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A novel hybrid continuum-discrete model to simulate tumour growth on a cellular scale is proposed. The lattice-based
spatiotemporal model consists of reaction-diffusion equations that describe interactions between cancer cells and their
microenvironment. The fundamental ingredients that are typically considered are the nutrient concentration, the extracellular
matrix (ECM), and matrix degrading enzymes (MDEs). The in vivo processes are very complex and occur on different levels. This
in turn leads to huge computational costs. The main contribution of the present work is therefore to describe the processes on the
basis of simplified mathematical approaches, which, at the same time, depict realistic results to understand the biological processes.
In this work, we discuss if we have to simulate the MDE or if the degraded matrix can be estimated directly with respect to the
cancer cell distribution. Additionally, we compare the results for modelling tumour growth using the common and our simplified
approach, thereby demonstrating the advantages of the proposed method. Therefore, we introduce variations of the positioning of
the nutrient delivering blood vessels and use different initializations of the ECM. We conclude that the novel method, which does
not explicitly model the matrix degrading enzymes, provides means for a straightforward and fast implementation for modelling
tumour growth.

1. Introduction

Cancer is one of the most common diseases in adulthood and
has gained more and more attention in research of different
scientific disciplines in recent years. We focus on malignant
brain tumours such as gliomas, but the models presented in
this paper are generic and can also be applied on different
tumour entities and other solid tumours through variation
of the corresponding parameters.

Generally, the models of tumour growth are described
either on a macroscopic [1, 2], microscopic [3–5], or molec-
ular level [6, 7]. Multiscale approaches, that is a combination
of two [8, 9] or all three levels [10], are rarely used.
The macroscopic models are generally based on continuous
deterministic reaction-diffusion formalisms [1] and lead to
a global description of the tumour. Thus, they depict a
clinically significant size as it can typically be observed in

magnetic resonance imaging or computed tomography. At
this level the associating processes of tumour growth such
as pressure and the therewith induced deformation of the
environment tissue can be well observed and modelled.
Such methods, though allowing for visual comparisons
with medical, noninvasive in vivo imaging data, neglect the
complex processes on the microscopic and molecular level.
Mathematical approaches for simulating tumour growth on
the cellular level are typically formulated in terms of discrete
methods [11] like cellular automata [12, 13] or agent-based
models [14, 15]. Nowadays hybrid modelling [4, 16–18] has
become very prominent due to an improved description of
the complicated processes by combining the continuous and
discrete methods.

For understanding the in vivo behaviour of cancer, the
fundamental challenge for mathematical simulation is the
simplification of the underlying complex processes while
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maintaining realistic findings. Typically, a system of partial
differential equations is used to model interactions between
cancerous cells, the extracellular matrix (ECM), and matrix
degrading enzymes (MDEs) that describe the haptotactic
and/or chemotactic movement of the cells [16, 18–24].
For the ECM degradation and remodelling is considered.
Degradation occurs where the proteolytic enzymes, such as
the urokinase-type plasminogen activator (uPA) and matrix
metalloproteinases (MMPs) are located. It has been proven
that the degradation of the ECM occurs because MDEs are
secreted by tumour cells (cf. [25]). To be able to model
these complex interactions on a standard computer for a
large number of cells it is inevitably necessary to develop a
simplified description, that is, to identify processes that are
of less significance for the overall spatiotemporal dynamics of
cancerous cells. To this end, we introduce a novel simplified
model describing the same processes as in the literature [16,
19–24], without explicitly modelling the MDE. We assume
in our implementation that the cancer cells themselves are
able to degrade the matrix. This assumption is motivated
by the fact that the tumour cells are overexpressing the
responsible enzymes. To get similar results, we determine
the level of the degradation on the basis of a degrading
parameter α f and thus also the remodelling parameter β f .
To validate the findings, we introduce different arrangements
of the nutrient delivering blood vessels. Further, we compare
the novel proposed model with common ones by simulating
different initial conditions for the ECM. In this work,
we do not consider cell-cell adhesion of cancerous cells
not only due to the decreased expression of neural cell
adhesion molecules (NCAM) in aggressive gliomas, such as
the glioblastoma (GBM) [26] but also due to the focus on
the haptotactic migration of cells through the extracellular
matrix.

In this paper, we aim at simplifying the mathematical
modelling of the complex biological processes and speeding
computational time. In Section 2, we study the common
method for cellular interactions and the simplest possible
case. Finally, in Section 3, we discuss our results for different
positions of capillaries and for a randomly or constantly
distributed extracellular matrix, highlighting the successes
of our approach. In Section 4 we conclude with a short
outlook.

2. Materials and Methods

For simulating brain tumour growth, we consider a two-
dimensional area of brain tissue Ω = [0, 1] × [0, 1] which
corresponds to 4 mm × 4 mm with boundary Γ := ∂Ω. A
400 × 400 grid over Ω with a space step of h = 0.01 mm
forms the basis for the discrete method since each square
of the grid corresponds approximately to the area of a
tumour cell, that is 6.25 × 10−6 cm2 (cf. [16]). The grid is
introduced for computed tumour or necrotic cells but not
for the host tissue, because of the clumps-like growth of the
tumour. For interactions of the tumour with the host tissue,
we recommend to have a look at the macroscopic models
[27, 28]. At this level one achieves a better representation

of processes like deformation of the environmental host
tissue.

2.1. Hybrid Model. The hybrid model (cf. [4]) is composed
of a continuous and a discrete part. For modelling tumour
growth, a discrete description is used to account for the
motion of individual cells. The remaining factors are based
on partial-differential equations. For the extracellular matrix
it has been assumed to be directly affected by the cancerous
tissue. To this end, the complete system of equations
consisting of the distribution of cancer cells c, nutrient
concentration u and extracellular matrix (ECM) density f
is given by:

∂c

∂t
= Dc∇2c − χ∇ · (c∇u)− ρ∇ · (c∇ f

)
, (1a)

∂u

∂t
= Du∇2u− αuuc, (1b)

∂ f

∂t
= −α f f c + β f f , (1c)

in Ω × [0,T], where T defines the end of a given time
interval, Dc and Du denotes the diffusion coefficients of the
tumour cell and nutrients, respectively. Furthermore, χ is
the chemotaxis coefficient and ρ the haptotaxis coefficient.
Uptake and decay of particular substances due to tumour
growth are αu and α f (uptake rate for nutrients and
ECM), β f represents the remodelling parameter for the
ECM.

To compare our results with common ones, we outline
also the approach for modelling the extracellular matrix
effected by enzymes. The complete system including the
matrix degrading enzymes’ (MDEs) concentration m is
defined in Ω× [0,T] as follows:

∂c

∂t
= Dc∇2c − χ∇ · (c∇u)− ρ∇ · (c∇ f

)
, (2a)

∂u

∂t
= Du∇2u− αuuc, (2b)

∂ f

∂t
= −α̃ f f m + β̃ f f , (2c)

∂m

∂t
= Dm∇2m + βmc − αmm, (2d)

where Dm denote the diffusion coefficients of the enzymes,
αm the decay coefficient, and βm represents the production
constant for MDEs.

Due to the diffusive behaviour of the MDEs, the values
are different for the uptake and the remodelling of the
extracellular matrix comparing to (1c). Hence, we label

them for the system ((2a), (2b), (2c), (2d)) α̂ f and β̂ f ,
respectively.

For the initialisation of both models 441 tumour cells are
placed in the middle of domain Ω. As for the different initial
conditions for the ECM we refer to Section 2.3. The amount
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of initially available nutrients is estimated from the solution
of the equation:

−Du∇2u + αuucini = 1, (3)

where cini represents the initial tumour with 441 cells in the
middle of the domain. This equation denotes the availability
of nutrients in the cerebrospinal fluid (CSF), which is
a supplier of essential nutrients to the brain [29]. The
initial nutrient concentration for two parallel blood vessels
is shown in Figure 1. Depending on the location of the
blood vessels, we have Dirichlet and Neumann boundary
conditions (see Section 2.3).

The initial concentration for MDE is set to zero through-
out the domain. For the concentration of the MDE and ECM
we assume zero flux boundary conditions.

2.2. Nondimensionalisation. To obtain a similar magnitude
in the range [0, 1] for all computed quantities, we rescale and
nondimensionalise the variables and parameters of the pro-
posed method ((1a), (1b), (1c)) and the common approach
((2a), (2b), (2c), (2d)). The dimensionless variables are
defined as:

x̂ = x

L
, t̂ = t

τ
, ĉ = c

c0
, (4)

û = u

u0
, f̂ = f

f0
, m̂ = m

m0
. (5)

For a more detailed description we refer to Table 1 For
the appropriate length scale L we use 0.1 cm (taken from
[19, 23]), for the time τ = L2/D, where D = 10−6 cm2/s is a
representative diffusion coefficient [23]. For the tumour cell
density c0, the nutrient concentration u0 and ECM density f0
following [16], the matrix degrading enzyme density m0 =
0.1 nM is taken from [19].

For the dimensionless cell diffusion coefficient of the
tumour cells we get D̂c = τDc/L2 = 10−5 and for the
dimensionless haptotaxis parameter ρ̂ = τρ f0/L2 = 0.26
[16, 23]. We assume the chemotactic parameter χ to be equal
to the haptotactic parameter, so that the cells are equally
attracted to nutrients and to interact with the ECM. The
parameter Du = 10−5 cm2/s is taken from [16], so we get
D̂u = τDu/L2 = 10. The uptake rate is assumed to be
α̂u = τc0α0/u0 = 6.25 · 10−5. The parameters of the MDE,

β̂m = 1, and α̂m = 0 are taken from [16]. The dimensionless
diffusion coefficient of the MDE is assumed to be 0.08.
For the MDE dependent model ((2a), (2b), (2c), (2d)), we
follow [30] for the ECM uptake α̃ f and the remodelling part

β̃ f . Apart from that (system (1a), (1b), (1c)) we make a
parameter estimation for α f and β f (see Section 2.4), since
we are not aware of any values in the literature. For notational
convenience, we drop the hats in the following.

2.3. Numerical Implementation. For discretizing the systems
of partial differential equations in ((1a), (1b), (1c)) and ((2a),
(2b), (2c), (2d)) we use standard finite-difference and finite
element method.
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Figure 1: Initial distribution of the nutrients for blood vessels
placed at two parallel boundaries.

For computing the nutrients (1b), (2b), and the MDE
(2d), we use the method of finite elements. Because of the
discrete-continuum interaction in every time step, we have
to solve the equations in the steady state. The boundary
and initial conditions for nutrients depend on their position
relative to the oxygen and glucose (nutrients) delivering
blood vessels or capillaries. This can be modelled by placing
them at all four surrounding boundaries, at two of them, or
only on a single side. For the sites occupied by blood vessels
we apply a Dirichlet boundary condition with a constant
function ud. For the remaining boundaries we use zero flux
boundary conditions (Neumann). Thus at any time t ∈
[0,T]:

∂u

∂n
= 0 on ΓN ,

u = ud on ΓD,

(6)

where ΓN and ΓD are the Neumann boundary and the
Dirichlet boundary, respectively, with ΓN ∪ ΓD = Γ. We set
ud = 1 since the concentration of nutrients, such as glucose
and oxygen is highest in the capillaries.

For the tumour cell equations (1a) and (2a), respectively,
we use the resulting coefficients of the five- and nine-
point finite-difference stencil to generate the probabilities
of the movement of an individual cell in response to its
local milieu. The 5-point stencil is equivalent to the von
Neumann neighbourhood and the 9-point stencil to the
Moore neighbourhood. We implement both and use a
switching mechanism to select one of them for each iteration
and each cell (see Section 2.6). With t = mk, x = ih, and
y = jh (m, k, i, j, h > 0), we use forward differences at time
point tm and second order central differences for the spatial
derivative at point xi, j . The resulting equation for the 5-point
stencil governing the chemotactic-haptotactic migration of a
tumour cell in (1a) and (2a) has thus the form

cm+1
i, j = P0 · cmi, j + P1 · cmi+1, j

+ P2 · cmi−1, j + P3 · cmi, j+1 + P4 · cmi, j−1,
(7)
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Table 1: Variables used in the hybrid model: The variable of the dimensional system ((1a), (1b), (1c)) and ((2a), (2b), (2c), (2d)), a
description, their units, the computation for the corresponding nondimensional parameters and references.

Variable y Description Unit Formula of ŷ Reference

c(x, t) Cancer cell Cells cm−3 c/c0 [16, 23]

u(x, t) Nutrient concentration M O2 cm−3 u/u0 [16, 23]

f (x, t) ECM M f / f0 [16, 23]

m(x, t) MDE M m/m0 [16, 19, 23]

where P0 is proportional to the quiescent cells. P1,P2,P3,P4

are probabilities that are proportional to a movement of the
cell to the right, left, up, or down, respectively. For the 9-
point stencil, the resulting equation is straight forward:

cm+1
i, j = P0 · cmi, j + P1 · cmi+1, j + P2 · cmi−1, j

+ P3 · cmi, j+1 + P4 · cmi, j−1

+ P5 · cmi−1, j+1 + P6 · cmi+1, j−1

+ P7 · cmi+1, j+1 + P8 · cmi−1, j−1.

(8)

Here, we have additionally the probabilities P5,P6,P7,P8,
which are proportional to a movement of the cell to the
top left, bottom right, bottom left, and top right. For the
extracellular matrix we model different initial conditions. On
one side we take random values between 0 and 1, which
corresponds to the density of the ECM [16]. On the other
side, for a homogeneous behaviour a constant value f (x, t) =
0.8 is taken to allow for the assumption that the density of
the ECM is high at the beginning, but smaller than 1, which
would be equivalent to the maximal density and the value
chosen in [16]. The choice of the value in this work is taken
in reference to [31], where the extracellular space of gliomas
has been described.

For solving the ECM equations (1c), (2c) we use Euler
finite difference approximations. The density of the matrix is
continuous, therefore a continuous description of the cells
is needed. We use the tumour cell density c = 1 when
a tumour cell is occupying the current location and take
c = 0 otherwise. Intuitively, we use the highest value for the
density, since the grid point is occupied by the cell. In this
way we have a binary description of the tumour cells.

2.4. Parameter Estimation. In this section we estimate the
parameter α f and β f used in the newly proposed model,
while the remaining parameters are taken from literature (c.f.
Section 2.2). In order to estimate the parameters and for the
sensitivity analysis, we examine the behaviour of ECM f by
varying α f and β f within a certain range.

The MDEs are diffusing, so that the concentration at
positions where tumour cells are located is not so high as for
the tumour cells, where we have the highest value c = 1. For
the degradation parameter α f of the extracellular matrix it
is hence important to choose a value that is smaller than the
value in (2c) which is 1. For the lower bound of the range,
if the value 0 is included, in this case we will not have any
degradations effects, which is not what we actually want. To
this end, the parameter α f is varying in the range (0, 1).

The parameter β̃ f is 0.015. Since the degradation param-
eter α f is smaller than α̃ f and the equilibrium between
degradation and remodelling of the ECM should remain
valid, the upper bound of the remodelling parameter β f will
be 0.015. On that account and because 0 would mean no
remodelling effects, the parameter is varying in the range
(0, 0.015].

When combining these two parameters, the stability has
still to be ensured. Because of the explicit Euler method,
which we use to solve the equation of the ECM and because
the maximum of the cancer density c is 1, the stability
requirement is

∣
∣
∣1− kα f + kβ f

∣
∣
∣ ≤ 1, (9)

for t = mk and c → 1.
We start by fixing the parameter β f and vary α f , since the

range of the remodelling parameter is much smaller. First β f

has to be chosen as high as possible, that is, β f = 0.015. Now,
we vary α f just in a range of [0.02, 1) for not breaking the
stability requirement (9). The resulting ECM in the middle
of the domain is shown in Figure 2. The density of the ECM
is greater than 1, that is the production parameter is too big.
For a value of β f = 0.0075, the ECM density is approximately
1, and for β f = 0.005 the ECM is 0.92 (see Figure 2). At
last the production parameter was chosen to be β f = 0.001
and β f = 0.0005. For each value for β f mentioned, we tested
different values for α f , whereas α f was selected w.r.t. β f with
the aim to archive a realistic, not too big production of the
ECM and a degradation of the matrix, so that the cells can
become invasive. A selection of different combinations of α f

and β f as well as the resulting ECM f are given in Figure 2.
The values for which the best equilibrium is archived are
β f = 0.001 and α f = 0.01 (see Figure 2). These values
reproduce the tumour growth extremely well (see Figure 8)
throughout this work.

2.5. Cell Actions. The tumour equations (1a) and (2a)
describe solely the motility of the cells. For modelling the cell
actions proliferation, death and quiescence we consider the
following criteria. In each time step and for each tumour cell
we account for the local nutrient concentration and decide
based on this how the cell will react. In case that the nutrient
value for the respective cell is under a critical threshold
ucrit = 0.4, we assume that the cell will die due to insufficient
nutrients. Consequently, the cell is marked as necrotic tissue.
In contrast to [16] the necrotic cells are not considered
for the next step, since this material is not degraded by
the macrophages of the brain (microglia) like it is the case
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Figure 2: ECM profiles at t = 325 h for different αf and β f .

for the apoptotic material due to phagocytosis [32]. Having
checked the necrosis criterion, each cell moves according to
the scheme described in Section 2.3. In case the nutrient
concentration is high enough, that is, ucrit ≥ 0.4, the cell is
selected to divide. The duration of the cell cycle is in general
one day [6], in our case we assume that the proliferation takes
eight hours, which is realistic for malignant tumours [16].

The grid location onto which the daughter cells are
placed depends upon the cells occupying the neighbourhood
of the mother cell. One daughter cell will always replace the
mother cell, which is common to do so [16, 33]. Instead to
place the second daughter cell randomly as usual [16], we
placed it chemotacticially, that is in the nontumorous and
nonnecrotic location with the highest nutrient concentration
(if there is more than one free) in the neighbourhood of the
mother cell. The choice of the neighbourhood is described in
Section 2.6. This chemotacticially placement is also valid for
the movement of a tumour cell.

In case there is no free space in the neighbourhood, the
tumour cell becomes quiescent until free space is available or
the cell becomes necrotic due to insufficient nutrient [16, 18,
34, 35]. Of course one cell can also get into a quiescent state
because of the migration scheme.

Invasive glioma cells are resistant against apoptosis [36,
37] in favour of the cell survival. Furthermore, [38] proved
by means of in vitro experiments that apoptosis is suppressed
in GBM, hence we do not consider apoptosis in the proposed
model in contrast to [16].

2.6. Neighbourhood and Update. The choice of the local
neighbourhood of an individual cell is crucial for the
update of its state for lattice-based models [39–41]. To avoid
unrealistic pattern formation, we use a novel effective and
simply method [11], which introduces a fifty-fifty chance to
decide if we take the eight neighbours into account or the
four orthogonally surrounding cells. For each cell, at each

discrete time point we generate a random number to decide
whether the Moore or the von Neumann neighbourhood is
favoured.

Another problem can arise from the strategy for updating
the state of a tumour cell inside the lattice. If we would run
sequentially to look at every tumour cell one by one, the
first cell has often more possibilities for migration (in case
of division: to place the daughter cells) than the one being
located very next to it. Consequently, cells are not updated in
a left-to-right or top-to-bottom manner but randomly [16].

3. Results and Discussion

The distribution of the extracellular matrix, the progression
of nutrients, and the tumour cell arrangement over time
are shown in Figures 3 and 4. There, the obtained tumour
distributions are illustrated for up to 700 iteration steps,
which is equivalent to a period of time of 350 h. At this
point in time the tumour is hypoxic, that is, the mean value
of nutrients and especially of the oxygen concentration is
under a nondimensional value of u = 0.5. With hypoxia the
tumour growth will transfer into the vascular stage through
the process of angiogenesis [42].

In a first step, a homogeneous ECM (see also Section 2.3)
and two neighbored blood vessels at the left side and at
the bottom of the domain has been assumed. The results
are illustrated in Figure 3. An increasing size of the tumour
can be observed over the time. The steep rise can also be
observed in Figure 8, bottom right. Likewise the distinct
behaviour of the invasive cells migrating in the direction of
the higher nutrient concentration is clearly visible and a large
necrotic region. The nutrients are shown in the bottom row
in Figure 3. The big consumption rate of the tumour cells is
notable visible especially in the middle of the domain where
the nutrient concentrations becomes smaller over time. The
density of the ECM is shown in the middle row of Figure 3.
The shape of the degradation is similar to the shape of the
tumour cells. The boundary of the degraded matrix is less
apparent, this is because individual tumour cells can not
degrade the matrix just by moving through it just one time.
In its centre, the ECM has been degraded more. There, the
tumour bulk is located.

Computer simulations using two parallel blood vessels
and a constantly initialized extracellular matrix is shown in
Figure 4. The distribution of the tumour is invasive and a
necrotic region due to the lack of nutrients (lower row) can
be observed. Once more, the close interaction of tumour
cells (upper row) and ECM (middle row) is clearly visible by
means of the similar shape of both.

The simulated tumour depicts a distribution that can
typically be observed in vivo A large necrotic core sur-
rounded by a rim of quiescent cells and an outer rim of
strongly diffusive glioma cells. As a further step and to show
the importance of the novel method, we compare results
of the proposed approach with results of common ones.
To this end, computer simulations using system ((1a), (1b),
(1c)) and ((2a), (2b), (2c), (2d)) have been run. In a first
step, one nutrient delivering blood vessel at the right side
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Figure 3: Simulation results for the proposed model ((1a), (1b), (1c)) at points in time t = 50 h, 150 h, 250 h, and 350 h. The initial
condition of the nutrients is given by the blood vessel placed at the left side and at the bottom of the domain and are shown in the third row.
The extracellular matrix is initialised with a constant value and is illustrated in the second row. For the cancerous cells in the first row light
grey represents necrotic tissue, dark grey quiescent cells and black proliferating and migrating cells. The colouration for the remaining data
is given in the colour bar.

of the domain has been assumed. Given a homogeneous
extracellular matrix distribution the results are shown in
Figure 5. Comparing these data, differences for the ECM in
Figures 5(c) and 5(f) can be observed, since the assumption
for degradation of the matrix is different. The extracellular
matrix modelled on the basis of system ((2a), (2b), (2c),
(2d)) has been reduced through the diffusive MDEs shown
in Figure 5(g) and the matrix simulated with the new
introduced system ((1a), (1b), (1c)) is degraded by the
tumour cells shown in Figure 5(a).

For the tumour cell distribution a quite similar size of
the bulk can be observed, however, there are differences
concerning the invasive properties of the cells. For the
tumour progression modelled with the proposed approach
((1a), (1b), (1c)) the invasive properties of the cells are more
distinct. This is indeed characteristic for malignant tumours
and consistent with in vivo and in vitro glioma experiments
(cf. [37, 43] and references therein). However, this feature
cannot be seen in Figure 5(d). The novel introduced method
seems to capture this behaviour better. As expected, the
nutrient progression is similar in all figures, since these are
modelled in the same way in both models.

At last, we compare the tumour distribution assuming
the typical Dirichlet boundary conditions for the nutrients,
that is, we assume blood vessels located at all boundaries
of the domain. Furthermore, a randomly initialised ECM

(Figures 6(c), and 6(f)) is assumed. The tumour cell arrange-
ment is shown together with the nutrients, ECM, and MDE
in Figure 6. We notice a quite similar structure of the tumour
cells (Figure 6(a)) simulated with the proposed method
((1a), (1b), (1c)) and the tumour cell distribution shown in
Figure 6(d) modelled using ((2a), (2b), (2c), (2d)). There
are only subtle differences, that have to be attributed to the
probabilistically controlled model. For a better comparison
of the differences of the tumour cell distributions obtained
using ((1a), (1b), (1c)) and ((2a), (2b), (2c), (2d)), the
difference image of Figures 6(a) and 6(d) is given in Figure 7.
Apart of a small rim, only zero entries occur. The white
points, representing a value 1, and black points (with values
−1) show the missing tumour cells in either of the two
images, the entries coloured with grey denote different states
of the cancerous cell (proliferating, quiescent, necrotic). As
mentioned before, this must not be misunderstood as a
quantitative error difference or estimation because of the
probabilities of cell movement and the randomly-guided
model (see Section 2).

However, we have simulated the lastly described model
(cf. Figure 6) one hundred times with different random
number seeds and show the average behaviour of the
different cells with the respective standard error for both
methods (the proposed method ((1a), (1b), (1c)) and the
common method ((2a), (2b), (2c), (2d))) in Figure 8.
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Figure 4: Simulation results for the proposed model at points in time t = 50 h, 150 h, 250 h, and 350 h. The initial condition of the nutrients is
given by the blood vessel placed at the left and right sides of the domain and are shown in the third row. The extracellular matrix is initialised
with a constant value and is illustrated in the second row. The first row is showing the distribution of the cancerous cells. Colouration as
given in Figure 3.
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Figure 5: Simulation results (a–c) of the proposed method ((1a), (1b), (1c)) and (d–g) of the common method ((2a), (2b), (2c), and (2d)),
respectively, at time t = 375 h. The initial condition of the nutrients is given by the blood vessel placed at the right side of the domain. The
extracellular matrix is initialised with a constant value. Colouration as given in Figure 3.
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Figure 6: Simulation results (a–c) of the proposed method ((1a), (1b), (1c)) and (d–g) of the common method ((2a), (2b), (2c), (2d)),
respectively, at time t = 375 h. The initial condition of the nutrients is given by blood vessel placed at all sides surrounding the domain. The
extracellular matrix is initialised with random values (heterogeneous). Colouration as given in Figure 3.
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Figure 7: Difference image of the tumour cell distributions (Figures
6(a) and 6(d)) computed with the two described methods at time
t = 375 h.

For the distribution of the necrotic cells shown in the
upper left figure the differences are hardly visible. Only after
approximately 110 h small differences can be observed for
the progression of the quiescent tumour cells (upper right
figure). The same behaviour can be seen in the lower two
plots, where the distribution of the migrating/proliferating
and all tumour cells, including quiescent cells are displayed.
These highly similar results indicate the potential for the
simplified method without explicitly simulating the matrix
degrading enzymes. At this, another important advantage
of the introduced model is the computation time (Table 2).

The proposed model ((1a), (1b), (1c)) takes about 2.5 less
time compared to model ((2a), (2b), (2c), (2d)) in case the
ECM is initialized with a random distribution (Table 2). This
reduction in run-time does even increase up to a factor of 6.3
in case the ECM is initialized to a constant value and just one
blood vessel is assumed. Simulations have been carried out
using a single-threaded MATLAB implementation and have
been run on a Pentium i7920 with 2.67 GHz and 12 GB of
RAM.

4. Conclusions and Outlook

A hybrid approach has been developed that uses a coupled
continuum-discrete model to simulate tumour growth. This
method is devoted to the modelling of cellular processes of
tumour cells, which is itself part of a complex system. The
availability of efficient approaches therefore is an essential
prerequisite for modelling tumour growth. To this end,
a novel lattice-based approach has been developed that
does not only provide a significant simplification compared
to previous models, but also is computationally efficient
(Table 2) and, moreover, depicts a more invasive behaviour
of tumour cells, which is an important character of gliomas.

The degradation of the ECM in the area covered by the
tumour can clearly be seen in all simulation results. This
behaviour confirms our hypothesis of the direct interaction
between tumour cells and the extracellular matrix. As an
important feature the novel method provides the best results
using a constant matrix, where the invasive behaviour of
tumour cells can clearly be observed, in accordance to in vivo
and in vitro behaviours [37, 43].

Furthermore, the proposed model requires about 2.5 less
computation time compared to the common model in case
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Figure 8: Average number of necrotic cells (upper row, left), quiescent cells (upper row, right), proliferating and migrating tumour cells
(lower row, left), and total number of nonnecrotic tumour cells (lower row, right) over time with the respective standard error.

Table 2: Computation time in minutes for the common model
((2a), (2b), (2c), (2d)) and the proposed approach (without explic-
itly modeling MDE, ((1a), (1b), (1c)) at different configurations.

Initial ECM Capillaries Standard model New model

All sides 85 32

Random Two sides 125 48

One side 138 61

All sides 92 28

Constant Two sides 133 31

One sides 151 24

the ECM is heterogeneous (Table 2). This reduction in run-
time does even increase up to a factor of 6.3 in case the ECM
is chosen to be homogeneous (assuming one blood vessel).

Comparing the results for modelling haptotactic-
chemotactic cancer growth using the common choice of

the environment and the novel introduced approach, a
rather similar size of the tumour can be observed, in case a
heterogeneous ECM is used. Faced with the requirement of
modelling much more complex processes than the degrada-
tion of the ECM through the MDE (in order to adequately
model tumour growth) the proposed model provides a
reasonable tradeoff between complexity and accuracy.

Prospectively, it will also be essential to extend the
devised model by cell-cell interactions such as pressure on
neighbouring cells caused by mitosis or cell migration. We
expect, that this pressure will make the thickness of the
proliferating rim more distinct [44]. For a more realistic
description of the in vivo processes, incorporating the
immune system [45] and effects of therapies [46, 47] forms
the central focus of our current work. In this case, the
established efficiency gain might pay off even more through
alternative numerical solvers than the implemented finite
element method. Further, we aim at devising multiscale
tumour growth models that not only account for cell-cell
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interaction but also for molecular events as well as for
information available from the macroscopic embedding. The
important effects of, for example, epidermal growth factor
receptor (EGFR) which are overexpressed in gliomas [48] on
the molecular level have to be included.
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[8] T. A. Schütz, A. Toma, S. Becker, A. Mang, and T. M. Buzug,
“Computational multiscale modeling of brain tumor growth,”
in Proceedings of the 9th European Conference on Computa-
tional Biology, p. G21, Ghent, Belgium, 2010.

[9] G. Stamatakos, E. Kolokotroni, D. Dionysiou, E. Georgiadi,
and C. Desmedt, “An advanced discrete state-discrete event
multiscale simulation model of the response of a solid tumor
to chemotherapy: mimicking a clinical study,” Journal of
Theoretical Biology, vol. 266, no. 1, pp. 124–139, 2010.

[10] T. Alarcon, M. R. Owen, H. Byrne, and P. K. Maini, “Multiscale
modelling of tumour growth and therapy: the influence of
vessel normalisation on chemotherapy,” Computational and
Mathematical Methods in Medicine, vol. 7, no. 2-3, pp. 85–119,
2006.

[11] A. Toma, A. Mang, T. A. Schütz, S. Becker, and T. M. Buzug,
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[30] Z. Szymańska, C. Rodrigo, M. Lachowicz, and M. Chaplain,
“Mathematical modelling of cancer invasion of tissue: the role
and effect of nonlocal interactions,” Mathematical Models and
Methods in Applied Sciences, vol. 19, no. 2, pp. 257–281, 2009.

[31] J. Zamecnik, “The extracellular space and matrix of gliomas,”
Acta Neuropathologica, vol. 110, no. 5, pp. 435–442, 2005.
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