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Objective: To investigate the hyaluronic acid (HA) modified, doxorubicin (DOX) and gallic

acid (GA) co-delivered lipid-polymeric hybrid nano-system for leukemia therapy.

Methods: We produced a kind of lipid-polymer hybrid nanoparticle (LPHN) with a core-

shell structure in which DOX and GA were co-loaded. In vitro and in vivo leukemia

therapeutic effects of the HA modified, DOX and GA co-delivered LPHNs (HA-DOX/GA-

LPHNs) were evaluated in DOX resistant human HL-60 promyelocytic leukemia cells (HL-

60/ADR cells), DOX resistant human K562 chronic myeloid leukemia cells (K562/ADR

cells), and HL-60/ADR cells bearing mouse model.

Results: The sizes and zeta potentials of HA modified LPHNs were about 160 nm and −40 mV.

HA-DOX/GA-LPHNs showed the most prominent cytotoxicity and the best synergistic effect was

obtained when DOX/GA ratio was 2/1. In vivo studies revealed that HA-DOX/GA-LPHNs

inhibited tumor growth from 956 mm3 to 213 mm3, with an inhibition rate of 77.7%.

Conclusion: In summary, the study showed that HA-DOX/GA-LPHNs can be applied as

a promising leukemia therapy system.

Keywords: acute myeloid leukemia, doxorubicin, gallic acid, multidrug resistance, lipid-

polymer hybrid nanoparticles

Introduction
Acute myeloid leukemia (AML) is the most common form of acute leukemia among

adults.1 It causes the maximum number of deaths among leukemia patients every year. It

is one of themost refractory diseases due to its uncontrolled proliferation characteristics.2

The most common symptom of leukemia is pancytopenia or leukemic infiltration.3 As

a myeloproliogenic disease, it is associated with increased white blood cells, anemia,

splenomegaly, weight loss, and drowsiness.4 Therefore, timely treatment should be given

to destroy these cancer cells so that the bone marrow can produce normal cells.5

Doxorubicin (DOX) is a first-line cancer chemotherapy drug for the treatment of

leukemia, lung, breast, cervical, ovarian, prostate, and bladder cancers.6 However, the

efficacy of DOX is often affected by multidrug resistance (MDR) mechanisms invol-

ving P-glycoprotein.7 In recent years, a variety of anticancer drugs combined with

DOX have been widely developed for chemotherapy to reduce MDR and the side

effects caused by drug dose reduction.8–10 Gallic acid (GA) is a polyhydroxyphenol
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compound which can be found in green tea, grapes, strawber-

ries, bananas, and many other natural products.11 It can be

used as a free radical scavenger and as an inducer of differ-

entiation and apoptosis in leukemia, lung, and colon cancer

cell lines. GA and its derivatives can induce Ca2+ dependent

apoptosis in leukemia cells, thus exhibiting anti-leukemic

ability in human HL-60 and K562 leukemia cells.12–14 In

addition, when GAwas combined with other chemotherapeu-

tic drugs, better efficiency may have been achieved compared

to a single drug.15 However, since different drugs have differ-

ent physical and chemical properties, how to obtain significant

antitumor effects while reducing the toxicity of normal tissues,

is still a challenge.16 Therefore, there is an urgent need to

develop new treatment strategies for these hard-to-treat cases

of leukemia, in addition to reducing the side effects on all

leukemia patients.17

In order to overcome the inherent defects of drugs,

including short half-life and undesired distribution in nor-

mal tissues and organs, nanocarriers have been developed

for drug delivery.18 For instance, nanocarriers have been

developed to reduce the side effects of DOX and increase

therapeutic effect in leukemia.19 Receptor-mediated inter-

nalization may introduce the binding of ligands to recep-

tors, which may help with the release of drugs from the

nanocarriers into the cell.20 Therefore, receptor-mediated

uptake of anticancer drugs can be used as an effective drug

delivery system for leukemia treatment.21 CD44 has been

reported to be overexpressed in many leukemia cells such

as human AML cells, T-cell prolymphocytic leukemia

cells, and B-cell chronic lymphocytic leukemia cells.22

Hyaluronic acid (HA) is a natural polysaccharide which

has a strong affinity for CD44 receptors.23 Thus, HA was

conjugated with polyethylene glycol-distearoyl phos-

phoethanolamine (PEG-DSPE) to form HA-PEG-DSPE

and was used as targeted ligands for the decoration of

nanoparticles.

In the present research, we produced lipid-polymer

hybrid nanoparticles (LPHNs) with a core-shell structure in

which DOX and GA were co-loaded. By combining the

bionic properties of lipids with the structural advantages of

polymer cores, an outstanding delivery system was obtained.-
24 In vitro and in vivo leukemia therapeutic effects of the HA

modified, DOX and GA co-delivered LPHNs (HA-DOX

/GA-LPHNs) were evaluated in DOX resistant human HL-

60 promyelocytic leukemia cells (HL-60/ADR cells), DOX

resistant human K562 chronic myeloid leukemia cells (K562/

ADR cells), and HL-60/ADR cells bearing mouse model.

Materials and methods
Chemicals and reagents
HA (molecular weight: 9.5 kDa) was obtained from

Shandong Freda

Biopharm Co., Ltd. (Ji’nan, People's Republic of China).

NH2-PEG3400-DSPE was purchased from Ponsure

Biotechnology, Shanghai, People's Republic of China.

Poly-ε-caprolactone (PCL, molecular weight: 14 kDa),

lecithin (99% phosphatidylcholine), dicyclohexylcarbodii-

mide (DCC), MTT, FBS, and RPMI 1640 were supplied by

Sigma-Aldrich Co. (St Louis, MO, USA).

Cells and animals
Human HL-60 promyelocytic leukemia cells (HL-60 cells)

and K562 chronic myeloid leukemia cells (K562 cells) were

provided by American Type Culture Collection (Manassas,

VA, USA). HL-60/ADR cells and K562/ADR cells were

established with the continuous increase of DOX concentra-

tion and selected in the growth medium.25 FBS (10%,v/v)

was added to RPMI 1640 at 37°C to form the cell culture

medium. HL-60 and K562 cells were cultured in the medium

with the presence of penicillin (1%, v/v, 100 U/mL), strepto-

mycin (100 mg/ml), and L-glutamine (2 mM), in a 5% CO2

humidified atmosphere. HL-60/ADR and K562/ADR cells

were maintained in DOX (0.2 μM) containing medium to

keep the drug resistance phenotype.

BALB/c nude mice (18–22 g) were purchased from Key

Biological Technology Co., Ltd. (Shanghai, People's

Republic of China). The chronic myeloid leukemia mouse

model was created by subcutaneous injected of HL-60/ADR

cells (107 cells in 200 μL of PBS) into the right flank of mice

(HL-60 cells and K562 chronic myeloid leukemia cells K562

cells). Animal experiments were performed under the gui-

dance of the National Institutes of Health for the care and use

of laboratory animals (NIH Publications No. 8023, revised

1978) and was approved by the ethics committee of Hebei

Province Hospital of ChineseMedicine and Taizhou Hospital

of Zhejiang Province.

Synthesis of HA-PEG-DSPE
HA-PEG-DSPE (Figure 1) was prepared by the conjugation

of the HA (carboxyl group) with the NH2-PEG3400-DSPE

(amine group).26 HA was firstly dissolved in DMSO, then

DCC (1.1 equivalents) was added and stirred in an ice bath.

NH2-PEG3400-DSPE (1 equivalent, dissolved in DMSO)

was and added into HA solution drop by drop and stirred
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for 12 hours at 20°C–25°C. HA-PEG-DSPE was lyophilized

and characterized by 1H-NMR analysis.

Preparation of HA-DOX/GA-LPHNs
HA-DOX/GA-LPHNs (Figure 2) were self-assembled

with PCL, lecithin, and HA-PEG-DSPE by one-step

nanoprecipitation.27 Briefly, lecithin (100 mg) and HA-

PEG-DSPE (50 mg) were added in acetone (20 mL) and

heated (65°C) to form a liquid lipid phase. DOX (20 mg),

GA (10 mg), and PCL polymer (100 mg) were dissolved

in acetone (20 mL) and then added dropwise into the 65°C

lipid phase which was stirred at 300 rpm. The acetone and

free molecules were removed by washing the HA-DOX

/GA-LPHNs solution three times using a centrifugal filter

with a molecular weight cut-off (MWCO) of 10 kDa.

Non-HA modified, DOX and GA co-delivered LPHNs

(DOX/GA-LPHNs) were assembled in the same way using

PEG-DSPE instead of HA-PEG-DSPE. Single drug loaded

LPHNs were prepared by the same method using single

DOX (40 mg) or single GA (20 mg) dissolved along with

PCL polymer, named HA-DOX-LPHNs and HA-GA-

LPHNs, respectively. To prepare drug-free blank LPHNs,

no drug was added during preparation, named HA-LPHNs

(Figure 2).
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Figure 1 Synthesis of HA-PEG-DSPE and 1H-NMR analysis.

Abbreviations: HA, hyaluronic acid; PEG-DSPE, polyethylene glycol-distearoylphosphoethanolamine.

HA-PEG-DSPE Lecithin PCl DOX GA

HA-Dox-LPHNsDox/GA-LPHNsHA-Dox/GA-LPHNs HA-GA-LPHNs HA-LPHNs

Figure 2 Scheme graphs of HA-DOX/GA-LPHNs, DOX/GA-LPHNs, HA-DOX-LPHNs, HA-GA-LPHNs, and HA-LPHNs.

Abbreviations: HA, hyaluronic acid; DOX, doxorubicin; GA, gallic acid; LPHNs, lipid-polymer hybrid nanoparticles.
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Particle size, zeta potential, and drug

loading (DL) capacity
HA-DOX/GA-LPHNs, DOX/GA-LPHNs, HA-DOX-

LPHNs, HA-GA-LPHNs, and HA-LPHNs were diluted in

phosphate buffer (pH 7.4), and their sizes, polydispersity

index (PDI), and zeta potentials were analyzed in triplicate

by dynamic light scattering (Zeta sizer Nano ZS, Malvern

Instruments,Malvern, UK) at room temperature.28 To evaluate

the DL capacity, HA-DOX/GA-LPHNs, DOX/GA-LPHNs,

HA-DOX-LPHNs, and HA-GA-LPHNs were dissolved in

1 mL of methanol under vigorous vortexing. The solutions

were centrifuged (20,000 rpm, 20 minutes) and the amount of

DOX was analyzed by UV spectrophotometry (Shimadzu,

Japan) at 478 nm.29 The amount of GA was measured by

high liquid performance chromatography (HPLC):30

A 20 mL aliquot of the supernatant obtained after centrifuga-

tion was injected into a Luna C18 15 cm ×3.0 mm HPLC

column (Phenomenex, Torrance, CA, USA). Gradient elution

was conducted at a flow rate of 1.5 mL/minute using methanol

and 0.5% phosphoric acid at ratios of 70:30. The absorbance at

270 nmwas detected. The capacity of DL and drug entrapment

efficiency (EE) were calculated as follows:

DL %ð Þ¼ Weight of entrapped drugs=Weight of LPHNsð Þ
� 100

EE %ð Þ¼ Weight of entrapped drugsð
=Weight of total drugsÞ � 100

Storage stability
The LPHNs were stored at 2°C–8°C. The stability of

LPHNs was evaluated for 4months.31 At predetermined

time points, the particle size and PDI of HA-DOX/GA-

LPHNs, DOX/GA-LPHNs, HA-DOX-LPHNs, HA-GA-

LPHNs, and HA-LPHNs were tested by the methods in

the previoussection.

In vitro drug release
The DOX and GA released from LPHNs were investigated

by dialysis method.32 HA-DOX/GA-LPHNs, DOX/GA-

LPHNs, HA-DOX-LPHNs, and HA-GA-LPHNs were dis-

persed into PBS (pH 7.4). Then, the LPHN suspensions

were sealed in dialysis bags (MWCO: 5 kDa) with 30 mL

PBS (pH 7.4) in the outside as dialysis medium. At pre-

determined time points, samples (0.5 mL) were taken out

from the dialysis bags and fresh PBS was (0.5 mL) added

into the bags. The release of DOX and GAwere calculated

by the method described in “DL capacity” section.

In vitro cytotoxicity
In vitro cytotoxicity of LPHNs was evaluated on HL-60/

ADR and K562/ADR cells using the MTT assay.33 Briefly,

HL-60/ADR or K562/ADR cells (200 µL) were seeded

into 96-well plates at a density of 5×104 cells/mL and

incubated for 24 hours. Various concentrations of HA-

DOX/GA-LPHNs, DOX/GA-LPHNs, HA-DOX-LPHNs,

HA-GA-LPHNs, HA-LPHNs, and free DOX and GA

mixed solution (free DOX/GA) were added and incubated

for 72 hours. After removal of the medium, MTT solution

(20 µL, 5 mg/mL in PBS) was added to each well for 4

hours. DMSO (200 µL) was then added and absorbance

was read at 570 nm.

Synergistic effects analysis
To investigate the synergistic effects of the DOX and GA

co-delivered HA-DOX/GA-LPHNs on HL-60/ADR cells,

half-maximal inhibitory concentration (IC50) was calcu-

lated and combination index (CI) analysis was done by

Chou and Talalay’s method.34 CI values for DOX and GA

combinations were d according to the following equation:

CI = (D)DOX/(Dx)DOX + (D)GA/(Dx)GA were used to calcu-

late the CI values of DOX and GA in HA-DOX/GA-

LPHNs. (D)DOX and (D)GA: concentrations of DOX and

GA in the combination system at the ICx value; (Dx)DOX
and (Dx)GA: ICx value of DOX alone and GA alone. CIx
<1 and >1 represent synergism and antagonism, respec-

tively. In this study, x=50.

In vivo biodistribution
HA-DOX/GA-LPHNs, DOX/GA-LPHNs, HA-DOX-

LPHNs, HA-GA-LPHNs, HA-LPHNs, free DOX/GA (each

contained 10 mg/kg of DOX and 5 mg/kg of GA), and 0.9%

normal saline were intravenously injected in different groups

(eight mice in each group) of AML bearing mice.35 Each

group of mice was sacrificed. At 1 hour and 48 hours after

intravenous injection, mice were killed by cervical vertebra

dislocation and tumor tissue and other organs were taken out

and homogenized in saline (tissue/water =1:5, w/v) and the

amount of DOX and GAwere determined using the techni-

que described in “DL capacity” section.

In vivo antitumor efficacy
HA-DOX/GA-LPHNs, DOX/GA-LPHNs, HA-DOX-

LPHNs, HA-GA-LPHNs, HA-LPHNs, free DOX/GA (each
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contained 10 mg/kg of DOX and 5 mg/kg of GA), and 0.9%

normal saline were intravenously injected through tail vein in

different groups (eight mice in each group) of AML bearing

mice every 3 days.36 At 21 days after administration, the mice

were sacrificed. Tumors were taken out and the weight and

volume were measured. Tumor volume (TV) and tumor inhi-

bition rate (TIR) were calculated according to the following

equations: TV = the long axis × (the short axis)2/2; TIR (%) =

(tumor weight of the control group - tumor weight of the

treated group)/tumor weight of the control group ×100. Body

weight changes of the mice were monitored every 3 days to

evaluate systemic toxicity of the LPHNs.

Statistical analysis
Means ± SD was used to present the data. An unpaired

Student's t-test between two groups was applied to analyze

the data with SPSS 20.0 software. The level of signifi-

cance in all statistical analyses was set at a probability of

P<0.05.

Results
Characterization of HA-PEG-DSPE
Figure 1 showed the 1H-NMR of HA-PEG-DSPE and the

peaks were marked in the chemical structure. The peaks of

1, 2, 3, 4, and 5 were the protons of DSPE; the peaks of 9,

12, 13, 14, and 16 belonged to the structure of HA; peak 7

belonged to PEG; the peaks of 6, 8, 11, and 15 were the

protons in or next to the amide linkage.

Particle size, zeta potential, and DL

capacity
Table 1 showed the sizes of HA modified LPHNs were about

160 nm, which means DL did not increase the size of the

particles. However, non-HA decorated LPHNs had a smaller

size of 130 nm. Zeta potential of HA-DOX/GA-LPHNs and

DOX/GA-LPHNs were −41.3 and −30.5 mV, respectively.

EEs of drug loaded LPHNs erre around 85%, with different

DLs ranging from 5.1%−13.5%. Figure 3 illustrated no

obvious change in size or PDI of LPHNs during 4 months of

study, which could be evidence of the good stability of the

system.

In vitro drug release
Figure 4 showed the DOX (Figure 4A) and GA (Figure 4B)

release profiles of HA-DOX/GA-LPHNs, DOX/GA-LPHNs,

HA-DOX-LPHNs, and HA-GA-LPHNs. Firstly, all the drug

loaded LPHNs exhibited sustained release patterns. Secondly,

all the formulas had over 80% of drug release during the time

of study. Most importantly, HA modified LPHNs revealed

slower release than the non-modified DOX/GA-LPHNs, this

may have been caused by the HA coating on the LPHNs'

surface which delayed the drug release.

In vitro cytotoxicity
HA-LPHNs showed no significant cytotoxicity effects on

HL-60/ADR and K562/ADR cells (Figure 5). When

loaded with drugs, HA-DOX/GA-LPHNs, DOX/GA-

LPHNs, HA-DOX-LPHNs, and HA-GA-LPHNs exhibited

significant cytotoxicity. Although free DOX/GA exhibited

obvious toxicity and the efficiency was enhanced over

time, cell inhibition effect of drugs co-delivered LPHNs

groups was more remarkable (P<0.05). HA-DOX/GA-

LPHNs showed the most prominent cytotoxicity compared

to DOX/GA-LPHNs, HA-DOX-LPHNs, and HA-GA-

LPHNs groups (P<0.05).

Synergistic effects
DOX/GA ratio in the LPHNs was selected by CI50 values

to get the best synergistic effect, and were calculated

according to the IC50 values of DOX and GA in HA-

DOX/GA-LPHNs (Table 2). Figure 6 showed that the

best synergistic effect was obtained when DOX/GA ratio

Table 1 Characterization of lipid-polymer hybrid nanoparticles (LPHNs) (mean ± SD, n=3)

Characteristics Particle size (nm) PDI Zeta potential (mV) DL (%) EE (%)

DOX GA DOX GA

HA-DOX/GA-LPHNs 165.7±4.6 0.167±0.021 −41.3±2.8 10.2±0.9 5.3±0.5 88.9±3.7 85.6±3.5

DOX/GA-LPHNs 131.2±3.5 0.129±0.011 −30.5±2.3 13.5±1.1 6.4±0.4 86.9±3.4 84.7±3.9

HA-DOX-LPHNs 162.6±4.1 0.151±0.019 −40.5±2.9 10.3±0.8 N/A 87.4±3.3 N/A

HA-GA-LPHNs 164.1±4.3 0.133±0.017 −39.7±2.6 N/A 5.1±0.3 N/A 86.1±3.1

HA-LPHNs 161.9±3.9 0.141±0.012 −38.9±3.1 N/A N/A N/A N/A
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was 2/1. Back to the preparation of HA-DOX/GA-LPHNs,

20 mg of DOX and 10 mg of GA were determined.

In vivo biodistribution
In vivo distributions of drugs in tumor and other organs

are presented in Figure 7. At 1 hour, distributions of DOX

and GA in free DOX/GA were higher in the heart and

kidney than loaded in LPHNs (P<0.05). When tested at

both 1 hour and 48 hours, HA modified LPHNs exhibited

higher distribution in tumor compared to free DOX/GA

and non-HA modified LPHNs (P<0.05). No significant

differences in drug distribution were found in the other

organs.

In vivo antitumor efficacy
In vivo antitumor efficacy of LPHNs was investigated

in an AML bearing mouse model (Figure 8A). Firstly,

drug loaded LPHNs groups remarkably inhibited the

tumor growth in contrast with the free DOX/GA group

(P<0.05). Secondly, HA-DOX/GA-LPHNs showed

remarkably higher inhibition rates than single drug

loaded HA-DOX-LPHNs and HA-GA-LPHNs

(P<0.05). Finally, the tumors of mice treated with HA-

DOX/GA-LPHNs were significantly smaller than non-

HA modified DOX/GA-LPHNs (P<0.05). Body weight

results revealed that an obvious decrease in weight was

found in the control, free DOX/GA, and HA-LPHNs
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groups (Figure 8B). However, no significant body

weight changes were found in the drug loaded LPHNs

group. The TIRs of all the treated groups were summar-

ized in Table 3.

Discussion
In this study, PCL was applied as polymeric material to

encapsulate poorly water soluble drugs and lecithin was

used to construct the lipid shell at the surface of LPHNs. HA

was covalently conjugated to PEG-DSPE as modified lipid to

form the shell of the LPHNs. The LPHNswere self-assembled

through a single-step nanoprecipitation method. The sizes of

HA modified LPHNs (160 nm) were larger than non-HA

decorated LPHNs (130 nm), in the meantime, zeta potentials

of HA modified LPHNs were more negative (−41.3 mV) than

DOX/GA-LPHNs (−30.5 mV). These results mean that the

existence of HAwould increase the overall size of the LPHNs

and bring more negative charge to the systems.

The stability of any nanoparticle system needs to be eval-

uated and optimized, as disruption of the nanoparticles in the
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drug delivery systemmay affect its therapeutic potential.37 The

phospholipids that constitute the shell of the LPHNsmay act as

surfactants to stabilize the nanoparticles. No obvious changes

in size or PDI of LPHNs were found during 4months of study,

which could be evidence of the good stability of the system.

A significant advantage of the nano drug delivery system

is the sustained or controlled release, which greatly enhances

the bioavailability of the drug and reduces the side effects of

the drug on healthy human tissues.38 The drugs were released

from LPHNs in sustained behaviors. The DOX and GAwere

mainly located in the polymeric core and the shell needed to

be firstly destabilized and then the core may be corroded to

slowly release the drugs.39 HA modified LPHNs revealed

slower release than the non-modified DOX/GA-LPHNs, this

may have been caused by the HA coating on the LPHNs'

surface which delayed the drug release.
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Figure 5 In vitro cytotoxicity of LPHNs and free drugs in HL-60/ADR (A) and K562/ADR (B) cells (mean ± SD, n=8).

Abbreviation: LPHNs, lipid-polymer hybrid nanoparticles.

Table 2 IC50 values of doxorubicin (DOX) and gallic acid (GA)

when different ratios were used in hyaluronic acid-DOX/GA-lipid

-polymer hybrid nanoparticles(mean ± SD, n=3)

DOX/GA ration
(w/w)

IC50 of DOX
(μM)

IC50 of GA
(μM)

10:1 9.73±0.82 0.97±0.12

5:1 2.95±0.33 0.59±0.09

2:1 0.46±0.06 0.23±0.05

1:1 1.03±0.17 1.03±0.19

1:2 1.79±0.22 3.58±0.49

1:5 2.18±0.37 10.92±0.86
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Blank HA-LPHNs showed no significant cytotoxicity

effects on HL-60/ADR and K562/ADR cells, which means

the carriers themselves did not bring about toxicity. HA-DOX

/GA-LPHNs showed more prominent cytotoxicity than HA-

DOX-LPHNs and HA-GA-LPHNs, this may be proof of the

synergism of DOX and GA. The efficacy of DOX can be

influenced by MDR mechanisms and in this study, GA was

applied to combine with DOX to reduce MDR and the side

effects caused by drug dose reduction. The assessment of

drug-drug interactions is important in all areas of medicine,

especially in combination with cancer chemotherapy.40 The

term “combination index“ (CI) was introduced by Chou and

Talalay in 1983 to quantify the synergistic or antagonistic

effects of the two drugs.41 Firstly, we summarized the IC50

values of DOX and GAwhen different DOX/GA ratios were

applied in HA-DOX/GA-LPHNs preparation. Since these two

drugs were designed at different ratios and had different effi-

ciency in the formulations, the IC50 values of DOX and GA

were different for different formulations. Then, the best syner-

gistic effect was calculated and the best DOX/GA ratio was 2/

1. This section demonstrated the synergistic efficiency and

DOX/GA ratio of the two drug systems.

In vivo tissue distribution behavior of LPHNs was inves-

tigated in AML bearing mice. LPHNs were more widely
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Figure 6 CI50 values when different DOX/GA ratios were applied (mean ± SD, n=8).

Abbreviations: DOX, doxorubicin; GA, gallic acid.
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distributed in tumor tissues and less widely distributed in the

heart and kidney, thus, they can reduce side effects during

cancer treatment.42 Instead, the drug solution samples were

mainly distributed in the heart and kidneys, which may cause

systemic toxicity. It was reported that CD44 mediates the

uptake and degradation of hyaluronan by rodent alveolar

macrophages and transformed fibroblasts. The accumulation

of LPHNs in the lung is not high, indicating that the other

CD44 receptor expressed cells may not affect the ability of

LPHNs.43 The accumulation of LPHNs in tumor tissues was

higher than that in other normal tissues. The drug concentra-

tion of LPHNs in tumor tissues remained high 48 hours after

injection, indicating that LPHNs has a sustained release

effect. The long cycling effect is due to the presence of
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Figure 8 In vivo antitumor efficacy of LPHNs investigated on AML bearing mouse model (A) and body weight changes (B) (mean ± SD, n=8).

Abbreviations: LPHNs, lipid-polymer hybrid nanoparticles; AML, acute myeloid leukemia.
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PEG chains on the particle surface, which provides the

stealth characteristic.44 Compared with non-HA modified

DOX/GA-LPHNs, HA-DOX/GA-LPHNs accumulated

more in tumors, indicating that HA’s targeting ability

increased the accumulation of LPHNs at tumor sites.

In vivo antitumor studies illustrated that HA-DOX/GA-

LPHNs showed better tumor growth inhibition than DOX/

GA-LPHNs in an AML nude mouse xenograft, which may

be due to the increased release time and targeted effect of HA

modification.45,46 In addition, LPHNs significantly inhibited

tumor growth and had no significant adverse effects (weight

loss) compared with free drugs. The finding may provide

evidence that LPHNs is considered a safe system for drug

delivery in leukemia treatment. The in vivo TIR results were

consistent with the in vitro synergistic effects of the dual drug

delivery system. This is because the LPHNs system has high

structural integrity, stability, and slow release performance.

The value of the co-delivering nano-system constructed in

this study compared to the currently approved targeted drugs

for AML/CML may be the smaller amount of DOX, higher

affinity for cancer cells, and lower toxicity to the body. The

HA-modified DOX/GA co-loaded LPHNs could be efficient

in AML therapy, with the least systemic toxic side effects.

Conclusion
In summary, this study showed that HA-DOX/GA-LPHNs

were successfully developed with good anti-AML effects.

Further research is needed before the preparation can be

used in patients with cancer.
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