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Background: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group with
varied pathophysiological, genetic, and clinical features, accounting for approximately
one-third of all lymphoma cases worldwide. Notwithstanding that unprecedented
scientific progress has been achieved over the years, the survival of DLBCL patients
remains low, emphasizing the need to develop novel prognostic biomarkers for early risk
stratification and treatment optimization.

Method: In this study, we screened genes related to the overall survival (OS) of DLBCL
patients in datasets GSE117556, GSE10846, and GSE31312 using univariate Cox
analysis. Survival-related genes among the three datasets were screened according to
the criteria: hazard ratio (HR) >1 or <1 and p-value <0.01. Least Absolute Shrinkage and
Selection Operator (LASSO) and multivariate Cox regression analysis were used to
optimize and establish the final gene risk prediction model. The TCGA-NCICCR
datasets and our clinical cohort were used to validate the performance of the prediction
model. CIBERSORT and ssGSEA algorithms were used to estimate immune scores in the
high- and low-risk groups.

Results: We constructed an eight-gene prognostic signature that could reliably predict
the clinical outcome in training, testing, and validation cohorts. Our prognostic signature
also performed distinguished areas under the ROC curve in each dataset, respectively.
After stratification based on clinical characteristics such as cell-of-origin (COO), age,
eastern cooperative oncology group (ECOG) performance status, international prognostic
index (IPI), stage, and MYC/BCL2 expression, the difference in OS between the high- and
low-risk groups was statistically significant. Next, univariate and multivariate analyses
revealed that the risk score model had a significant prediction value. Finally, a nomogram
was established to visualize the prediction model. Of note, we found that the low-risk
group was enriched with immune cells.
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Conclusion: In summary, we identified an eight-gene prognostic prediction model that
can effectively predict survival outcomes of patients with DLBCL and built a nomogram to
visualize the perdition model. We also explored immune alterations between high- and
low-risk groups.
Keywords: prediction model, immune cell infiltration, nomogram, stratification analyses, diffuse large B-cell lymphoma
INTRODUCTION

Lymphoma is the fourth most common cancer and the sixth
leading cause of cancer death in the United States (1). Diffuse
large B-cell lymphoma (DLBCL) accounts for approximately
one-third of all lymphoma cases worldwide (2–4). In the
current World Health Organization (WHO) lymphoma
classification, about 80% of DLBCL cases are designated as not
otherwise specified (NOS) (2). Three molecularly distinct forms
of DLBCL have been identified by gene expression patterns,
specifically an activated B cell-like (ABC) and germinal center B-
cell-like (GCB) types and a small amount were unclassified
DLBCL (UC) (5–7). Lymphomas with rearrangements of
MYC with BCL2 and/or BCL6 are called “double-hit
lymphomas”(DHL) or “triple-hit lymphomas”(THL) (8).
There also exist one subtype called “double-expressor
lymphomas” (DELs), defined as co-expression of MYC and
BCL2 (9). DLBCL comprises a heterogeneous group with
pathophysiological, genetic and clinical features (4). Albeit
significant efforts have been made to better understand
lymphomas, the overall survival (OS) of DLBCL patients
remains dismal (5, 10). Accordingly, developing novel
prognostic biomarkers for early risk stratification and
treatment optimization is imperative.

It is well established that clinical prognosis systems for
DLBCL, including the rituximab international prognostic index
(IPI), age-adjusted IPI, and NCCN-IPI, use clinical factors for
risk stratification of patients (4). Although IPI is easy to apply
during clinical practice, it does not fully account for disease
heterogeneity (11, 12). An increasing body of evidence suggests
that patients with the ABC disease subtype have significantly
poorer outcomes with standard up-front rituximab-containing
chemoimmunotherapy than patients with GCB disease (13). A
survival-related gene prognostic model, in combination with
other prognostic indicators such as IPI and cell of origin
(COO), might improve our assessment of patient prognosis for
individualized treatment.

It is widely acknowledged that the tumor microenvironment
(TME) of patients with lymphoma comprises endothelial cells,
fibroblasts, adipocytes, and immune cells and is a key factor for
tumor initiation and metastasis (14, 15). Several studies have
focused on the potential role of the TME, especially the immune
status in DLBCL pathogenesis (16, 17). Therefore, it is critical to
better characterize the TME to develop the treatments for
DLBCL patients (18).

Thanks to high-throughput genome sequencing technique,
there had been several studies exploring potential prognostic
biomarkers of DLBCL patients on genomic level. Xie et al. for
n.org 2
example, investigated the prognostic value of m6A regulators
and established an m6A-based prognostic gene signature for
DLBCL (19). Feng et al. constructed a 14-gene prognostic
signature deriving from immune-related genes for 216 DLBCL
patients (20). Luo et al. identified the aging-related genes
associated with prognostic value in DLBCL patients (21). In
this study, we integrated the transcriptome data from the Gene
Expression Omnibus (GEO), The Cancer Genome Atlas
(TCGA), and our clinical cohort and constructed an eight-gene
signature-based prediction model. Furthermore, we explored the
immune alterations in high- and low-risk groups.
METHODS AND MATERIALS

Collection of Clinical DLBCL Specimens
DLBCL specimens were obtained through biopsy in the First
Affiliated Hospital of Zhengzhou University and frozen at −80°C
for storage. All participants provided written informed consent
for the use of their specimens in this study. Clinicopathological
features of 45 DLBCL patients from the First Affiliated Hospital
of Zhengzhou University are performed in Supplementary
Table 1. The study protocol was approved by the ethics
committee of the First Affiliated Hospital of Zhengzhou
University (ethics number 2021-KY-0835-001).

Selection of DLBCL Gene
Expression Datasets
We systematically explored publicly available DLBCL gene
expression datasets with corresponding clinical information of
patients from the GEO (https://www.ncbi.nlm.nih.gov/geo/) and
TCGA (https://portal.gdc.cancer.gov/) databases. For this study,
we gathered a total of 2,335 patients with DLBCL from four
cohorts, including GSE117556 (n = 928), GSE10846 (n = 420),
GSE31312 (n = 498), and TCGA-NCICCR (n = 489) (Table 1)
and our clinical cohort (n = 45). Patients with incomplete
transcriptomic data and clinical data were excluded.
Ultimately, we included 928 patients from GSE117556, 414
from GSE10846, 470 from GSE31312, and 234 from TCGA-
NCICCR. The GSE10846 and GSE31312 datasets used the
GPL570 platform, while the GSE117556 dataset used the
GPL14951 platform.

Construction and Validation of
Prediction Model
In this study, we used univariate Cox analysis to screen genes
related to the OS of DLBCL patients in the GSE117556,
April 2022 | Volume 13 | Article 846357
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GSE10846, and GSE31312 datasets. Genes with hazard ratio
(HR) >1 and HR <1 were defined as the risk and protective
genes. A p-value <0.01 was the cutoff point. The risk genes and
protective genes shared by the three datasets were intersected
and combined with Least Absolute Shrinkage and Selection
Operator (LASSO) regression and multivariate Cox regression
to build the final gene risk prediction model (22). We conducted
univariate and multivariate Cox regression analyses using the R
package “survival.” Another R package “glmnet” was used for the
LASSO Cox regression analysis (23). The risk score (RS) of each
sample was calculated by multivariate Cox regression analysis.
The correlation analysis was based on the R package “corrplot,”
and the forest plots for univariate and multivariate analyses were
constructed by R package “forestplot.”

TME Characterization Analysis
We employed two algorithms to assess immune infiltration in
DLBCL. CIBERSORT (http://cibersort.stanford.edu/)
algorithm was used to obtain the proportion of 22 immune
cell types with a threshold of p < 0.05 (24). We applied Single-
Sample Gene Set Enrichment Analysis (ssGSEA) to assess the
infiltration level of 28 different immune cells in DLBCL
expression profile data by the “GSVA” package (25). The R
package “ggpubr” was used to visualize differences in the
distributions of immune-related cells in the low- and high-
risk patient groups from the overall cohort. ”***,” “**,” “*,” and
“ns” indicate p < 0.001, p < 0.01, p < 0.05, and not significant,
respectively, for the Kruskal–Wallis test.

Quantitative Real-Time Polymerase
Chain Reaction
Total RNA was isolated from the specimens harvested using
TRIzol reagent (Invitrogen Corporation, Carlsbad, CA, #
A33250). The Prime Script RT reagent kit with genomic DNA
eraser (TaKaRa, Tokyo, Japan, #RR037A) was used to synthesize
complementary DNA (cDNA). Quantitative real-time
polymerase chain reaction (qRT-PCR) analyses were detected
by SYBR Green Master Mix (TaKaRa), and the primers for qRT-
PCR analyses are listed in Supplementary Table 2. The 2−DCT

method was utilized to calculate the relative mRNA expression of
each gene.

Statistical Analysis
Statistical analyses were performed with R (version 3.6.3). The
Kaplan–Meier method was used to assess the differences
in survival time, and the log-rank test was used to
Frontiers in Endocrinology | www.frontiersin.org 3
determine the statistical significance. Time-dependent
receiver operating characteristic (ROC) curve analysis was
used to measure the prognostic performance by comparing
the areas under curves (AUC). The nomogram was plotted
using the “rms” package (26). The difference in immune
infiltration levels between high- and low-risk groups was
calculated by Kruskal–Wallis test, and a p-value < 0.05 was
statistically significant.
RESULTS

Identification and Validation of a
Prognostic Signature
To identify the prognostic signature of DLBCL, we performed a
multiple-step analysis (Figure 1). We first screened the GEO
database and selected three datasets for univariate Cox
proportional hazards regression to identify candidate genes
significantly related to OS. We conducted univariate Cox
analysis in the GSE117556, GSE10846, and GSE31312 datasets
with p < 0.01 as the cutoff value. In total, 1,426, 1,904, and 1,788
candidate protective genes (with hazard ratios (HR) <1) and 890,
2,958, and 2,525 candidate risk genes (with HR >1) were
identified in GSE117556, GSE10846, and GSE31312,
respectively. A total of 11 genes were candidate protective
genes after intersecting the candidate protective genes
(Figure 2A). Similarly, after matching the candidate risk genes
identified in the three datasets, 13 common genes are
retained (Figure 2B).

The detailed information on these genes is listed in Table 2.
Next, GSE117556 was assigned as the training dataset, and
the LASSO was applied to screen the candidate genes,
yielding eight genes (Supplementary Figures 1A, B).
Ultimately, the HRs of the eight genes were acquired by
conducting multivariate Cox regression analysis. The forest
plot (Supplementary Figure 1C) showed that HK2, GAB1,
GRPEL1, RCSD1, PLAC8L1, and RASAL1 were risk factors
(HR >1), and CAPG and PDPN were protective factors
(HR <1) for OS. Finally, the following risk score model was
established: risk score = 0.271 × HK2 expression + 0.182 × GAB1
expression + 0.172 × RASAL1 expression − 0.254 ×
CAPG expression − 0.358 × PDPN expression + 0.362 ×
GRPEL1 expression + 0.370 × RCSD1 expression + 0.177 ×
PLAC8L1 expression. Each patient was assigned a risk score with
the prognostic model. According to the median risk score, patients
TABLE 1 | Characteristics of the included datasets.

Dataset ID Country Number of samples GPL ID Number of rows per platform

GSE117556 UK 928 GPL14951 29,377
GSE10846 USA 420 GPL570 54,675
GSE31312 USA 498 GPL570 54,675
TCGA-NCICCR USA 489 NA 56,753
Clinical cohort China 45 NA NA
April 202
GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform; UK, United Kingdom; USA, United States of America; NA, Not Available.
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in the GSE117556 dataset were stratified into high-and low-risk
groups. Of the eight-gene prognostic signature, HK2 have the most
significant correlation with worse survival. Through analyzing the
RT-PCR results deriving from our clinical specimens, We found
HK2 had high expressed in high stage DLBCL (Supplementary
Figure 2A). To further explore the function of HK2, we first
identified genes that correlated with HK2 in the GSE117556 dataset
(Supplementary Figure 2B). We then utilized positive and
negative correlated genes to perform GO and KEGG enrichment
analyses. Results revealed that positive correlated genes were
involved in cell cycle (Supplementary Figure 2C) and negative
correlated genes were involved in immune response
(Supplementary Figure 2D). These results partly reflect genomic
differences between high- and low-risk groups.

To further verify the predicting model, we analyzed the
survival of high- and low-risk groups. Patients in the low-risk
group demonstrated a longer survival time than those in the
high-risk group (Supplementary Figure 3). Consistently, the
Kaplan–Meier curve indicated that patients in the high-risk
group had significantly worse prognoses than low-risk patients
(log-rank test p < 0.001) (Figure 2C). We further validated the
risk score model in the testing dataset GSE 31312 (log-rank test
p < 0.001) (Supplementary Figure 4A) and GSE 10864 (log-rank
Frontiers in Endocrinology | www.frontiersin.org 4
test p < 0.001) (Supplementary Figure 4B), TCGA-NCICCR
dataset (log-rank test p = 0.0052) (Figure 2D), and our clinical
specimens (log-rank test p = 0.024) (Figure 2E), the results were
consistent with the training dataset findings. The predictive
power of the risk score model was assessed by time-dependent
ROC, which yielded good performance in the above datasets. In
dataset GSE117556, the AUC values for 1-, 3-, and 5-year overall
survival were 0.7, 0.74, and 0.89, respectively. In TCGA-NCICCR
dataset, the AUC values for 1-, 3-, and 5-year overall survival
predictions were 0.61, 0.60, and 0.62, respectively. Our clinical
cohort yielded AUC values of 0.74, 0.79, and 0.78 for the 1-, 3-,
and 5-year overall survival, respectively (Figures 2F–H). In
dataset GSE31312, the AUC values for 1-, 3-, and 5-year
overall survival were 0.64, 0.7, and 0.74, respectively. In dataset
GSE10864, the AUC values for 1-year overall survival were 0.56
(Supplementary Figures 4C, D). The above AUC curves
provided an objective validation of the clinical application
value of our model.

Validation of the Accuracy of the Risk
Score Model
We used GSE117556 as the training dataset to detect the
correlation and interdependence between the eight risk genes,
FIGURE 1 | Multistep analysis of the study.
April 2022 | Volume 13 | Article 846357
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which proved that our prognostic signature could minimize
data bias caused by gene collinearity (Figure 3A). Using the
median risk score as the cutoff point, the training set was
classified into low- and high-risk groups. Our results suggest
that the risk score model has significant value for evaluating
characteristic genes. The eight genes were differentially
expressed between the two groups, indicating their role in
contributing to the prognosis of DLBCL (Figure 3B). Analysis
of validation dataset TCGA-NCICCR yielded consistent
results (Figures 3C, D).

Validation of Risk Score Model
Based on Different Clinical
Parameters and Subgroups
It has been established that DLBCL exhibits a significant
heterogeneity in cell origin, clinical manifestations, gene
expression profiles, and so on. To verify the effectiveness of
the risk signature in the existing clinical subgroups, we
conducted a series of subgroup analyses on dataset
GSE117556. Stratification based on clinical characteristics
such as COO, ECOG, MYC/BCL2 double expression, lactate
Frontiers in Endocrinology | www.frontiersin.org 5
dehydrogenase (LDH) value, age, stage, and gender was
conducted. Among those subtypes, patients in the high-risk
groups had worse survival outcomes than patients in the low-
risk group (log-rank test p < 0.05; Figure 4 and Supplementary
Figure 5). These findings validated that our risk model yielded
good predictive performance after stratifying for different
clinicopathological characteristics.

The Landscape of Immune Cell Infiltration
in the TME of DLBCL
To further explore the potential survival mechanisms related to
the risk score model, mRNA data from dataset GSE117556
were first used to detect the proportion of 22 immune cell types
in each sample via the CIBERSORT algorithm. As shown in
Figure 5A, the proportion of immune cells was significantly
different between the high- and low-risk score groups.
Compared with the low-risk group, the high-risk group
exhibited increased B-cell infiltrations, with less-naive CD4 T
cell , T fol l icular helper cel l , M0 macrophages, M1
macrophages, and other proinflammatory cells. Consistent
results were obtained when ssGSEA was applied (Figure 5B).
A B

D E

F G H

C

FIGURE 2 | Construction and validation of prediction model. (A, B) Venn diagram shows the common protective and risk genes identified by three datasets.
(C–E) Kaplan–Meier analysis for the eight-gene signature in the GSE117556, TCGA-NCICCR, and our clinical cohort, respectively. (F–H) Time-dependent ROC
curve analysis of 1, 3, and 5 years in GSE117556, TCGA-NCICCR, and our clinical cohort.
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In contrast with the high-risk group, tumor-infiltrating
lymphocy te s (TIL) , ant igen-present ing ce l l s were
significantly enriched in the low-risk groups. We further
applied the above two algorithms to the validation dataset
TCGA-NCICCR. Similar results were obtained from
GSE117556 analysis results. Immune signatures between the
high- and low-risk groups were different, and the low-score
group was significantly infiltrated with proinflammatory
immune cells (Figures 5C, D). In addition, we analyzed
immune-related genes between the two groups and further
approved the above findings (Supplementary Figure 6).

Validation of the Performance of Our
Prediction Model
To evaluate the performance of our risk score model
on the prognosis of DLBCL patients, we integrated the
clinicopathological characteristics with risk score signatures in
different algorithms. As shown in Figure 6A, univariate Cox
regression analysis demonstrated that the risk score model was a
significant predictor of OS in patients with DLBCL (p < 0.0001,
HR = 1.377), compared with other clinicopathological
characteristics. Multivariate Cox regression analysis showed
that the risk score model was an independent prognostic factor
for poor prognosis (p < 0.0001, HR = 1.380) (Figure 6B).
Compared with other indicators, the risk score was superior
for predicting the patient prognosis (AUC = 0.820) (Figure 6C).
Finally, we established a nomogram based on the above clinical
parameters to predict patient prognosis quantitatively.
Accordingly, our nomogram has huge prospects for clinical
Frontiers in Endocrinology | www.frontiersin.org 6
application for predicting the OS of individual DLBCL
patients (Figure 6D).
DISCUSSION

Notwithstanding that unprecedented scientific progress has been
achieved over the years, the survival of DLBCL patients remains
relatively low. In this regard, the cure rate of DLBCL ranges from
40% to 60% following standard frontline immunochemotherapy
(5). However, a poor prognosis has been reported for patients
with refractory disease, those who relapse after salvage
chemotherapy and autologous stem cell transplant or chimeric
antigen receptor T-cell therapy, highlighting the need for novel
therapeutic approaches (27, 28). Indeed, good prediction models,
like good therapies, are best compared head-to-head in novel
patient populations (29). Therefore, developing a novel
prognostic model in combination with other prognostic
indicators IPI and COO might be necessary to assess the
patient prognosis for individualized treatment. In recent years,
an increasing number of studies have been conducted to identify
novel prognostic indicators. For instance, Schmitz et al. applied
exome and transcriptome sequencing methods on 574 DLBCL
biopsy samples to construct a new genetic subtype for DLBCL
classification to guide therapy (30). Han et al. demonstrated that
piRNA-30473, which promotes DLBCL progression by
regulating m6A RNA methylation in DLBCL, can improve the
prognostic stratification and therapeutic approach (31). With the
development of next-generation sequencing, many prognostic
TABLE 2 | Detail information of selected common genes in three datasets.

Gene symbol Gene name Datasets (HR/p-value)

GSE117556 GSE31312 GSE10864

COL1A1 Collagen type I alpha 1 chain 0.763 (p < 0.001) 0.043 (p = 0.009) 0.829 (p = 0.004)
ST6GALNAC5 ST6N-Acetylgalactosaminide alpha-2,6-sialyltransferase 5 0.727 (p < 0.001) 0.184 (p = 0.009) 0.796 (p < 0.001)
CAPG Capping actin protein, gelsolin like 0.728 (p < 0.001) 0.145 (p < 0.001) 0.793 (p < 0.001)
LRRC15 Leucine-rich repeat containing 15 0.656 (p < 0.001) 0.166 (p = 0.001) 0.790 (p < 0.001)
PDPN Podoplanin 0.656 (p < 0.001) 0.214 (p = 0.005) 0.841 (p < 0.001)
NEK6 NIMA-related kinase 6 0.610 (p < 0.001) 0.205 (p = 0.004) 0.660 (p < 0.001)
PTPN14 Protein tyrosine phosphatase nonreceptor type 14 0.738 (p = 0.002) 0.183 (p = 0.002) 0.813 (p < 0.001)
LOX Lysyl oxidase 0.656 (p = 0.008) 0.161 (p = 0.001) 0.862 (p < 0.001)
RBP5 Retinol-binding protein 5 0.754 (p = 0.006) 0.215 (p = 0.001) 0.870 (p = 0.005)
NRP2 Neuropilin 2 0.747 (p = 0.002) 0.237 (p = 0.003) 0.773 (p = 0.003)
DST Dystonin 0.792 (p = 0.005) 0.042 (p < 0.001) 0.748 (p = 0.001)
MSL1 MSL complex subunit 1 1.592 (p = 0.004) 12.721 (p < 0.001) 1.459 (p = 0.002)
GRPEL1 GrpE-like 1, mitochondrial 1.797 (p < 0.001) 4.534 (p = 0.008) 1.877 (p < 0.001)
RCSD1 RCSD domain-containing 1 1.807 (p < 0.001) 8.005 (p < 0.001) 1.300 (p < 0.001)
PLAC8L1 PLAC8-like 1 1.277 (p = 0.004) 5.033 (p = 0.001) 1.449 (p < 0.001)
PRC1 Protein regulator of cytokinesis 1 1.745 (p = 0.001) 3.910 (p = 0.005) 1.330 (p = 0.001)
RASAL1 RAS protein activator-like 1 1.368 (p < 0.001) 3.056 (p = 0.007) 1.220 (p = 0.001)
LARS Leucyl-TRNA synthetase 1 2.088 (p = 0.001) 5.419 (p = 0.007) 1.599 (p < 0.001)
SNHG7 Small nucleolar RNA host gene 7 1.238 (p = 0.006) 4.498 (p = 0.002) 1.439 (p < 0.001)
WDR12 WD repeat domain 12 1.812 (p = 0.001) 8.049 (p = 0.001) 1.526 (p = 0.003)
PI4K2B Phosphatidylinositol 4-kinase type 2 beta 1.637 (p = 0.004) 3.868 (p = 0.004) 1.537 (p = 0.006)
MMACHC Metabolism of cobalamin-associated C 1.430 (p < 0.001) 5.033 (p = 0.009) 1.770 (p < 0.001)
HK2 Hexokinase 2 1.320 (p = 0.004) 4.455 (p < 0.001) 1.438 (p < 0.001)
GAB1 GRB2-associated binding protein 1 1.277 (p = 0.008) 2.634 (p = 0.007) 1.235 (p = 0.008)
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cancer models have been established in recent years (32–34)
based on public transcriptomic databases such as the GEO and
TCGA datasets.

The present study explored DLBCL gene expression
datasets with corresponding clinical information of patients
from the GEO to identify candidate genes that were
significantly related to OS. After performing univariate Cox
proportional hazards regression analysis, 11 protective and 13
risk genes were identified. Finally, we constructed an eight-
gene prognostic signature through the LASSO method and
multivariate Cox regression analysis. There had been several
previous studies that were consistent and corroborated with
the prognostic value of our risk score model. For example,
HK2, GAB1, and RASAL1 were risk genes in our model. HK2 is
known to be a key metabolic enzyme by promoting glucose
uptake in cells and facilitating the Warburg effect. HK2 had
been explored as a major player in helping maintain the highly
malignant state in many types of cancer (35–37). Bhalla et al.
also provided strong support for the direct contribution of
HK2 in B-cell lymphoma development and suggested that HK2
is a key metabolic driver of the DLBCL phenotype (38). GAB1,
Frontiers in Endocrinology | www.frontiersin.org 7
which is widely distributed in various body tissues, is capable
of promoting cell proliferation, and its expression may
enhance the carcinogenesis and cancer progression (39, 40).
Chang et al. clarified that RASAL1 was increased in ovarian
adenocarcinoma tumorous tissues and HEY cells, which
correlated with poor prognosis in ovarian adenocarcinoma
patients (41). Kaplan–Meier analysis demonstrated that the
risk model could predict the outcome for patients with DLBCL
in training, testing, and validating datasets. Similar conclusions
were reached when our clinical cohort data were applied. ROC
curve analysis consistently indicated the good performance of
our risk model. We then conducted correlation analysis to
evaluate the collinearity among the eight prognostic genes.
Importantly, we found that the correlation among these genes
was low, suggesting that the regression coefficients of this
model were reliable and stable (42).

At present, different approaches are adopted in clinical
practice to evaluate the occurrence and development of
DLBCL at different levels, including gene expression patterns
(ABC, GCB, UC), ECOG, IPI, DELs, LDH, age-adjusted IPI,
gender, stages, and so on. Patients with the GCB subtype, for
A B

DC

FIGURE 3 | Gene expression in high- and low-risk group. (A) Corrplot shows correlation of eight genes in GSE117556 dataset. (B) Heatmap shows gene
expression of eight genes and clinical parameters in high- and low-risk group in GSE117556 dataset. (C) Corrplot shows correlation of eight genes in TCGA-
NCICCR dataset. (D) Heatmap shows gene expression of eight genes and clinical parameters in high- and low-risk groups in TCGA-NCICCR dataset.
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example, usually have a better prognosis than the ABC subtype
(6, 43). It has been established that DELs are generally aggressive
and respond poorly to currently available therapies (9, 44, 45).
Moreover, IPI and age-adjusted IPI have been developed as
models for predicting outcomes based on clinical factors from
more than 4,000 patients (46, 47). However, despite overall
improvements in DLBCL patient outcomes, 30%–40%
of patients develop relapsed or refractory disease (48). In the
present study, after stratification based on clinical characteristics
such as gene expression patterns (ABC, GCB, UC), ECOG, IPI,
DELs, LDH, age-adjusted IPI, gender, and Ann Arbor stages, the
difference in OS between the high- and low-risk groups was still
statistically significant. This finding suggests that our model can
be combined with existing clinical parameters to reduce false
positives and negatives, improve diagnostic accuracy, and
provide effective treatment.

An increasing body of evidence suggests that the TME
affects the prognosis of DLBCL patients. Lenz et al. analyzed
gene expression in 181 pretreatment biopsy specimens
derived from DLBCL patients and found that the survival of
patients with DLBCL was affected by immune cells, fibrosis,
and angiogenesis in the tumor microenvironment (49).
Mueller et al. also demonstrated that DLBCL recruited T
cells and monocytes via CCL5 to support B-cell survival and
proliferation (50). By immunohistochemical staining, Chang
et al. showed the presence of CD1a+ dendritic cells (DCs) and
increased granzyme B+ T cells within tumors was associated
Frontiers in Endocrinology | www.frontiersin.org 8
with a favorable prognosis (51). It has been established that
M1 cells play a proinflammatory and anticancer role in the
TME of DLBCL, while M2 type plays an immunosuppressive
role to promote cancer progression (47, 52, 53). Herein, we
used two algorithms to evaluate the TME of patients with
DLBCL and found that patients in the high-risk score group
exhibited significant B-cell infiltration with mild infiltration of
M0, M1, CD8+ T cells, and DCs. Our results suggest the
presence of an immunosuppressive TME in patients from the
high-risk group leading to cancer progression. Finally, we
evaluated the potential value of applying our risk score model
to clinical practice. Based on the results of univariate
regression analysis, multivariate regression analysis, and
nomogram, our model has huge prospects for application in
clinical practice.

However, our study was significantly limited by its retrospective
nature as DLBCL samples were from different platforms, whichmay
be a source of sampling bias. Well-designed prospective clinical
trials should be conducted in the future to highlight the role of our
prediction model in DLBCL progression and metastasis.
CONCLUSIONS

In summary, this study identified an eight-gene prognostic
signature that can effectively predict DLBCL patient outcomes.
The eight-gene prognostic model related to TME in combination
A B

D

E

C

FIGURE 4 | KM survival stratification analyses in the GSE117556 dataset. (A) COO subgroup. (B) ECOG stage. (C) Age. (D) Gender. (E) Clinical stage.
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A B

DC

FIGURE 6 | Risk score is a superior biomarker for evaluating the prognosis of DLBCL. (A, B) Forest plot summary of the univariate and multivariable analyses of risk
score and other clinical parameters. (C) ROC analysis of risk score and other clinical parameters. (D) Nomogram integrating the risk score and clinical parameters for
predicting the probability of patient mortality at 1, 3, and 5 years of OS.
A

B D

C

FIGURE 5 | Immune estimation in high- and low-risk groups. (A, B) The difference of immune infiltration in high- and low-risk groups estimated by CIBERSORT and
ssGSEA in the GSE117556 datasets. (C, D) The difference of immune infiltration in high- and low-risk groups estimated by CIBERSORT and ssGSEA in TCGA-
NCICCR datasets. ns, Not Significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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with other prognostic indicators IPI and COO might be useful to
clinicians when evaluating the prognosis of patients for
individualized treatment.
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