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ABSTRACT More than 1,000 different species of microbes have been found to live
within the human oral cavity, where they play important roles in maintaining both
oral and systemic health. Several studies have identified the core members of this
microbial community; however, the factors that determine oral microbiome compo-
sition are not well understood. In this study, we exam the salivary oral microbiome
of 1,049 Atlantic Canadians using 16S rRNA gene sequencing to determine which di-
etary, lifestyle, and anthropometric features play a role in shaping microbial commu-
nity composition. Features that were identified as being significantly associated with
overall composition then were additionally examined for genera, amplicon sequence
variants, and predicted pathway abundances that were associated with these fea-
tures. Several associations were replicated in an additional secondary validation data
set. Overall, we found that several anthropometric measurements, including waist-
hip ratio (WHR), height, and fat-free mass, as well as age and sex, were associated
with overall oral microbiome structure in both our exploratory and validation data
sets. We were unable to validate any dietary impacts on overall taxonomic oral mi-
crobiome composition but did find evidence to suggest potential contributions from
factors such as the number of vegetable and refined grain servings an individual
consumes. Interestingly, each one of these factors on its own was associated with
only minor shifts in the overall taxonomic composition of the oral microbiome, sug-
gesting that future biomarker identification for several diseases associated with the
oral microbiome can be undertaken without the worry of confounding factors ob-
scuring biological signals.

IMPORTANCE The human oral cavity is inhabited by a diverse community of mi-
crobes, known as the human oral microbiome. These microbes play a role in main-
taining both oral and systemic health and, as such, have been proposed to be useful
biomarkers of disease. However, to identify these biomarkers, we first need to deter-
mine the composition and variation of the healthy oral microbiome. In this report,
we investigate the oral microbiome of 1,049 healthy individuals to determine which
genera and amplicon sequence variants are commonly found between individual
oral microbiomes. We then further investigate how lifestyle, anthropometric, and di-
etary choices impact overall microbiome composition. Interestingly, the results from
this investigation showed that while many features were significantly associated
with oral microbiome composition, no single biological factor explained a variation
larger than 2%. These results indicate that future work on biomarker detection may
be encouraged by the lack of strong confounding factors.
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The human oral cavity is colonized by numerous bacteria, fungi, viruses, and archaea
that make a rich microbial community known as the oral microbiome. This micro-

bial community is one of the most diverse sites of microbial growth within the human
body; only the colon houses a more diverse consortia of microbes (1). To date, more
than 1,000 different bacterial species have been found to colonize the oral cavity (2) on
various surfaces, including the tongue, teeth, cheek, and gingivae (1). These commu-
nities of microbes are responsible for various functions that can both maintain and
deplete oral health. For example, the presence of biofilms containing bacterial species
such as Streptococcus mutans and other aciduric bacteria can damage hard dental
surfaces and lead to dental caries (3, 4). Furthermore, the oral microbiome is known to
play a role in a myriad of other oral diseases, including oral cancer (5), periodontitis (6,
7), and gingivitis (8, 9). In addition to well-established associations between oral and
cardiac health (10), recent work has also begun to show that the oral microbiome may
play a role in the health of other distal sites within the human body. For example, the
enrichment of both Porphyromonas gingivalis and Aggregatibacter actinomycetemcomi-
tans has been associated with a higher risk of pancreatic cancer (11). Furthermore,
several oral bacteria, including Streptococcus and Prevotella species, have been found to
be in higher relative abundance among individuals with colorectal cancer (12). Other
than these two cancers, a number of other distal diseases have been associated with
oral microbiome composition, including prostate cancer (13) and inflammatory bowel
disease (14).

Due to the associations between these diseases and the oral microbiome, its
composition has been proposed as a useful biomarker for human health and disease.
With this in mind, various studies have attempted to identify core members of the
“healthy” oral microbiome (1, 15–18) to aid in disease detection. These studies have
uncovered that, at the genus level, the oral microbiome remains relatively stable
between individuals (1, 18) and across multiple geographic locations (16, 19), but at
deeper taxonomic resolutions it can be variable. This indicates that other factors, such
as dietary, anthropometric, or sociodemographic factors, may play a role in shaping the
oral microbiome (15, 17, 20–23). Various studies have focused on individual factors that
may cause shifts in the oral microbiome, such as ethnicity (1, 23), alcohol consumption
(24), smoking (25), obesity (26, 27), and dietary patterns (28). However, to date, only a
small number of studies have looked at the relative contributions of each of these
factors to oral microbiome variability in a single cohort. Takeshita et al. examined the
oral microbiome of 2,343 adults living in Japan using 16S rRNA gene sequencing and
identified that higher abundances of Prevotella and Veillonella species were associated
with old age, higher body mass index (BMI), and poor overall oral health (17). Another
study by Renson et al. in adults living in New York City also found that variation in
taxonomic abundances could be linked to marital status, ethnicity, education, and age
(21). Further, work by Belstrøm et al. examined the oral microbiome of 292 Danish
individuals with low levels of dental caries and periodontitis using microarrays and
found that while socioeconomic status impacted oral microbiome profiles, diet, BMI,
age, and sex had no statistical impact on microbial abundances (20). This study,
however, was only able to identify the abundances of taxa that had a corresponding
probe, which could explain its disagreement with other work. Overall, these studies
have indicated that biological differences, such as sex and BMI, as well as lifestyle and
sociodemographic differences can impact oral microbiome composition.

While these studies have shed light on the variation of the oral microbiome, it is
currently unclear to what extent these factors play a role in shaping the oral micro-
biome of an individual. Without identifying the effect size of each of these factors
relative to one another, it is difficult to identify the correct variables that should be
controlled for in case-control studies of the oral microbiome. Furthermore, each of
these studies has identified different taxa that are impacted by various factors, such as
sex, BMI, and age. This could be due to many factors, including systemic bias intro-
duced via the use of different sequencing or bioinformatic protocols/tools (29) or
differences in the studied cohorts. Therefore, the identification of microbes that are
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impacted by factors such as sex, BMI, or diet could help identify potential interactions
between the oral microbiome, health, and disease.

Here, we report the variation within the healthy oral microbiome by examining 741
samples from nonsmoking healthy individuals living within the Atlantic provinces of
Canada. We then validated our results on a smaller subset of individuals (n � 308) from
the same cohort (Fig. 1). The bacterial oral microbiome composition of these individuals
was investigated through 16S rRNA gene sequencing from saliva samples provided by
each participant. Compositions were then compared using 41 different variables,
including anthropometric, dietary, and sociodemographic factors (Table 1). In this
investigation, we determined which of these factors play a role in shaping the oral
microbiome and to what extent these factors can explain the overall oral microbiome
composition.

RESULTS
The healthy oral microbiome is stable at the genus level but variable at higher

resolutions. We examined the oral microbiome composition of the overall cohort
containing 1,049 healthy individuals (Fig. 1) from Atlantic Canada to understand
how anthropometric, sociodemographic, and dietary choices could alter oral mi-
crobiome composition. We found that 16 genera were found to have a mean
relative abundance greater than 1% (Fig. 2A), with Veillonella having the largest
mean contribution (21.49% � 0.38%), followed by Neisseria (13.04% � 0.40%),
Streptococcus (11.86% � 0.26%), and Prevotella 7 (11.55% � 0.24%).

To characterize the core relative abundance of core genera and amplicon sequence
variants (ASVs) within the oral microbiome of these samples, the mean relative abun-
dance of genera/ASVs that were present in greater than a specific percentage of
samples was analyzed. Interestingly, we found that at the genus level the oral micro-
biome is relatively stable, with 11 genera (see Fig. S2A and Table S1 in the supplemental
material) present in greater than 99% of all individuals, making up, on average, a total
relative abundance of 77.82% (Fig. 2B). However, this was not the case when we
examined composition at a higher taxonomic resolution. We then found that only
5.17%, on average, of the total relative abundance of the oral microbiome was made up
of 3 ASVs (Fig. S2B) shared between 99% of all participants in the study (Fig. 2C). These
ASVs were classified as being in the Granulicatella, Streptococcus, and Gemella genera
but could not confidently be assigned to a specific species.

Demographic, anthropometric, and lifestyle choices have small but significant
impacts on oral microbiome composition. We examined the relationship of both
alpha and beta diversities of the oral microbiome between 41 different variables that

FIG 1 Flowchart of sample selection from the Atlantic Partnership for Tomorrow’s Health cohort. A total of 35,577 individuals
participated in the Atlantic Partnership for Tomorrow’s Health cohort, and �9,000 individuals provided saliva samples. Of those, a
subset of 1,214 saliva samples from healthy individuals underwent 16S rRNA gene sequencing. Samples below 5,000 reads were
filtered out, and two data sets were created for discovery and validation analysis.
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TABLE 1 Cohort characteristic and variables analyzed for oral microbiome composition

Parametera Overall value

No. of participants 1,214

Rural/urban [no. (%)]
Urban 1,050 (86.5)
Rural 126 (10.4)
NA 38 (3.1)

Province [no. (%)]
New Brunswick 124 (10.2)
Nova Scotia 1,070 (88.1)
Prince Edward Island 16 (1.3)
NA Data repressed

Economic region (no.)
Annapolis Valley 52
Cape Breton 142
Edmundston–Woodstock Data repressed
Fredericton–Oromocto 44
Halifax 773
Moncton–Richibucto 32
North Shore 41
Prince Edward Island 16
Saint John–St. Stephen 45
Southern Shore 28

Sex [no. (%)]
Female 846 (69.7)
Male 368 (30.3)

BMI [mean (SD)] 27.30 (4.55)
Waist size [cm; mean (SD)] 90.96 (12.79)
Hip size [cm; mean (SD)] 104.29 (9.45)
Waist-hip ratio [mean (SD)] 0.87 (0.08)
Height (cm; mean [SD]) 167.06 (8.90)
Weight (kg; mean [SD]) 76.39 (14.99)
Age (yr; mean [SD]) 55.39 (7.80)
Fat mass [kg; mean (SD)] 25.26 (9.55)
Fat-free mass [kg; mean (SD)] 51.05 (10.87)
Body fat percentage [mean (SD)] 32.68 (8.61)
Vegetable servings [mean (SD)] 2.56 (1.98)
Fruit servings [mean (SD)] 2.00 (1.45)
Juice servings [mean (SD)] 0.69 (0.95)
Whole grain servings [mean (SD)] 2.11 (1.43)
Refined grain servings [mean (SD)] 0.67 (0.86)
Milk product servings [mean (SD)] 2.04 (1.29)
Egg servings per wk [mean (SD)] 3.25 (2.68)
Meat/poultry servings [mean (SD)] 1.53 (1.35)
Fish servings [mean (SD)] 0.51 (0.67)
Tofu servings [mean (SD)] 0.04 (0.18)
Bean servings [mean (SD)] 0.36 (0.55)
Nut/seed servings [mean (SD)] 0.69 (0.68)

Dessert frequency [no. (%)]
Never 109 (9.0)
�1 time a mo 153 (12.6)
�1 time a mo 228 (18.8)
2–3 times a mo 173 (14.3)
1 time a wk 85 (7.0)
2–3 times a wk 115 (9.5)
4–5 times a wk 58 (4.8)
6–7 times a wk 169 (13.9)
NA 124 (10.2)

Avoidance of particular foods [no. (%)]
Never 853 (70.3)
Often 11 (0.9)

(Continued on next page)
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TABLE 1 (Continued)

Parametera Overall value

Prefer not to answer 15 (1.2)
Rarely 163 (13.4)
Sometimes 52 (4.3)
NA 120 (9.9)

Oil on bread [no. (%)]
Butter 371 (30.6)
Low-fat margarine 272 (22.4)
Full-fat margarine 300 (24.7)
None 109 (9.0)
Olive oil 36 (3.0)
NA 126 (10.4)

Artificial sweeteners [no. (%)]
Almost never 976 (80.4)
About 1/4 of the time 24 (2.0)
About 1/2 of the time 16 (1.3)
About 3/4 of the time 12 (1.0)
Almost always or always 53 (4.4)
NA 133 (11.0)

Nondiet soda frequency [no. (%)]
0 days a wk 432 (35.6)
1–3 days per mo 459 (37.8)
1–5 days a wk 167 (13.8)
6–7 days a wk 27 (2.2)
NA 129 (10.6)

Diet sugar drink frequency [no. (%)]
0 days a wk 513 (42.3)
1–3 days per mo 356 (29.3)
1–5 days a wk 156 (12.9)
6–7 days a wk 57 (4.7)
NA 132 (10.9)

Soy/fish sauce usage [no. (%)]
Never at the table 424 (34.9)
Rarely at the table 441 (36.3)
Sometimes at the table 217 (17.9)
At most meals of eating occasions 9 (0.7)
NA 123 (10.1)

Salt seasoning [no. (%)]
Never 368 (30.3)
Rarely 347 (28.6)
Sometimes 219 (18.0)
Most meals 157 (12.9)
NA 123 (10.1)

Fast food frequency [no. (%)]
Never 149 (12.3)
�1 time per mo 384 (31.6)
1–3 times per mo 366 (30.1)
1–6 times per wk 191 (15.7)
1 or more times per day Data repressed
NA 122 (10.0)

Alcohol frequency [no. (%)]
Never 61 (5.0)
�1 time a mo 192 (15.8)
�1 time a mo 70 (5.8)
2–3 times a mo 171 (14.1)
1 time a wk 170 (14.0)
2–3 times a wk 259 (21.3)

(Continued on next page)
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described various demographic, lifestyle, and anthropometric measures (Table 1).
Samples were split into two different cohorts based on whether the subjects had
answered all 41 variables of interest. A total of 741 individuals answered all 41 variables
and were included in the exploratory cohort. From this cohort, we did not find any

TABLE 1 (Continued)

Parametera Overall value

4–5 times a wk 127 (10.5)
6–7 times a wk 112 (9.2)
NA 52 (4.3)

Education level [no. (%)]
High school or below 208 (17.1)
Non-Bachelors postsecondary 425 (35.0)
Bachelors 334 (27.5)
Graduate 242 (19.9)
NA Data repressed

Income [no. (%)]
Below $25,000 CAD 41 (3.4)
$25,000–$49,999 CAD 157 (12.9)
$50,000–$74,999 CAD 244 (20.1)
$75,000–$99,999 CAD 244 (20.1)
$100,000–$149,999 CAD 291 (24.0)
Greater than $150,000 CAD 179 (14.7)
NA 58 (4.8)

Sleeping trouble frequency [no. (%)]
None 104 (8.6)
Rarely 411 (33.9)
Some of the time 507 (41.8)
Most of the time 161 (13.3)
All the time 25 (2.1)
NA Data repressed

Last dental visit [no. (%)]
�6 mo ago 851 (70.1)
6 mo to �1 yr ago 221 (18.2)
1 yr to �2 yr ago 56 (4.6)
2 yrs to �3 yr ago 17 (1.4)
3 or more yr ago 24 (2.0)
NA 45 (3.7)

Sleeping light exposure [no. (%)]
Virtually no light 561 (46.2)
Some light 613 (50.5)
A lot of light 36 (3.0)
NA Data repressed

DNA extraction batch [no. (%)]
Extraction.1 85 (7.0)
Extraction.10 66 (5.4)
Extraction.11 80 (6.6)
Extraction.12 78 (6.4)
Extraction.13 85 (7.0)
Extraction.14 57 (4.7)
Extraction.15 79 (6.5)
Extraction.16 0 (0.0)
Extraction.17 67 (5.5)
Extraction.2 85 (7.0)
Extraction.3 81 (6.7)
Extraction.4 68 (5.6)
Extraction.5 85 (7.0)
Extraction.6 92 (7.6)
Extraction.7 85 (7.0)
Extraction.8 60 (4.9)
Extraction.9 61 (5.0)

aNA represents responses of prefer not to answer or missing data. CAD, Canadian dollars.
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significant associations between any of the 41 variables tested and four different
alpha diversity metrics (Faith’s phylogenetic diversity, number of ASVs, Shannon
diversity, and evenness) after correction for multiple testing using linear models
that were adjusted for DNA extraction batch (Data Set S1). We did, however, find 10
variables that were associated with differences in beta diversity as measured by
both weighted UniFrac (Fig. 3A) and Bray-Curtis dissimilarity (Fig. 3B) (q � 0.1 by
permutational multivariate analysis of variance [PERMANOVA]) (Data Set S1). We
found two additional variables that were only associated with weighted UniFrac
distances and three additional variables that were only associated with Bray-Curtis
dissimilarity (q � 0.1 by PERMANOVA). Redundancy analysis (P � 0.001 by analysis of
variance [ANOVA]) revealed that multiple anthropometric measures, such as height,
fat-free mass, refined grain servings, sleeping light exposure, and waist-to-hip ratio
were associated in similar manners. Furthermore, as expected, increases in all of these
features were inversely associated with being female (Fig. 3C). As sex plays an impor-
tant role in determining the height, fat-free mass, and waist-hip ratio of an individual,
we attempted to determine whether sex was confounding our results from these
variables. A separate analysis on weighted UniFrac distances controlling for sex indi-
cated that fat-free mass (P � 0.02, R2 � 0.0039) and waist-hip ratio (P � 0.03, R2 �

0.0039), but not height (P � 0.44, R2 � 0.0012), were significantly associated with
microbial composition despite differences in sex.

Examining the amount of variation explained by each metadata feature by itself
after controlling for DNA extraction showed small effect sizes for both weighted
UniFrac distances and Bray-Curtis dissimilarities (R2 � 0.0030 to 0.009) (Fig. 3A and B).
Of the features that were significant, sleeping light exposure explained the least
amount of variation in both weighted UniFrac distances (R2 � 0.0036) and Bray-Curtis
dissimilarity (R2 � 0.0030). We also found that fat-free mass explained the largest

FIG 2 Atlantic Canadian oral microbiome composition is dominated by the genus Veillonella and is relatively similar at the genus level but highly variable at
the ASV level. Samples were from the Atlantic Partnership for Tomorrow’s Health project (n � 1,049). Samples were subsampled to a depth of 5,000 reads. (A)
Genera that had a mean relative abundance of less than 1% were grouped into “Other.” (B) Genera were removed at different sample presence cutoffs, and
the remaining total mean relative abundance of nonfiltered genera was then calculated. (C) ASVs were removed at different sample presence cutoffs, and the
remaining total mean relative abundance of nonfiltered ASVs was then calculated.
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FIG 3 Various anthropometric, dietary, and lifestyle features are significantly associated with oral
microbiome composition. Saliva samples were from the Atlantic Partnership for Tomorrow’s Health
cohort (n � 741). Samples were subsampled to a depth of 5,000 reads. Two different metrics measuring

(Continued on next page)

Nearing et al.

September/October 2020 Volume 5 Issue 5 e00451-20 msphere.asm.org 8

https://msphere.asm.org


amount of variation in both weighted UniFrac (R2 � 0.009) and Bray-Curtis dissimilarity
(R2 � 0.006). In general, we found that the rankings of effect sizes between these two
different metrics agreed (Fig. 3A and B).

We also examined random forest machine learning classification and regression
performance for each of these significant features. We found that, overall, random
forest models performed poorly but did show slight associations between some
variables (Fig. S3). For example, the area under the receiver operating curve (AUROC)
for sex classification was 0.638, indicating slightly better than random performance.
Regression models for features such as height and age showed an R2 of 0.10 and 0.075
with a root mean standard errors of 8.629 cm and 7.635 years, respectively (Fig. S3).
Interestingly, some features performed extremely poorly, such as the number of refined
grain servings (R2 � 8.22E�6) or vegetable servings (R2 � 0.004) (Fig. S3).

Examining each significant factor in our weighted UniFrac analysis using a
backward-selected multivariate PERMANOVA, we found that 7.0% of total oral micro-
biome variation could be explained by a total of 6 significant factors, including DNA
extraction batch, despite using the same protocol, equipment, and personnel for each
round (Table S2). Interestingly, of these 6 factors, DNA extraction number explained a
considerable amount of the variation alone (4.18%) (Table S2). We found similar results
examining beta diversity variation using Bray-Curtis dissimilarity with a slightly higher
number of significant features and lower total variation explained (5.87%) (Table S3). It
should be noted that many features were highly correlated with one another (R � 0.7),
and, as such, model selection for these multivariate PERMANOVAs could have suffered
due to the collinearity of these features. However, a model containing all features that
were significantly associated with either weighted UniFrac or Bray-Curtis dissimilarity
during univariate testing explained a similar level of variation for both weighted
UniFrac and Bray-Curtis dissimilarity profiles (8.09% and 6.81%).

Redundancy analysis revealed several potential taxonomic associations with various
features (P � 0.001 by ANOVA). For example, results for the genus Megasphaera (label
58, Fig. 3C) are in the same direction as those for increasing fat-free mass, height,
waist-hip ratio, and daily refined grain servings but in the opposite direction of being
female (Fig. 3C). Another uncultured genus in the Veillonellaceae family (label 63) was
similarly grouped. The genus Parvimonas (label 38) is in a direction similar to that of
increasing age and being female. Both Lautropia (label 71) and Prevotella 2 (label 15) are
associated with increasing vegetable intake, and Neisseria (label 76) is associated with
increasing nut/seed servings and decreasing refined grain servings (Fig. 3C). The only
genus in the phylum Synergistetes that passed the 10% prevalence filtering was found
to be associated with increasing juice servings, BMI, and time since last dental appoint-
ment. Overall, we found that phyla tended to cluster together, with Firmicutes and
Proteobacteria clustering in opposite directions (Fig. 3C).

To help validate the associations we found between features and weighted UniFrac
and Bray-Curtis dissimilarities, we analyzed an additional 308 samples from a smaller
subset of the Atlantic Partnership for Tomorrow’s Health (PATH) cohort that had not
completely answered all 41 variables of interest. We found that associations between
both beta diversity metrics (weighted UniFrac and Bray-Curtis dissimilarity) and anthro-
pometric features, such as height, weight, waist-hip ratio, and fat-free mass, were
recoverable within our smaller cohort (Table 2 and Fig. S4). We were unable to recover
any significant taxonomic dietary associations within this smaller validation cohort. We
also were unable to recover taxonomic associations between lifestyle variables, such as
sleeping light exposure or the time since an individual’s last dental visit. The inability

FIG 3 Legend (Continued)
beta diversity were tested, weighted Unifrac distances (A) and Bray-Curtis dissimilarity (B), using a
PERMANOVA test while controlling for differences in DNA extraction and correction for false discovery
(q � 0.1). Relationships between significant features, samples, and genera that were present in at least
10% of samples were then visualized by redundancy analysis (RDA) on center-log-ratio genus count
tables. (C) Genera are colored by phylum and labeled numerically.
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to recover these differences could have been due to the highly reduced sample size
within this validation cohort.

The abundance of various oral bacterial genera and ASVs are associated with
anthropometric measurements and dietary choices in healthy individuals. We next
decided to identify genera that were associated with the 15 features previously
identified as being associated with beta diversity in either the weighted UniFrac or
Bray-Curtis dissimilarity analysis. We found 42 genera (Fig. 4A) and 42 ASVs (Fig. 4B) that
had abundance profiles that were significantly associated with at least one of these
features after controlling for DNA extraction. We found that sex, height, and fat-free
mass shared similar genera and ASV associations. To control for the possibility of sex
confounding our height and fat-free mass associations, we reanalyzed the data con-
trolling for sex. We found that no ASVs or genera were significantly associated with
fat-free mass after controlling for sex, and only 3 genera, “Chloroplast,” “unclassified
Burkholderiaceae,” and Treponema 2, were significantly associated with height. Inter-
estingly, two of these three genera were not previously associated with height in our
initial analysis. These results suggest that many of these features associated with height
or fat-free mass are driven by differences in sex. To test this, we also tested for
differences in sex while controlling for both fat-free mass and height. Interestingly, we
did not find any significantly associated ASVs and only three significantly associated
genera, “Defluvittaleaceae UCG 011,” Leptotrichia, and Treponema 2.

We did not find any other features that shared similar patterns of taxonomic
associations, but there were multiple genera with multiple feature associations. The
genus Prevotella 7 had the highest number of features (5) associated with its relative
abundance, including four anthropometric measurements (height, fat-free mass, waist
size, waist-hip ratio, and weight) and sex. Interestingly, BMI was not significantly
associated with any genera or ASVs despite many other anthropometric measures
showing strong taxonomic signals. We were unable to identify any single ASVs asso-
ciated with waist size and weight but were able to identify a small number of genera,
including Prevotella 7, which was related to both, and Mogibacterium, which was
associated with waist size. We also found that for some phyla, many taxa with
significant associations had the same effect size direction. For example, genera in the
Actinobacteria or Proteobacteria phyla tended to be negatively associated with fat-free
mass, height, and being male. We also found several genera in the Proteobacteria
phylum that were significantly associated with the amount of time since an individual’s
last dental appointment.

In contrast, examining the ASVs associated with each feature, we found that in a
small number of cases ASVs in the same genera had opposite directions of association
to the same features. For example, two ASVs classified as uncultured Rothia both were
significantly associated with age but in opposite directions, suggesting that lower

TABLE 2 Validation of beta diversity results

Metric and feature P value R2

Weighted UniFrac
Waist-hip ratio 0.0190 0.0116
Height 0.001 0.0117
Weight 0.010 0.0102
Fat-free mass 0.002 0.0172
Sex 0.0390 0.0080
Age 0.0120 0.0105

Bray-Curtis
Waist-hip ratio 0.0140 0.0072
Height 0.0030 0.0118
Weight 0.0020 0.0096
Fat-free mass 0.0040 0.0110
Waist size 0.0210 0.0065
Age 0.0020 0.0106
Sex 0.0380 0.0059
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FIG 4 Differentially abundant genera and ASVs whose abundance profiles are associated with features
found to influence oral microbiome composition. Genera (A) and ASVs (B) meeting a false discovery rate
of q � 0.1 using the Corncob R package, which uses beta-binomial regressions. Each feature’s false

(Continued on next page)
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taxonomic resolution is required to identify some associations. Furthermore, we also
identified cases were ASVs that were associated with a feature were classified in a
genus that was found not to be related to that feature. For example, uncultured
Selenomonas ASV-4ca02 was strongly associated with being male, even though this
entire collective genus was not (Fig. 4). Further examples include ASV-e2cc4, which was
classified in the genus Alysiella and significantly associated with reduced refined grain
servings. Examples of the opposite occurrence are also present, with genera such as
Mycoplasma being associated with age, but no single ASV for this association could be
identified.

We further validated our differential abundance analysis using our smaller validation
data set and found 8/17 genera associated with sex, 8/16 genera associated with
fat-free mass, 5/15 genera associated with height, and 3/11 genera associated with age
were recoverable (Fig. S5A). Additionally, the negative association between Prevotella 2
and waist-hip ratio was also verified within this data set. Furthermore, several associ-
ations between ASVs and features such as sex (5/14), height (4/12), fat-free mass (2/3),
and sleeping light exposure (1/2) were also found within this smaller validation data set
(Fig. S5B). All significant effect sizes that were recovered in the validation data set
except for one, between sleeping light exposure and ASV-d4746 Streptococcus, re-
mained in the same direction as the original cohort, indicating relationships that were
robust to sample choice.

Predicted microbial pathway abundances reveal multiple pathways associated
with anthropometric, dietary, age, and sex features. Microbial pathway abundances
were predicted using PICRUSt2 (30) to determine potential associations between
pathway abundances and features previously identified to be significantly associated
with differences in beta diversity. Differential analysis between features and predicted
pathway abundances were done using Corncob with Benjamini-Hochberg-corrected P
values at an alpha of 0.05, and associations with effect sizes under |0.05| log odds were
filtered out. We found 9/15 features originally associated with beta diversity metrics to
have at least one predicted pathway association (Fig. 5). Of these features, we found
that refined grain servings had the largest number (N � 33) of predicted pathway
associations. Of these associations, many were negatively associated with increasing
refined grain intake, including various tricarboxylic acid cycle derivatives, glucose and
xylose degradation, 2-methylcitrate cycle, and heme biosynthesis. Furthermore, only a
smaller number of pathways were associated with increasing refined grain intake, such
as phylloquinol biosynthesis and CMP-legionanimate biosynthesis (Fig. 5).

Only one pathway, aerobic respiration I (cytochrome c), was predicted to be
associated with increasing vegetable servings, while six pathways were associated in
the opposite direction. These pathways included fermentation of carbohydrates into
lactate, lactic acid, ethanol, acetate, and formate as well as the biosynthesis of pepti-
doglycan. We found only one association with salt usage (L-tryosine degradation) and
did not find any predicted associations with juice serving intake.

A number of predicted pathway abundances were also associated with various
anthropometric features, with waist-hip ratio having the highest number of predicted
associations (N � 15) and fat-free mass having only one predicted association (GDP-D-
glycero-�-D-mannose-heptose biosynthesis). We also found a small number of pre-
dicted pathway abundances associated with age (N � 7) and sex (N � 2).

Validation analysis on the second smaller data set was only able to validate a
minority of predicted pathway associations, many of which were associated with an
individual’s waist-to-hip ratio (8/15) (Fig. S6). Only 4 of the original 33 predicted
pathway associations with refined grain intake were verified within this cohort. These

FIG 4 Legend (Continued)
discovery rate was corrected separately, and each was tested to control for differences in DNA extraction
and differential variability within that feature. Ordinal variables were converted into a ranked scale for
testing, and all features except for sex were scaled. The asterisk indicates that sex was treated as a
categorical value; therefore, the magnitude is not directly comparable to other log odd ratios.
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FIG 5 Various predicted pathway abundances are associated with features significantly associated with overall microbiome composition. Pathway
abundances were predicted from 16S rRNA gene sequencing data using PICRUSt2. Predicted pathway abundances meeting an FDR of �0.05 and an effect
size of |0.05| log odds were considered significant associations using the Corncob R package. Each feature’s false discovery rate was corrected separately, and

(Continued on next page)
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pathways included L-tyrosine degradation, ADP-L-glycero-�-D-manno-heptose biosyn-
thesis, phylloquinol biosynthesis, and 1,4-dihydroxy-2-naphthoate biosynthesis. Three
out of six pathways associated with height and four out of seven pathways associated
with age were also found to be significant within the smaller validation data set
(Fig. S6).

DISCUSSION

Our analysis of 1,049 healthy (Fig. 1) individuals from Atlantic Canada revealed that
much of the oral microbiome of Atlantic Canadians was made up of 11 “core” genera
that belong to six different phyla (Actinobacteria, Fusobacteria, Proteobacteria, Firmic-
utes, Bacteroidetes, and Fusobacteria). Interestingly, some of these core genera, found in
99% of all samples, were found in relatively low abundance (�2% mean abundance),
indicating that bacteria within the oral microbiome can be consistently observed with
minor contributions (see Table S1 in the supplemental material). In contrast, the
composition at the ASV level had only 3 ASVs being present in 99% of samples and only
contributing 5.17% of the total oral microbiome composition on average. Overall, these
results indicate that individuals tend to share similar genera within the oral cavity, but
the species/strains shared between individuals can be highly variable. These findings
are in line with previous work from the Human Microbiome Project that found the oral
microbiome to be relatively similar between individuals at the genus level (1).

We found that various anthropometric and lifestyle features were significantly
associated with overall oral microbiome composition; however, they explained only a
small amount of total oral microbiome variance while controlling for DNA extraction
batch (5.87 to 7.00%) (Tables S2 and S3). We found that fat-free mass explained the
largest amount of variance (0.6 to 0.9%) (Fig. 3A and B) of all biological features. While
this feature had many differentially abundant genera and ASVs associated with it, we
were unable to recover any of them after controlling for differences in sex. This
indicates that these associations could be driven by sex and not underlying fat mass;
however, we were also unable to recover many relationships between sex and taxo-
nomic abundance while controlling for fat-free mass, indicating that both of these
factors significantly confound the other. However, despite these issues there is previous
evidence to suggest that some bacteria are related to differences in body size. A study
in children found reduced abundance of Veillonella, Prevotella, Selenomonas, and
Streptococcus in obese children (31). Interestingly, in our adult population we found
similar trends, with members of the Veillonella family being positively associated with
increasing fat-free mass and members of the Prevotella genus also being linked with
higher fat-free mass. Another publication on the Southern Community Cohort Study
found that both Granulicatella and Gemella were associated with obesity (27), which we
also found within our cohort at both the genus and ASV level. One interesting result
from our study was our inability to identify any genera or ASVs linked to BMI despite
numerous relationships between anthropometric measurements being identified.
These results indicate that future studies should include sex and other measurements
of body composition, such as lean body mass, when looking at relationships between
the microbiome and obesity.

We found two genera, Defluvittaleaceae UCG-011 and an uncultured genus from
Veillonellaceae, that were strongly associated with being male (Fig. 4A). However,
neither of these associations was recovered in our validation cohort, indicating that
they could either be false positives or require a larger sample size to recover due to
their low mean relative abundance (0.0042% and 0.063%, respectively). Despite this, we
were still able to recover eight genus-level associations in our validation data set
(Fig. S5A); however, only a few of these associations match those that were previously

FIG 5 Legend (Continued)
each was tested to control for differences in DNA extraction and differential variability within that feature. Ordinal variables were converted into a ranked
scale for testing, and all features except for sex were scaled. The asterisk indicates that sex was treated as a categorical value; therefore, the magnitude is
not directly comparable to other log odd ratios.
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reported. Renson et al. found two genera, Lactobacillus and Actinobacillus, to be higher
in males, which we did not find in our study (21). This could have been due to multiple
differences, including sampling procedures, systemic protocol bias, or the composi-
tional nature of microbiome data (32). Raju et al. found that there was a high relative
abundance of Haemophilus in females, which we also found in our study; however, they
also found Oribacterium to be increased in females, which was opposite from what was
found in this study (31). Differences between these studies and ours can be attributed
in part to differences in sample collection procedure and sequencing primers used,
highlighting the technical biases in the field (33).

We were unable to recover any taxonomic relationships between dietary features
within our validation data set; however, refined grain servings per day had one of the
largest impacts on overall oral microbiome composition and microbial pathway poten-
tial in our initial analysis. During this initial analysis, we found that bacteria from four
genera, Bergeyella, Parvimonas, Veillonella, and Neisseria, decreased in relative abun-
dance with increasing refined grain intake (Fig. 4). Interestingly, refined grain intake had
a strong association with inflammatory bowel disease (IBD) in a previous analysis of this
cohort (34), and alterations in the oral microbiome have been linked to IBD in the past
(35). Work by Said et al. found multiple genera in differential abundance between
individuals with and without IBD, including the increased presence of Veillonella in IBD
patients (14), which we found to be linked positively with refined grain intake.

We found that of all features significantly associated with overall oral microbiome
composition, refined grain intake had the largest number of predicted pathway asso-
ciations (Fig. 5). Many of these pathways were related to metabolic functions and the
biosynthesis of various cofactors and metabolic building blocks, indicating a shift in
metabolic potential within the microbial community. This shift is not surprising given
that differing levels of refined grain intake could impact the availability of various
carbohydrates to oral microbiota. However, it should be noted that only a small number
of these pathway associations were verified within our small validation data set.

Other dietary factors we found linked to overall oral microbiome composition in our
original analysis include both juice servings and vegetable servings. However, we were
only able to find a small number of genera, ASVs, and predicted pathway abundances
linked to vegetable serving intake. We found a number of fermentation pathways were
predicted to be associated with reduced vegetable intake, indicating a shift in anaer-
obic activity. While we found a small number of taxonomic associations with juice
serving intake, we found no predicted pathway associations. Furthermore, we were
unable to recover any taxonomic or pathway associations for both vegetable intake or
juice serving intake in our validation data set, indicating the possibility of a false
positive or the requirement of a large sample size to see these effects. Previous
work within the field has found conflicting evidence on the role of diet impacting
oral microbiome composition and may be reflective of different dietary assessment
methods.

Looking at all features that were significantly associated with oral microbiome
composition together in a single model, we were only able to explain a small portion
of the total variance between samples (5.87 to 7.00%). This indicates that while many
of these features are significantly related to microbial composition, each one by itself
tends to cause only small shifts in overall microbial composition. Furthermore, a
majority of the variance accounted for was due to differences in DNA extraction date.
This shows that slight technical variations, such as the time when DNA extraction was
done, can have large impacts on sample composition, emphasizing the need to control
for these technical variations during large population-based studies.

One large limitation to our study was our lack of detailed dental history information
from participants. While we did record how recently each individual last visited the
dentist, we were unable to retrieve detailed information on dental health, which has
been found to have dramatic impacts on oral microbiome composition (17). Further-
more, our study was also unable to capture potential variance that could have been
attributed to the time of sampling. Various studies have shown that oral microbiome
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composition can vary with regard to collection time due to events such as teeth
brushing and eating throughout the day (36). These could explain some of the missing
variation that was not accounted for in our study; however, it is unlikely to explain all
93.00%, indicating we are still missing a suitable amount of information on what
determines an individual’s oral microbiome composition.

In conclusion, our study indicates that the healthy oral microbiome is relatively
similar between individuals at the genus level and is impacted very little by any one
factor. Future studies that attempt to identify oral microbial biomarkers associated with
disease may be encouraged by the lack of major confounding variables and may be
justified in controlling only for sex, body composition, oral health, and basic dietary
information.

MATERIALS AND METHODS
Study design and population. The current study includes the analysis of saliva samples from the

Atlantic Partnership for Tomorrow’s Health (PATH) study. Atlantic PATH is part of the Canadian Partner-
ship for Tomorrow’s Health (CanPath) project, a pan-Canadian prospective cohort study examining the
influence of environmental, genetic, and lifestyle factors on the development of chronic disease (37). The
applicable provincial and regional ethics boards approved the study protocol, and all participants
provided written informed consent prior to participation. The primary inclusion criteria were that
participants were aged 30 to 74 years at the time of recruitment and a resident in one of the Atlantic
Canadian provinces (Nova Scotia, New Brunswick, Prince Edward Island, and Newfoundland and Labra-
dor). Recruitment and baseline data for all participating regions were collected between 2000 and 2019.
Details on participant recruitment and a descriptive cohort profile have been published elsewhere (37).
The questionnaire included sociodemographic information, health information, behaviors, environmen-
tal factors, and self-reported anthropometric information. Participants also had anthropometric measures
(height, weight, waist and hip circumferences, body composition, blood pressure, grip strength, and
resting heart rate) and biological samples (blood, urine, saliva, and toenails) collected. Approximately
9,000 participants in the Atlantic PATH cohort provided a saliva sample. Participants were instructed to
refrain from eating, smoking, or chewing gum for at least 30 min prior to oral specimen collection. Oral
saliva specimens were collected during normal clinic hours, 9:00 a.m. to 7:00 p.m., after completion of the
approximately 1-h interview and registration process. Oral samples (3 ml) were collected in sterile 50-ml
conical tubes after rinsing with water. Samples were stored at 4°C and batch shipped on ice to the central
processing facility at the QEII Health Sciences Centre in Halifax, Nova Scotia. Samples were processed
within 24 h of collection, aliquoted into cryovials, and stored at �80°C until analysis.

The current analysis includes a total of 1,214 saliva samples from healthy Atlantic Canadians living
within the provinces of Nova Scotia, New Brunswick, and Prince Edward Island. Based on self-reported
data, participants were defined as healthy if they had not been diagnosed with any of the following
conditions: hypertension, myocardial infarction, stroke, asthma, chronic obstructive pulmonary disease,
major depression, diabetes, inflammatory bowel disease, irritable bowel syndrome, chronic bronchitis,
emphysema, liver cirrhosis, chronic hepatitis, dermatologic disease (psoriasis and eczema), multiple
sclerosis, arthritis, lupus, osteoporosis, and cancer. A total of 165 of these samples were removed due to
insufficient sequencing depth, and of the remaining 1,049 samples, an additional 308 were removed due
to incomplete answering of the 41 variables examined in this study. These 308 samples were then used
in validation analysis (details below) to confirm findings within the larger 741-participant data set.

Sociodemographic, lifestyle, and anthropometric variables. Questionnaires were used to collect
sociodemographic and lifestyle variables. Self-reported variables included age, sex, education level,
household income, rural/urban status, province, dental visits, sleep patterns, alcohol consumption,
smoking status, and dietary variables, such as food avoidance, the use of specific types of fat/oil, artificial
sweetener usage, the frequency of dessert, soda drinks, soy/fish sauce, salt seasoning, and fast food, as
well as servings of vegetables, fruit, juice, whole grains, refined grains, dairy products, eggs, fish, tofu,
beans, and nuts/seeds. Anthropometric measures were collected by trained personnel in assessment
centers. Waist and hip circumferences were measured using Lufin steel tape. Height was measured by a
Seca stadiometer. Height and weight measures were used to calculate body mass index (BMI; weight, in
kilograms, divided by height, in meters squared). Body weight, fat mass, and fat-free mass were
measured using the Tanita bioelectrical impedance device (Tanita BC-418; Tanita Corporation of America
Inc., Arlington Heights, IL). Table 1 lists all variables that were used for analysis.

Oral microbiome 16S rRNA sequencing. Frozen saliva samples were thawed at room temperature
and aliquoted into 96-well plates. DNA from samples was then extracted using a QIAamp 96 PowerFecal
QIAcube HT kit by following the manufacturer’s instructions using a TissueLyser II and the addition of
Proteinase K. Sequencing of the 16S rRNA gene was performed by the Integrated Microbiome Resource
at Dalhousie University. The V4-V5 region was amplified from extracted DNA in a PCR using 16S rRNA
gene V4-V5 fusion primers (515FB–926R) (38) and high-fidelity Phusion polymerase. Amplified DNA
concentrations were then normalized and pooled to be sequenced on an Illumina MiSeq. The sequencing
of samples was conducted over 6 Illumina MiSeq runs producing 300-bp paired-end reads.

16S rRNA gene sequence processing. Primers were removed from paired-end 300-bp sequences
using cutadapt (39). Primer-free reads were then stitched together using the QIIME2 (v. QIIME2-2018.8)
(40) VSEARCH (41) join-pairs plugin. Stitched reads were then filtered using the QIIME2 plugin q-score-
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joined using the default parameters. Quality filtered reads were then input into the QIIME2 plugin Deblur
(42) to produce amplicon sequence variants (ASVs). Trim length was 360 bp, and the minimum number
of reads required to pass filtering was set to 1. Amplicon sequence variants that were found in an
abundance of less than 0.1% of the mean sample depth (18) were then removed from analysis. This is
to keep in line with the approximate bleed-through rate on an Illumina MiSeq sequencer. After filtering,
a total of 13,248 ASVs were recovered. Representative sequences were then placed into the Greengenes
13_8 99% (43) reference 16S rRNA tree using the QIIME2 (2019.7) fragment insertion SEPP (44, 45) plugin.
Rarefaction curves were then generated using the QIIME2 alpha-rarefaction plugin, and a suitable
rarefaction depth of 5,000 was chosen for diversity analysis based on when the number of newly
discovered ASVs came to a plateau (see Fig. S1 in the supplemental material). Representative sequences
were then assigned taxonomy using a custom-trained V4-V5 16S rRNA naive Bayesian QIIME2 classifier
(46) trained on the 99% Silva V132 database (47).

Oral microbiome composition analysis. Taxonomic composition tables were generated using the
QIIME2 taxa plugin and collapsed at the genus level. All samples over 5,000 reads in depth (1,049) were
subsampled to a depth of 5,000 reads each, and taxa that contributed less than a mean relative
abundance of 1% were grouped together in the “Other” category. The composition stacked bar chart was
then generated in R using ggplot2 (48), and the x axis was ordered based on the PC1 weighted Unifrac
coordinates of each sample.

Core oral microbiome analysis. Taxonomic tables subsampled previously at 5,000 reads were
collapsed at the genus and ASV level using QIIME2. To examine the mean relative abundance explained
by genera/ASVs at different prevalence levels, we removed genera/ASVs that were not present in various
numbers of samples (5 to 99%). After removal of these genera/ASVs, the remaining total mean relative
abundance of all genera/ASVs that passed the filtering parameter was calculated.

Oral microbiome alpha diversity analysis. Alpha diversity metrics were generated using QIIME2
(v2019.7) and the previously generated tree containing both representative sequences and reference
sequences. All samples were subsampled to a depth of 5,000 reads. Association between four different
alpha diversity metrics (Faith’s phylogenetic diversity [PD], Shannon diversity, evenness, and number of
ASVs) was then tested using general linear models while controlling for DNA extraction. A base model
containing only DNA extraction as a covariate and a testing model containing DNA extraction and the
covariate of interest were then compared using an ANOVA, and P values were recorded. Recorded P
values were then corrected for false discovery (Benjamini and Hochberg [49]) with a chosen alpha of
q � 0.1.

Oral microbiome beta diversity analysis. Beta diversity metrics were generated using QIIME2 and
the previously generated phylogeny. All sequences were subsampled to a depth of 5,000 reads based on
the plateauing stage of rarefaction plots (Fig. S1). Associations between two different beta diversity
metrics (weighted UniFrac distance and Bray-Curtis dissimilarity) were then tested using a PERMANOVA
(adonis2 function in Vegan [50]) while controlling for DNA extraction. Marginal P values were then
corrected for false discovery (Benjamini and Hochberg), and an alpha value of q � 0.1 was chosen.
Significant features from univariate analysis were then included in a single multivariate model that
underwent backwards covariate selection, where each covariation with the highest P value was removed
from the model until all features were found to be significant (P � 0.05). Additional testing using adonis2
on fat-free mass and height were done while controlling for both sex and DNA extraction. Finally, overall
relationships between taxa, metadata, and samples were visualized with a redundancy analysis triplot.
This plot was constructed using the rda function within the vegan R package. Within this function,
nonrarified center-log-ratio genera count tables were filtered for features with at least 10% prevalence
and then used as the response variable within the redundancy analysis (RDA) model. Each feature
previously associated with either weighted UniFrac or Bray-Curtis dissimilarity profiles were input as
explanatory variables within the RDA model. The significance of the RDA model was checked using the
function anova.cca within the vegan R package. Finally, visualization of the resulting RDA model was
done with the R package ggord (51) using symmetrical species and site scaling.

Differential abundance analysis. Differential abundance analysis was conducted using the Corncob
(52) (v 0.1.0) and Phyloseq (53) R packages. A genus-level taxonomic table was generated using QIIME2
(2019.7), and genera that were not found in at least 10% of samples were removed. The 15 covariates
that were found to be significantly associated with either weighted UniFrac or Bray-Curtis dissimilarities
were chosen for testing. The testing of each covariate was done using the “differentialtest” function in
the Corncob package while controlling for differences in DNA extraction and differential variability across
DNA extraction and the covariate of interest. Heatmaps were then constructed containing any genera/
ASVs that were significantly associated with at least one of the covariates that were tested.

Prediction of microbial pathway abundances using Picrust2. Amplicon sequence variant abun-
dance tables were rarified at a depth of 5,000 reads and input into the picrust2_pipeline.py script to
generate predicted microbial pathway abundances. MetaCyc pathway identifiers were then mapped to
their respective pathway names using the picrust2 add_descripition.py script. Differential abundance
analysis of predicted pathway abundances using the R package Corncob was done in the same manner
as that previously explained for taxonomic data. Only features that were found to be significantly
associated with weighted UniFrac or Bray-Curtis dissimilarities were tested. DNA extraction batch and
differential variability within the tested feature were controlled for as previously described, and P values
were corrected using Benjamini-Hochberg false discovery correction (49). An alpha value of 0.05 was
chosen for corrected P values, and pathways with an effect size lower than |0.05| log odds were
filtered out.
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Validation analysis. A total of 308 subjects had not completely answered all 41 metadata variables
of interest and, therefore, were removed from the original analysis. This smaller data set was used to test
our previous results by removing samples during testing of each covariate that had not answered that
question on the questionnaire. Both beta diversity analysis and differential abundance analysis on taxa
and pathways were carried out in the same manner as that previously explained. Both beta diversity
metrics using PERMANOVA tests and differential abundance analysis using Corncob were done in a
univariate fashion while also controlling for DNA extraction batch. Furthermore, only features/taxa that
were originally identified as being significantly associated with oral microbiome composition in our initial
cohort were tested. As there was previous evidence that these features were associated with that
covariate/metric, P values were not corrected for false discovery but an alpha value of 0.05 was chosen.
Furthermore, to keep with the original pathway analysis, only pathways that had an effect size of |0.05|
log odds in the discovery cohort were tested for differential abundance in the validation cohort.

Random forest model training and validation. Nonrarified ASV abundances were converted into
relative abundances and used to train random forest classification and regression models for each feature
that was significantly associated with either weighted UniFrac or Bray-Curtis dissimilarities. An optimal
mtry parameter was chosen using 3-fold repeated cross validation within the caret R package (54).
Trained models for each feature were then validated on the holdout validation data set to determine
model performance. Model performance for classification was visualized using the PRROC R package (55),
and R2 performance of regression models was determined using the postResample function within the
caret R package.

Data availability and materials. All sequencing data have been uploaded to the European
Nucleotide Archive and are available under the accession number PRJEB38175. Code used to analyze all
data is available at https://github.com/nearinj/Nearing_et_al_2020_Oral_Microbiome. Deidentified meta-
data used in this project can be accessed by contacting the Atlantic Partnership for Tomorrow’s Health
project.
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