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Abstract: The proprotein convertase subtilisin/keying 9 (PCSK9) is a serine protease that has gained
importance in recent years as a drug target, mainly due to its effect on cholesterol metabolism in
promoting the degradation of the low-density lipoprotein receptor (LDLR). However, this protease
may also play an important role in lipid-independent reactions, including the process of thrombo-
genesis. Considering this, we reviewed the effects and implications of PCSK9 on platelet function
and blood coagulation. PCSK9 knockout mice exhibited reduced platelet activity and developed less
agonist-induced arterial thrombi compared to the respective control animals. This is in line with
known research that elevated blood levels of PCSK9 are associated with an increased platelet reactiv-
ity and total number of circulating platelets in humans. Moreover, PCSK9 also has an effect on crucial
factors of the coagulation cascade, such as increasing factor VIII plasma levels, since the degradation
of this blood clotting factor is promoted by the LDLR. The aforementioned pleiotropic effects of the
PCSK9 are important to take into account when evaluating the clinical benefit of PCSK9 inhibitors.
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1. Introduction

Proprotein convertase subtisilin/kexin type 9 (PCSK9) is a serine protease that plays
an important role in lipid metabolism by promoting endosomal and lysosomal degradation
of the low-density lipoprotein (LDL) receptor (LDLR). This leads to an elevation of plasma
LDL cholesterol (LDL-C), enhancing the process of atherogenesis [1–4]. The gain of function
mutations of the coding gene for PCSK9 have been associated with hypercholesterolemia,
and, therefore, with a higher risk of coronary artery disease [5–7]. However, the levels
of PCSK9 correlated with the rate of cardiovascular events independent of the LDL-C
concentrations, which suggests that PCSK9 may play an important role for cardiovascular
biology besides its effect on lipid metabolism [3,8,9]. Over the years, pleiotropic effects of
PCSK9 beyond those on LDL-C metabolism have been postulated [10]. These comprise
effects on vascular inflammation, inflammatory cell recruitment [11], and tumor growth [12].
PCSK9 is expressed not only in the liver on hepatocytes but also on a variety of different
cells within the small intestine, kidney, pancreas, adipose tissue, and brain, as well as on
the arterial wall cells, such as on endothelial (EC) and smooth muscles cells (SMC) [12–14].

Although the importance of PCSK9 as a cardiovascular risk factor has been mainly
attributed to its effects on the LDL-C and, subsequently, oxidized LDL (OxLDL), which
contributes to plaque formation [5], emerging evidence suggests an important impact of
PCSK9 on platelet function and on coagulation factors, thereby modulating thrombus
formation [5,15].

When addressing a possible effect of PCSK9 inhibition on platelet function, the ques-
tion whether the inhibition of PCSK9 directly affects the process of thrombogenesis or
indirectly by lowering the LDL-C and other lipoprotein levels arises. In this review, we
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focused on the effects of PCSK9 on platelet function and coagulation cascade and describe
the possible underlying pathomechanisms. For this purpose we conducted a systematic
search of literature on PubMed with the following MeSH terms: “PCSK9” AND (“platelet
function” OR “thrombosis” OR “coagulation” OR “tissue factor” OR “von Willebrand
Factor” OR “thrombin” OR “FVIII”). The articles obtained from the last twenty years were
reviewed and the most important data were extracted and used for the review in order to
describe the impact of PCSK9 inhibition on the process of thrombogenesis.

2. Effect of PCSK9 on the Vascular Wall in Relation to Atherothrombosis

The process of atherosclerosis usually ends in the generation of occlusive thrombi on the
ruptured or eroded plaque or endothelium—a process known as atherothrombosis [16–18].
Platelets and elements of the coagulation cascade, alongside inflammatory alterations, are
essential for this process [19–21]. PCSK9 plays an important role in the inflammation
within the vascular-wall [2] and, as we will review shortly, can also affect both platelet
function and coagulation, thereby contributing to atherothrombosis by affecting these three
aforementioned elements.

In addition to its effects on cholesterol metabolism, PCSK9 has been shown to trigger
pro-inflammatory alterations, independent of its effects on LDL-C [22]. PCSK9 stimulates
the secretion of pro-inflammatory cytokines and chemokines from macrophages, and
this process is mainly mediated by the LDLR [23]. The LDL-C uptake into monocytes,
together with these pro-inflammatory changes, enhances the foam cell formation within
the vascular-wall, contributing to the atherogenesis [2,24,25]. In addition to LDLR, the
low-density lipoprotein receptor related protein (LRP-1) is another receptor involved in
atherogenesis [26]. In a murine model, LDLR −/− mice that received a bone marrow
transplantation from mice with selective deletion of LRP-1 in macrophages showed an
increase in atherogenesis compared to mice that received normal bone marrow [27]. Since
PCSK9 also downregulates the LRP-1 expression by promoting its degradation [28,29], this
serine protease might affect the degree of inflammation in the vascular-wall via both LDLR
and LRP-1 receptors.

Regarding the expression of PCSK9 in the atherosclerotic lesions, an interplay between
PCSK9 expression and TLR4, which is the receptor of lipopolysaccharide (LPS) and a
member of the Toll-like receptor (TLR) family, has also been observed [30]. In an apoE
KO mouse model, Tang et al., found that by silencing the PCSK9 gene, the process of
atherosclerotic lesion formation under a Western diet and the expression of inflammatory
markers in the atherosclerotic aortas were both suppressed [31]. As a mechanism for the
PCSK9 induced inflammatory response, the activation of the TLR4/NFκB pathway by
PCSK9 was proposed [31]. Moreover, LPS has been recognized as a strong PCSK9 inducer
via stimulation of TLR4/MyD88/NFκB signalling [32,33]. Another factor that upregulates
the PCSK9 expression in the ECs and SMCs is the low shear stress conditions [32,33]. Under
low shear stress conditions, the generation of reactive oxygen species (ROS) was enhanced
and the presence of ROS even further increased the PCSK9 expression on the ECs and
SMCs [33].

Furthermore, treatment with PSCK9 inhibitors, besides reducing the atherosclerotic
plaque, also directly led to a reduction in arterial wall inflammation of the carotid artery
when compared to the placebo [23]. This reduction in vascular-wall inflammation was
independent from the alterations in circulating inflammatory markers [34]. Overall, the data
suggest that PCSK9 plays an important role for the pathogenesis of atherothrombosis, not
only by affecting platelets but also due to its pro-inflammatory effects, thereby perpetuating
inflammatory stress on the vascular-wall.

3. Overview of the Effect of Lipoproteins on Platelets and Coagulation

Several studies have shown that hyperlipidemia is associated with hypercoagulability,
and carries an increased risk of thrombosis [35]. Markers of platelet activation, such as
increased mean platelet volume, positively correlate to cholesterol levels [36]. The increase
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in the LDL/HDL ratio, the apoB/apoA ratio, and the level of Lp(a) are all associated with
an increased risk of venous thromboembolism [37,38]. Numerous studies suggest that the
treatment of hyperlipidemia, especially with statins, reduced the risk of thrombosis [39–41].
Nevertheless, these effects may not only be due to the specific lipid lowering drug, but also
to other underlying pathomechanisms [37].

Several mechanisms explain the effect of lipoproteins on platelet reactivity and hemosta-
sis. First of all, upon exposure to oxidized low-density lipoproteins (OxLDL) or oxi-
dized phospholipids (OxPL), platelets become activated [42] through their recognition
by CD36 [43] or lectin-like oxidized LDL receptor 1 (LOX-1) [42,44,45]. Simultaneously,
activated platelets contribute to the generation of OxLDL, which ends up propagating
even more platelet activation and thrombus formation [45]. NOX-2 (the catalytic unit of
NADHP oxidase) derived reactive oxygen species (ROS) is the enzymatic pathway via
which platelets propagate the oxidation of lipoproteins [45,46]. Second, products of lipid
peroxidation present in hyperlipidemia activate platelets by inducing the formation of
the TLR1/TLR2 complex [47]. Third, Lp(a) has been identified as a carrier for the OxPL,
which—as mentioned before—can activate platelets via the scavenger receptor CD36 [48].
However, regarding the direct effect of Lp(a) on platelet activation, the studies are con-
troversial [49,50]. Fourth, it has been described that OxLDL also induces the expression
of tissue factor (TF) in human monocytes in a TLR4-dependent way [51]. Additionally,
finally, it has been demonstrated that, when exposed to myeloperoxidase oxidized LDL
(MoxLDL9), endothelial cells have also shown to have less fibrinolysis capacity [52].

Another way in which lipoproteins can affect the haemostasis process is through
the antithrombotic effects of HDL [53]. By binding to apoER2′ and to the scavenger
receptor class B type I (SR-BI), HDL has been shown to induce pathways that reduce
platelet activation [54,55]. HDL can also diminish platelet hyperreactivity by limiting
platelet cholesterol overload via SR-BI [56]. Finally, HDL levels correlate inversely to
plasminogen activator inhibitor-1 (PAI-1), suggesting a stimulation of an endogenous
fibrinolytic process [57].

4. Impact of PCSK9 on Platelets and Blood Coagulation
4.1. Effect of PCSK9 on Platelet Structure and Function

An association between PCSK9 levels and markers for platelet activation has been
described in several studies, performed both in humans and murine models. The link
between PCSK9 and platelets has been proposed to contribute to thrombogenesis (Figure 1).
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In a FeCl3- induced carotid artery injury mouse model, PCSK9 −/− mice formed
mainly non-occlusive unstable thrombi in comparison to PCSK9 +/+ mice. These findings
suggested that PCSK9 deficiency was associated with impaired platelet function. Fur-
thermore, platelet expression of P-selectin, levels of activated GP IIb/IIIa, and circulating
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platelet-leucocytes aggregates in response to injury were lower in PCSK9 −/−mice than
in the non-mutant controls, pointing to a mechanism by which the loss of PCSK9 protects
against coronary artery disease [58].

The PCSK9-REACT study evaluated patients with an acute coronary syndrome, who
received ticagrelor or prasugrel after percutaneous coronary intervention (PCI). After
quantifying PCSK9 levels and the degree of platelet reactivity by impedance aggregometry,
a positive correlation was found between those two markers and the rate of major adverse
cardiovascular events one year after inclusion into the study [59]. On the other hand,
PCSK9 levels were also related to the cardiovascular event rate and urinary excretion of
11-dehydro-thromboxane (Tx) B2, a marker of platelet cyclooxygenase (COX)-1 activity
and an indirect marker of platelet activation, in patients with atrial fibrillation [60]. These
findings again reflect that PCSK9 can directly increase the rate of cardiovascular events,
possibly in part due to it increasing platelet activation.

PCSK9 has been shown to enhance agonist-induced platelet aggregation [61]. More-
over, the PCSK9 expression correlates with other markers of platelet activation, such as
serum TxB2 production, release of plasma soluble P-selectin, soluble CD40 ligand, platelet
factor 4, platelet count, and platelet volume [61–64] (Figure 1). Furthermore, it has recently
been described for the first time that platelets also express PCSK9 upon activation in the
presence of LDL, and that its secretion by platelets further contributes to their aggrega-
tion and thrombus formation. In addition, this promotes monocyte differentiation into
macrophages/foam cells, also contributing to atherogenesis [65].

PCSK9 exerts its effects on platelet activation by binding to the scavenger receptor
CD36 [43] and, therefore, activating CD36-dependent signalling pathways [61] (Figure 2). In
patients with atrial fibrillation, Cammisoto et al., found that the interaction between PCSK9
and CD36 probably involves activation of the NOX-2, which suggests a ROS-mediating
pathway. They also found that this effect is amplified by the presence of LDL [62]. Two
possible pathomechanisms through which NOX-2 activates platelets have been described.
First, ROS generation inactivates NO, which is a powerful antiplatelet molecule [45].
Second, NOX-2 induces the generation of platelet isoprostane 8-ISO-prostaglandin F2α
(8-iso-PGF2α). This pro-aggregating molecule derived from non-enzymatic oxidation of
arachidonic acid contributes to platelet recruitment via activation of GP IIb/IIIa [66].
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By binding to the CD36, PCSK9 also enhances phosphorylation of Src, MAPK (mitogen-
activated protein kinase)—extracellular signal-regulated kinase 5 (ERK5), MAPK-JNK
(c-Jun N-terminal kinase), p38, and cytosolic phospholipase A2 (cPLA2) [61]. Src kinase
becomes activated, increasing the generation of ROS by activation of NOX-2 [46], followed
by activation of MAPK-ERK5 [61]. By binding to CD36, the p38 mitogen-activated protein
kinase (p38MAPK) becomes active, which further cleaves cPLA2, releasing arachidonic acid
from membrane phospholipids and leading to TxA2 production [5,61,62]. TxA2 then binds
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to its receptor and ends up activating the GP IIb/IIIa, enhancing platelet aggregation [67]
(Figure 2).

4.2. Effect of PCSK9 on Blood Coagulation Factors

Several studies in mice and humans point to a positive association between PCSK9
and thrombotic risk [4]. Wang et al., demonstrated in a PCSK9 −/− mouse model that,
after induction of venous thrombosis by partially ligating the inferior vena cava, the PCSK9
−/− mice had a reduced rate of venous thrombosis and lower length of the thrombus
compared to wild mice. The PCSK9 −/−mice also showed less leucocyte accumulation
and attachment and less neutrophil extracellular trap (NET) formation (NETosis) than the
respective controls [68]. Since in this model the leucocyte recruitment was associated with
an increased CXCL1 (a chemoattractant that enhanced NETosis [69]) expression and was
P-selectin dependent, the myeloid cell recruitment is proposed as a possible mechanism
by which PCSK9 enhances NETosis induced thrombosis [68]. This is consistent with
the findings of Schuster et al., who showed that PCSK9 inhibition in mice decreases the
expression of inflammatory chemokines, such as CXCL1 [70]. The effect of PCSK9 on
NET formation is, therefore, one possible pathway through which this enzyme affects the
thrombogenesis [71].

In addition, in a sepsis-mouse model, transgenic mice overexpressing PCSK9 showed
increased levels of thrombin-antithrombin complexes and decreased levels of protein C,
suggesting an important role for PCSK9 in the sepsis-induced hypercoagulable state [72].

When evaluating the possible relation between PCSK9 and fibrinolysis, Levine et al.,
found a downregulation of PCSK9 expression in mice with either pharmacologic or genetic
PAI-1 inhibition. This was also observed in humans with a mutation that reduces the
PAI-1 levels. Furthermore, the authors also found a positive correlation between PAI-1 and
PCSK9 levels in patients with heart failure, suggesting an interplay between the fibrinolytic
process and PCSK9 [73].

An elevated expression of PCSK9 was observed in patients with high antiphospholipid
antibodies titers and increased thrombotic risk [74]. PCSK9 levels also correlated positively
with fibrinogen levels in patients with stable coronary artery disease [75]. Overall, these
data points to a positive association between the circulating PCSK9 levels and the coagu-
lation cascade [76]. When evaluating the association of PCSK9 levels to different routine
coagulation indexes in patients with angina pectoris, high PCSK9 levels correlated with
low prothrombin time, and this combination predicted a poor cardiovascular outcome [77].

In patients with coronary artery disease and diabetes, the levels of PCSK9 correlate
positively with those of TF [78]. TF, which is expressed in large amounts in monocytes,
macrophages and in atherosclerotic plaques, contributes to thrombogenesis in many dis-
eases [79,80] and amplifies the inflammatory response upon thrombus formation [81].
LRP-1, expressed on monocytes and hepatocytes, has been demonstrated to regulate the
expression of TF by promoting its degradation [82,83]. Since PCSK9 downregulates LRP-1
expression, it might also affect circulating TF levels. Moreover, Scalise et al., described that
PCSK9 can induce the TF expression on monocytes, thereby increasing the procoagulant ac-
tivity. This process is mediated by the activation of the TLR4/NFκB pathway [76]. Overall,
PCKS9 can increase the TF expression in both direct and indirect ways.

Another mechanism by which PCSK9 can modulate blood coagulation is through an
effect on the blood clotting factor VIII (FVIII) [11,84]. Higher FVIII levels are associated
with an elevated arterial and venous thrombosis risk [85,86]. LRP-1 downregulates FVIII
by mediating its endocytosis and degradation [87–89]. Since PCSK9 has been shown to
also reduce LRP-1 expression [28] and, thereby, increase FVIII levels, this is a possible
explanation for how it can further contribute to thrombogenesis.

5. The Effect of PCSK9 Inhibitors on Platelet Function and Thrombotic Risk

The effect of PCSK9 inhibitors on platelet function has been extensively studied.
Monoclonal antibodies against PCSK9 reduce platelet activation and platelet–dependent
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immunothrombosis [65,90]. Inclisiran, a small interfering RNA-based PSCK9, has not
shown any effect on platelets thus far [91].

Marston et al., performed a post hoc analysis of the FOURIER trial and a meta-analysis
of the data of the FOURIER and ODYSSEY OUTCOMES. The authors demonstrated a 31%
relative risk reduction in venous thromboembolism with PCSK9 inhibition. This reduction
was not related to the LDL levels but to Lp(a) baseline levels. Thus, the authors suggest
the reduction in the Lp(a) levels as the underlying mechanism for this observation [92]. In
contrast, other studies hypothesized other mechanisms, such as the previously mentioned
effect of PCSK9 on TF and FVIII. However, these two factors were not evaluated in the
aforementioned meta-analysis [84,93].

After treatment with PCSK9 inhibitors, no changes in D-dimer and fibrinogen levels
were observed [94], but a reduction in plasma PAI-1 levels was documented [73], reinforcing
the hypothesis of an interplay between PCSK9 and fibrinolysis.

Moreover, while on treatment with anti-PCSK9 monoclonal antibodies, platelets exhib-
ited a decreased aggregation in the presence of aspirin. After a longer period of treatment
with PCSK9 inhibition (12 months), these patients also showed decreased plasma levels of
platelet activation markers, such as sCD40 L, PF-4, and soluble P-selectin, suggesting that
the PSCK9 inhibition affects platelet activation beyond its lipid lowering effects [63].

Cammisotto et al., described that a possible mechanism by which PCSK9 inhibition
can influence platelet activation is by downregulation of NOX-2. The reduction in the
platelet activation while on treatment with PCSK9 inhibitors correlated with the decrease
in OxLDL, suggesting these two pathways as possible underlying mechanisms of reducing
platelet reagibility [62].

An advantage of the use of PCSK9 inhibitors as drugs that reduce platelet reactivity and
thrombotic risk is that these inhibitors have not been associated with a higher bleeding risk
in clinical trials thus far. In human and animal studies that evaluated the risk of hemorrhagic
stroke or hemorrhagic transformation, PCSK9 inhibitors did not affect the intracerebral
bleeding risk [95,96]. Nevertheless, lipid lowering therapies are often combined with very
potent anti-thrombotic therapies. For example, a patient with atrial fibrillation who suffers
from myocardial infarction and receives coronary stents exhibit very high cardiovascular
risk, especially when a combined treatment with statin and ezetimibe fails to reduce
LDL-C to levels recommended by the guidelines. Considering the described pleiotropic
effects associated with PCSK9 inhibition, a simultaneous application of a PCSK9 inhibitor
alongside anti-platelet drugs and anticoagulants might warrant careful monitoring for
signs of bleeding, although an effect on bleeding risk by PCSK9 inhibitors has not been
recognized yet.

6. Effect of Other Lipid-Lowering Therapies on Thrombotic Risk

As previously mentioned, hypercholesterolemia is associated with a higher risk for
thrombus formation and lowering the LDL-C levels reduces this risk [97]. When evaluating
the effect of other lipid-lowering therapies on thrombogenesis, there are numerous studies
that suggest that statins have an effect on platelet function [98–100] and on thrombin
formation [101], thereby reducing the risk of venous thrombosis [41]. Patients under a high
intensity treatment with a statin display reduced platelet reactivity compared to patients
on treatment with a statin on lower doses [102]. We previously demonstrated that when
combining a low dose statin with ezetimibe in order to reach adequate LDL-C levels, the
effect of the statin on platelet reactivity was diminished in comparison to the treatment
with a higher dose statin alone. [98].

In addition to affecting platelet function, statins have also been shown to reduce FVIII
levels [103] via the upregulation of LDLR and LRP-1 [104] and to lower von Willebrand
factor levels in plasma [105], suggesting an antithrombotic effect beyond its impact on
platelet activation. When comparing statins to PCKS9 inhibitors, it is important to take into
account that statins have been associated with an increased risk of hemorrhagic stroke in
patients with a previous hemorrhagic stroke [106].
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The studies focusing on ezetimibe are controversial. Some showed that this drug can
reduce platelet activation in vitro [107] and when used as monotherapy. Other studies
reported no effect on platelet function when used in combination with a statin [108,109].
Contradictorily, others reported that ezetimibe lowered indices of platelet activation only
when given in combination with a statin [110].

The cholesteryl ester transfer protein (CETP) inhibitors have also been investigated
regarding their effect on platelet function in the past decade. CETP inhibitors are known to
increase HDL-C and decrease non-HDL-C [111]. However, these drugs did not convincingly
reduce the cardiovascular risk in phase III clinical trials [112]. Therefore, CETP inhibitors
are not clinically available as a lipid lowering drug. Nevertheless, CETP inhibition was
associated with a reduced level of platelet activation markers in studies performed on
rabbits [113,114].

Overall, other lipid lowering therapies besides PCSK9 inhibitors have been found to
affect the platelet function and the coagulation cascade, apparently independent to their
lipid lowering effects.

7. Conclusions

PCSK9 affects the platelet function as well as the coagulation cascade, thereby con-
tributing to a procoagulant and prothrombotic phenotype. The pro-thrombotic effects
of PCSK9 are in part due to its impact on the LDL-C and Lp(a) levels. New evidence
reveals that PCKS9 can directly regulate platelet signalling pathways and the expression of
coagulation factors.

Moreover, data from clinical studies reveal that PCSK9 inhibitors lower platelet re-
activity and thrombogenesis without affecting the patients’ bleeding risk thus far. More
clinical studies are needed to further substantiate the safety of simultaneous application of
lipid lowering drugs, such as statins and PCSK9 inhibitors, anticoagulants and anti-platelet
drugs, considering the pleiotropic effects known to be associated with certain lipid lowering
drugs, as discussed above.
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