½Rij� ¼ σ

ffiffiffiffiffiffiffiffi
2=π

p
.

Computing the power spectral density. Let us now compute the mean power spectral
density ϕ of the process described above using Eq. (38) as starting point. We
replace the necessary quantities that we obtain from the community matrix A and
noise matrix B as defined in the previous section. In particular, we have the
expected diagonal elements of the community matrix E½Aii� ¼ �b, and the noise
matrix E½Bii� ¼ 2bþ cμ. Moreover the raw second moment of the non-zero
interactions is given by E½Aij� ¼ σ2 and the correlation E½AijAji� ¼ γσ2. We use
that E½AijBij� ¼ 0 8i; j since the off-diagonal elements of the noise matrix are only
non-zero if there is a predator-prey interaction between species i and j. However,
the elements of Aij have opposite signs in the case of predator-prey pairs and thus
sum to zero.

Plugging in these quantities into Eq. (38) we obtain,

ϕ ¼ jrj2 2bþ cμ

1� jrj2cσ2 ;

r ¼ 1
2cγσ2

bþ iω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ iωÞ2 � 4cγσ2

q� �
:

ð52Þ

In the main text, we explore the theoretical ecological consequences of this
result.

Trophic structure model
Model description. In the following we define a model analogous to the one
described in the previous section. For a large but finite system size V we write the
model in terms of a stochastic process. Previously we allowed for different types of
interactions, however, in this model we only focus on predator-prey interactions.
More specifically, the interaction network is partitioned into Nx predator species
and Ny prey species, where N=Nx+Ny is the total number of species. We assume
that predators only interact with prey and vice versa (i.e. we assume no inter-
species interactions within the groups of predators or prey) as illustrated in Fig. 6.
Moreover, each predator and prey species interacts with themselves (density-
dependent mortality).

In the previous model we assigned the same birth rate to all species in the
ecosystem. Here we assume that predators decline at rate d in absence of prey, and
b is the birth rate of prey species. For simplicity, we assume that d, b are fixed
quantities, equal for all predators and prey respectively. Furthermore, Rij is the
interaction rate between predator i and prey j. Each predator species has a fixed
number of prey cx and each prey species has a fixed number of predators cy, such
that Nxcx=Nycy. The parameters cx, cy can be interpreted as outgoing degrees of
predator and prey nodes respectively. Connections between predators and prey are
then wired randomly. The interaction strength is set to Rij= α, and considered
equal for all predator-prey interactions (analogous to a mean reaction rate). Where
there is no interaction between species, the interaction rate is simply set to zero.
Note that this means that the total sum of interaction strength is constant αcx and
αcy for all predator and prey species respectively. In contrast to the previous model,
now only the network structure contributes to the randomness of the system.

Let xi denote the density of predator species i= 1,…,Nx, and yj the density of
prey species j= 1,…,Ny. In the deterministic limit where V→∞ we then write the
following ODEs,

dxi
dt

¼ xi �d � xi þ ∑
Ny

j¼1
Rijyj

 !
;

dyj
dt

¼ yj b� yj � ∑
Nx

i¼1
Rjixi

� �
:

ð53Þ

Given the fixed number of connections cx, cy and interaction strength α, we can
simplify the ODEs to two equations for the average predator and prey densities,

dx
dt

¼ x �d � x þ cxαy
� �

;

dy
dt

¼ y b� y � cyαx
� �

:

ð54Þ

In the limit of large N, the equilibrium state of the system converges to the
average quantities obtained from this reduced form. The biologically relevant
equilibrium states for this system are given by the trivial fixed points (x*, y*)=
(0, 0), (0, b), and the non-trivial fixed point,

x� ¼ cxαb� d
cxcyα2 þ 1

;

y� ¼ cyαd þ b

cxcyα2 þ 1
:

ð55Þ

Next, we write the Jacobian matrix for a linearisation around the non-trivial
fixed point. The community matrix takes the form,

A ¼ �x�I x�R

�y�RT �y�I

� �
; ð56Þ

where the first i= 1,…,Nx rows and columns represent the predator species, and
the remaining j=Nx+ 1,…,Nx+Ny rows and columns correspond to the prey
species.

For a large but finite system size V we write the corresponding stochastic
differential equations,

dxi
dt

¼ xi �d � xi þ∑
Ny

j
Rijyj

 !
þ 1ffiffiffiffi

V
p ηiðtÞ;

dyj
dt

¼ yj b� yj �∑
Nx

i
Rjixi

� �
þ 1ffiffiffiffi

V
p ηjðtÞ;

ð57Þ

where ηi,j(t) are Gaussian noise with hηiðtÞ; ηjðt0Þi ¼ δijðt � t0ÞBij . The noise matrix
is given by the self- and total interactions on the diagonal, and the interactions
between predators and prey on the off-diagonal. We therefore write,

B ¼ 2x�ðx� þ dÞI �x�y�R

�x�y�RT 2y�bI

� �
: ð58Þ

Again, this allows us to write the dynamics in form of an Ornstein-Uhlenbeck
process as defined in Eq. (15).

Computing the power spectral density. In the following, we use features of the
bipartite interaction network. For instance, all nodes that are connected to e.g. node
xi, will be prey nodes yj, and thus are not connected with each other (see Fig. 6).
This allows us to write the following recursion formulas for the mean power
spectral densities according to Eq. (42),

Ψ�1
x ¼ E½χi� �E ∑

Ny

i�j
χijΨyχji

" #
;

Ψ�1
y ¼ E½χj� �E ∑

Nx

j�i
χjiΨxχij

� �
:

ð59Þ

Recall that the top left entries of Ψx and Ψy deliver the mean power spectral
densities for predators ϕx and prey ϕy respectively. For the bipartite model, the
helping matrices χi, χij (as defined in Eq. (23)) are given by,

χx ¼
0 �x þ iω

x þ iω 2xðx þ dÞ

� �
;

χy ¼
0 �y þ iω

y þ iω 2yb

� �
;

χxy ¼
0 �αy

�αx �αxy

� �
; χyx ¼

0 αx

αy �αxy

� �
:

ð60Þ

Inserting and writing out Eq. (59) gives,

ϕx rx
��rx 0

� ��1

¼ 0 �x þ iω

x þ iω 2xðx þ dÞ

� �

þ α2cx
0 ��ryxy

ryxy ϕyx
2 � ðry þ �ryÞx2y

 !
;

ϕy ry
��ry 0

 !�1

¼ 0 �y þ iω

y þ iω 2yb

� �

þ α2cy
0 ��rxxy

rxxy ϕxy
2 þ ðrx þ �rxÞxy2

� �
;

ð61Þ

where cx, cy are the number of connections per predator and prey species
respectively. Analogous to Eq. (38) we now derive a system of equations and solve
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for rx, ry and ϕx, ϕy. In the main text we describe the features of the power spectral
density deduced from this system of equations.

Interpreting the power spectral density in the context of temporal stability.
For orientation, we here provide some interpretation of the power spectral density
in the context of temporal stability. Essentially when we talk about temporal sta-
bility, we can be referring to one of two measures. The first is how far stochastic
trajectories tend to stray from their equilibrium value over long time horizons. We
refer to this as ‘variability’20. The second is how quickly population abundances
tend to change over finite time horizons. We will characterise this by the ‘temporal
autocorrelation’.

The variability can be characterised by the variance in time-averaged
trajectories around the mean22. For a system such as Eq. (2), which we recall can be
a linear approximation for a nonlinear system such as Eq. (1), we find that ξ is
normally distributed with zero mean and a covariance matrix, Σ, that solves the
following Lyapunov equation53;

AΣþ ΣAT þ Bðx�Þ ¼ 0: ð62Þ

The stationary distribution of ξ is then PstðξÞ ¼ N ð0;ΣÞ. For instance, in the
left panels of Fig. 7, we show stochastic trajectories for two different systems, with
standard deviations marked by black dashed lines. Meanwhile, the marginal
normal distribution for these trajectories is plotted in the inset of the right panels of
Fig. 7. A system can then be said to be ‘less stable’ (in a temporal sense) if it has a
greater variability. A consideration of the solutions to Eq. (62) shows that this
measure of temporal stability is highly correlated with asymptotic stability; less

stable deterministic systems tend to have stochastic counterparts with higher
variance around equilibrium states.

Despite the fact that the trajectories in Fig. 7 have the same variance (see black
dashed lines in left panels and inset plots in right panels) it is clear that they have
very different temporal structure. While these differences are entirely masked by the
measure of variability (which time-averages out the temporal structure), such
differences are captured by the power-spectral density (see Fig. 7, right panels). For
instance, the peak at ω ≈ 0.3 in the power spectrum in the upper right hand panel
indicates that the trajectories in the upper left panel exhibit quasi-cycles (i.e. have a
typical frequency, see inset), while the peak at ω= 0 at following decay of the power
spectrum in the middle right hand panel indicates that the trajectories in the middle
left panel do not exhibit quasi-cycles (i.e. do not have a typical frequency, see inset).

In the context of temporal stability, the relationship between the power spectra
and the autocorrelation function 〈ξ(t)ξ(t− τ)〉 is of particular importance. By the
Wiener-Khinchin theorem, we know that the autocorrelation function is given by
the Fourier transform of the power spectrum. This is shown in the bottom panel of
Fig. 7. The autocorrelation of the trajectory in the upper panels decays rapidly with
time. In contrast, the autocorrelation of the trajectory in the middle panel decays
more slowly. This can be clearly seen in the inset trajectory plots (left hand panels,
top and middle). Thus we see that a distinct measure of temporal stability exists
that is more appropriate over shorter time horizons; a system can be said to be ‘less
stable’ over finite times if it has a more rapidly decaying autocorrelation function.
This measure of temporal stability is more weakly correlated with asymptotic
stability than its counterpart, variability, as it is affected by the magnitude
imaginary parts of the system’s eigenvalues (rather than their real parts, as in
asymptotic stability).

Fig. 7 Example time series and corresponding fluctuation spectra for illustration. Left panels: Examples of stochastic trajectories with 0 means indicated
by solid lines and the standard deviations indicated by dashed lines. Insets show the same trajectories over a smaller time-window. Right panels:
Corresponding power-spectral densities of the trajectories in the left hand panels. Insets show histograms of the corresponding stochastic trajectories,
overlaid by the theoretical stationary distribution (black dashed line). Bottom panel: The temporal autocorrelation of the stochastic trajectories in the left
hand panels can be obtained as the Fourier transform of the corresponding power spectra in the right hand panels.
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Figure details
Figure 1, left panels. A large random Lotka-Volterra ecosystem of the type
described above was generated. Parameters used were: N= 1000, c= 50, γ=−1, σ2

= 1/4/c, b= 0.05. The solid line is the result of Eq. (6), noting that μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2σ2=π

p
.

For the empirical power spectrum, we used an Euler-Maryama time-stepping
method to simulate a time series of length tmax ¼ 210 and time step h= 2−7. The
power spectrum for each species was calculated with a Fast Fourier Transform, and
the result averaged over all species. The top panel shows part of the time series
generated for the first species.

Figure 1, right panel. A two-trophic level model ecosystem was generated as described
above. Parameters in this case were: Nx= 200,Ny= 800, cx= 20, cy= 5, α= 10, b= 1,
d= 1. Time series and power spectra were computed similarly to the left panels.

Figure 2. For the left panel, we generated Lotka-Volterra ecosystems with para-
meters N= 1000, c= 50, σ2= 0.5, using b ¼ 2þ ð1þ γÞ

ffiffi
ð

p
c � σ2Þ for the simula-

tions with γ= 0 and γ= 1. Time series and spectra were computed similarly to
Fig. 1. For the right panels more care is needed. Finite random matrices typically
have a small number of eigenvalues that are order 1=

ffiffiffiffi
N

p
larger than predicted by

the stability boundary in the limit N→∞. To achieve the near-instability results in
this figure, we first generated the off-diagonal entries of the community matrices,
then chose the birth rate b to put the rightmost eigenvalue of A exactly at zero.

Figure 3. Parameters here are: N= 500, c= 20, γ=−1, σ2= 1/4/c, b= 0.2. For the
‘direct’ results we numerically computed the power spectral density according to
the matrix formula in Eq. (17). This was preferable to simulations of the time
series, as a long time horizon is required to achieve good resolution of the indi-
vidual contributions to the power spectral density.

Figure 4. Parameters here are: Nx= 100,Ny= 200, cx= 20, cy= 10, α= 5, b= 1,
d= 1.

Figure 5. The dataset 41467_2017_2571_MOESM6_ESM.xlsx was imported into
Matlab and processed as follows: We took the average of the three reported daily
measurements to construct an 88-day time series for each species. To limit
boundary effects we discarded all species with at least one with zero measured
abundance, in doing so retaining 100 species. The mean was subtracted and then
the power spectrum fitted using the covariance method with 8th order auto-
regression. The model fitting was achieved with a non-linear least squares method
applied to our Eq. (38), with parameters b, cσ2 (a composite parameter), γ, and an
additional scale parameter for overall noise strength.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Plankton abundance data used in Fig. 5 are taken from ref. 34 available at: nature.
com/articles/s41467-017-02571-4#Sec24. All simulation data can be
reproduced using the code available at https://doi.org/10.5281/zenodo.4720998.

Code availability
Code to reproduce all Figures is available at https://doi.org/10.5281/zenodo.4720998.
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