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Abstract

Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape
within the cell. Identification and characterization of the synergistic and antagonistic components of stress response
mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress
responses. To this end, we performed meta-analysis of drought (abiotic), bacterial (biotic) stress response in rice and
Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified
approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214) and 28.7% (272) DEGs
were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common
DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated
the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and
biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both
stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while ‘CO-like’
TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-
expression network analysis divided DEG sets into multiple modules that show high co-expression and identified
stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to
drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and
reversed co-expression patterns.
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Introduction

Crop productivity and survival is tightly linked to its
environment which is being altered due to climate change,
biodiversity loss and degradation of land and freshwater [1]
threatening the food security of the world while the food
demand is estimated to increase by 70% in 2050 [2,3,4].
According to latest World Agricultural Supply and Demand
Estimates (WASDE) report by United States Department of
Agriculture (USDA), about 80% of agricultural land is
experiencing drought and over 2,000 U.S. counties had been
designated as disaster areas [5]. Reflecting the declining
environmental conditions, more often than not plants today are
exposed simultaneously to multiple stresses resulting in
enormous changes in the molecular landscape within the cell.
Comprehensive understanding of the regulatory networks that
modulate the dynamic adaptive changes in a plant responding
to stress is critical to meet future energy needs. Rice and
Arabidopsis are both model plant organisms representing
monocots and dicots respectively. Both the plants have

extensive biological knowledgebase and resources including
complete genome sequence and highest number of microarray
studies in the plant kingdom. Thus, analysis of stress
responsive genes within and between rice and Arabidopsis for
different kinds of stresses would reveal a number of pivotal
attributes spanning across the major plant division,
angiosperms.

Advancements in high throughput technologies have resulted
in deluge of various kinds of -omic data addressing different
aspects of temporal and spatial response in variety of stresses
in plants. Microarray technology revolutionized the identification
of global transcriptomic changes and today multiple
transcriptomic studies exist for the same or related stress
conditions. Thus meta-analysis of related microarray studies is
increasingly becoming popular to enhance the sensitivity of the
hypothesis addressed and validate conclusions [6]. So far, very
few meta-analysis studies are available in plant systems
[7,8,9,10,11]. Meta-analysis of microarray data from
Arabidopsis infected with eight different viruses revealed hub
genes that are highly connected, organized in modules and are
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central to plant defense response [12]. It is reported that in
plants responding to multiple stresses, there exists extensive
cross-talk between different stress responses via hormonal
signaling pathways [13]. Thus, it is imperative to compare and
analyze different kinds of stress responses to find the genes,
proteins and metabolites that are common and specific to
different kinds of abiotic and biotic stress conditions. Meta-
analysis of microarray studies involving samples from a wide
range of tissues, developmental stages and different levels of
stresses but specific to one stress condition would unravel the
universal principles and features related to the stress response.
Comparative analysis of such universal molecular profiles from
different stresses would allow the identification of unique and
shared features. Further, comparison of the stress responsive
profiles across diverse plant species would reveal the
conserved stress specific mechanisms and uncover
orthologous genes that are most critical to the stress response.

Recently, there has been an upsurge in the number of
studies reporting global co-expression networks of plants
based on genome wide transcriptome data [14,15,16]. A
number of tools namely ATTED-II [17], CressExpress [18],
RiceArrayNet [19], OryzaExpress [20] and RiceFREND [21]
based on co-expression networks are available that can be
explored to identify novel genes, predict gene functions and
characterize gene regulatory networks. A network based
analysis in rice identified drought responsive gene modules
and found a module with 134 genes specifically associated with
both drought tolerant and drought resistant rice varieties [22].
Weighted Gene Co-expression Network Analysis (WGCNA) is
one of the latest and popular methodologies to decipher
correlation patterns across microarray samples [23].
Implemented in R as a package, WGCNA provides a vast array
of functions to detect, analyze and export individual and
consensus modules from diverse but related microarray
studies. WGCNA has been utilized to detect coexpression
modules in Arabidopsis, rice, maize, soybean and poplar
[14,24,25] and also across species [26].

In this study, we performed large scale comparative
transcriptomic analysis via meta-analysis of microarray data on
drought and bacterial stress in rice and Arabidopsis. To
elucidate the cross talk between different stress conditions,
knowledge of the expression status of genes involved in stress
response is critical. Our analysis revealed the genes that are
unique to each stress and those that are shared with other
stress conditions. Further, within common genes, we also
found genes that were up or downregulated in both stresses

and also genes which showed reversed expression status.
Extensive analysis of various gene sets based on Gene
Ontologies (GO), KEGG Orthologies (KO) and metabolic
pathway analysis unraveled the underlying biological
mechanisms related to different stresses. We then performed
co-expression network analysis which divided the stress
responsive genes into tightly co-expressed modules revealing
organization of stress transcriptome.

Methods

Selection of stress related microarray studies
Gene Expression Omnibus (GEO) is the central repository

for microarray and other forms of high-throughput data [27].
Experiments conducted on the Affymetrix platforms, Rice
Genome Array (GPL2025) and Arabidopsis ATH1 Genome
Array (GPL198) were chosen for this study as they provide
extensive gene coverage and are widely used. GEO currently
holds 1920 and 9106 samples and 114 and 709 series records
(group of related samples) belonging to GPL2025 and GPL198
platforms, respectively. In total, we analyzed 305 and 220
samples of rice and Arabidopsis, respectively, belonging to 28
series records. Different series involving samples from various
tissues, developmental stages and stress levels were included
to identify differentially expressed genes in a wide range of
conditions with higher sensitivity and uncover an overarching
drought and bacterial stress response profile. The number of
selected series, sample records and number of controls and
treatments for each stress condition is given in Table 1.
Complete list of selected series and sample records including
their GEO IDs and brief description is given in Table S1 in File
S1.

Identification of differentially expressed genes
The raw intensity CEL files of the selected samples were

downloaded from GEO and intensity values were extracted
from the CEL files using the bioconductor package Affy in R
[28], quality checked using the package, ArrayQualityMetrics
[29] and the samples failing two or more of its quality tests
were removed. The samples of each stress were normalized
together using Robust Multichip Average (RMA) method [30].
The probes were then matched to their loci based on
annotation provided by array element mapping facility at TAIR
portal for Arabidopsis (http://www.Arabidopsis.org/portals/
expression/microarray/microarrayElementsV2.jsp) and at

Table 1. Number of microarray studies for each stress condition.

Stress condition GEO Series GEO Samples No. of controls No. of treatments
RD 5 78 35 43

RB 7 227 61 166

AD 7 114 61 53

AB 5 106 40 66

Total 24 525 197 328

RD: Rice Drought; RB: Rice Bacteria; AD: Arabidopsis Drought; Arabidopsis Bacteria
doi: 10.1371/journal.pone.0077261.t001
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ricechip.org (http://www.ricechip.org) for rice. Probes with no
match or ambiguously matching multiple loci were discarded.
The retained probes and their normalized intensity values were
then loaded into oneChannelGUI environment to perform non-
specific filtering of probes with relatively small signal
distribution using Inter Quartile Range (IQR) filter at most
stringent setting (0.5) and probes with very low intensity values
(probes below threshold log2(50)=5.64 in ≥90% of arrays). An
example of resultant distribution of retained probes after
filtering is shown in Figure S1.

Differentially expressed genes (DEGs) were identified using
Rank Product method [31]. Rank Product is a non-parametric
method returning up and down regulated genes, their fold
change (FC), p-values and percentage of false predictions
(PFP). It was shown to perform better than other methods
including significance analysis of microarrays (SAM), Fisher’s
Inverse χ2 test and t-based hierarchical modeling [32] and is
widely used for meta-analysis studies combining data sets from
different origins of the sample pool to increase the power of
identification [6]. We used the function RPadvance of the
bioconductor package RankProd [33] which is specifically
designed for meta-analysis. The number of permutation tests
was set to 250. The function topGene with a PFP cut-off value
of ≤0.01 was used to output differentially expressed genes.
Among multiple probes matching the same locus, the probe ID
with highest fold change was retained.

The orthologs between rice and Arabidopsis were obtained
by parsing the gene families reported in GreenPhylDB [34]
which were identified based on analysis of complete proteomes
of 16 plant species, cross referencing a number of resources
(UniProtKB, Pubmed, InterPro, MEME motifs, KEGG
pathways).  

Functional enrichment analysis
Gene ontology analysis was carried out using the Singular

Enrichment Analysis (SEA) tool offered by agriGO [35] at
default settings of Fisher t-test (p<0.05), False Discovery Rate
(FDR) correction by Hochberg method and five minimum
number of mapping entries against species specific pre-
computed background reference. KEGG orthology (KO) terms
associated with a gene correspond to KEGG pathway nodes
and BRITE hierarchy nodes [36]. To identify enzymes and
proteins encoded by differently expressed genes and their
associated metabolic and signaling pathways in each stress
condition, we performed enrichment analysis of KO terms and
determined the significance based on hypergeometric
distribution p-values with <0.05 cut off value. Further analysis
of biological pathways was carried out using the tool Database
for Annotation, Visualization and Integrated Discovery (DAVID)
v6.7 [37]. Information on transcription factors (TFs) genes in
rice and Arabidopsis was obtained from the database PlnTFDB
[38] and analyzed for enrichment of TF families in stress
responsive genes.

Co-expression network analysis
To identify co-expression modules within SRGs, we

extracted the normalized, log transformed gene expression
values of each stress condition from the microarray

experiments used in meta-analysis and performed Weighted
Gene Co-expression Network Analysis (WGCNA) [23]. Briefly,
WGCNA procedure calculates Pearson’s correlation matrix for
all genes, transforms the correlation matrix by raising all values
to a power ß (soft thresholding as biological networks are small
world and scale free [39]), calculates a topological overlap
matrix (TOM) from the transformed correlation matrix, converts
the topological overlap matrix into a dissimilarity matrix, creates
a hierarchical cluster tree based on the dissimilarity matrix, and
identifies gene co-expression modules from the hierarchical
cluster tree using a dynamic tree cut procedure. The
blockwiseModules function of WGCNA package in R was used
to generate the modules with powers 8, 6, 14 and 5 for RD,
RB, AD and AB, respectively, which best approximate a scale-
free topology (model fit >0.8) of the resultant network (Figure
S2). For this analysis, module size was 20-30, deep split was
set at level 4 and tree merge cut height was 0.15-0.25.
Heatmaps were constructed to depict the eigengenes from
each identified module. Eigengenes represent a centroid
measure of the expression levels of all genes in a cluster. The
SRGs common to drought and bacterial stress were analyzed
to find consensus modules showing co-expression patterns
across stresses using the function
blockwiseConsensusModules with the following settings:
powers 7 and 10, minimum module size 30 and 15 for rice and
Arabidopsis, respectively, with the merge cut height set at 0.15.

Results and Discussion

Highly conserved expression status of genes common
to drought and bacterial stresses

We identified a total of 5084 and 1618 DEGs referred herein
as stress responsive genes (SRGs) in rice and Arabidopsis,
respectively, combining the DEGs in drought and bacterial
stresses together that were below PFP ≤0.01 (Figure 1).
Greater than 60% of genes were unique to individual stresses
in all cases and AB (Arabidopsis Bacteria) had highest percent
(~75%) of unique SRGs (799 genes). The number of up and
downregulated SRGs are shown in Figure S3A and complete
list of genes along with their fold change values is given in
Table S2 in File S1. Among the 1214 SRGs common to the
stresses studied in rice, majority of the genes were expressed
in same direction (72% or 874) with 565 up and 309
downregulated in both drought and bacterial stresses.
Similarly, higher number of SRGs (170 out of 272 or 62.5%)
common to both stresses studied in Arabidopsis was
expressed in same direction with 93 and 77 genes up and
downregulated, respectively. This finding elucidates that these
set of genes and their associated biological processes are
altered similarly as part of stress response in a wide range of
tissues, developmental stages, stress levels and ecotypes
(Table 1A). Among the genes with non-conserved expression
pattern, the proportion of genes showing downregulation in
drought and upregulation in bacterial stress (255 or 21% of
1214) was higher in rice while upregulation in drought and
downregulation in bacterial stress (66 or 24% of 272) was
higher in Arabidopsis (Figure S3D). Further comparison of PFP
values of common SRGs revealed that about 30% (371 out of
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1214) and 15% (33 out of 272) of rice and Arabidopsis genes,
respectively, showed very high significance in both the stresses
(PFP <0.0001). Especially among common SRGs of rice,
~40% (121/309) of genes that showed conserved upregulation
were with PFP <0.0001 in both the stresses.

To further validate the reliability of the identified genes, we
compared the DEGs against lists of genes that showed stable
expression in multiple studies. None of the 1618 Arabidopsis
DEGs were part of 39 genes proposed as a superior set of
reference genes for the normalization of gene expression by
Czechowski et. al [40]. Two of the 5084 rice DEGs,
LOC_Os08g23180 coding for arabinogalactan protein found
only in RD DEGs and LOC_Os02g38920 coding for GAPDH
found only in RB DEGs are part of 26 genes reported by Narsai
et. al. showing stable expression [41], which probably is due to
the limited number of tissues, developmental stages and stress
treatments used in their analysis.

The average fold change observed for SRGs was about
1.52, 0.93, 1.28 and 0.99 for RD (Rice Drought), RB (Rice
Bacteria), AD (Arabidopsis Drought) and AB (Arabidopsis

 Bacteria) stresses respectively. The number of SRGs with fold
change (FC) value ≥1.5 was higher in drought stress (51% and
26% in RD and AD respectively) and lower in bacterial stress
(4% and 3% in RB and AB respectively), majority of which were
part of downregulated genes. Especially three genes showed
>11 fold downregulation in RD, with LOC_Os05g47540
annotated as ‘CPuORF26 - conserved peptide uORF-
containing transcript, expressed’ under expressed 20.86 folds.
Upstream open reading frames (uORFs) are small open
reading frames found in the 5' UTR of mature mRNA which
regulate translation of major ORFs (mORFs) that code for
transcription factors, signal transduction factors and
developmental signal proteins [42]. Multiple studies have
reported the involvement of uORFs in translation repression of
target genes in response to stress conditions [43]. We found
this gene to be downregulated also in RB (FC 1.55).
LOC_Os10g36500 annotated as ‘invertase/pectin
methylesterase inhibitor family protein’ is the second top DEG
which was downregulated in both stress conditions (FC 11.34
and 1.20 in RD and RB, respectively). Pectin methylesterase

Figure 1.  Number of unique and common differentially expressed genes (DEGs) found in rice and Arabidopsis.  The
number of orthologous genes found between rice and Arabidopsis DEGs are also shown. RD: Rice Drought, RB: Rice Bacteria, AD:
Arabidopsis Drought, AB: Arabidopsis Bacteria.
doi: 10.1371/journal.pone.0077261.g001
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inhibitors (PMEI) are invertase inhibitor-related defense
proteins that play key roles in developmental transitions,
wounding, senescence and abiotic stresses [44]. Another gene
that was highly downregulated in RD (FC 11.08) but
upregulated in RB is LOC_Os04g39320 annotated as
‘expressed protein’. In all the four stresses about 15-20% of
SRGs were annotated as just ‘expressed protein’ or
‘protein_coding’ or ‘unknown protein’ (500, 556, 220, 157
DEGs in RD, RB, AD and AB, respectively) suggesting there
are still hundreds of stress responsive genes with little or no
functional information. We also found ~1% SRGs (27 and 34
genes in RD and RB, respectively) were annotated as
retrotransposon related genes in rice. In Arabidopsis, 21 genes
showed >4 fold downregulation under drought stress with
AT1G22690 annotated as ‘gibberellin-responsive protein’ and
AT5G03350, a legume lectin family protein showing 8.8 and
7.9 FC, respectively.

We found 642 orthologous genes between rice and
Arabidopsis that are involved in stress response (Table S3 in
File S1). There were 255 orthologous genes differentially
expressed in drought out of which 167 or 65% had their
expression status conserved (73 and 94 were up and
downregulated, respectively, in both rice and Arabidopsis
genomes). Similarly, there were 280 orthologous genes
differentially expressed in bacterial stress, out of which 211 or
75% had their expression status conserved. Majority of these
were upregulated in both the genomes (134 or 63% SRGs).
We also analyzed orthologs between AD and RB, and found 72
SRGs with conserved upregulation. On the other hand, there
were 102 SRGs with conserved downregulation between AB
and RD (Figure S4). There were 9 up and 8 downregulated
orthologous genes found in all four stresses. One of these
genes is a MYB TF that was highly downregulated, especially
in drought (AT2G21650 (FC 3.5) and LOC_Os01G44390 (FC
5.5)). ARR6 and 7 (two-component response regulators) and
their orthologous gene OsRR10 involved in cytokinin response
system [45,46] were also downregulated in all stresses. The
upregulated genes in all four stress conditions include a NAC
TF (AT1G69490 and LOC_Os03G21060), HAI-1 or highly
ABA-induced PP2C gene 1 (AT5G59220 and
LOC_Os05G38290) and a heavy metal-associated domain
containing protein (AT5G52760 and LOC_Os10G38870).
Expression of HAI-1 gene was shown to be induced by wound
in Arabidopsis [47].

Comparison of significant gene ontology terms of SRG
sets distinguished the roles of different hormones and
related processes

We found 623 unique GO terms enriched by SRGs in one or
more stress conditions (Table S4 in File S1). We analyzed
gene sets that are up or downregulated separately for each
stress as shown in Figure S3B. Although the number of SRGs
in Arabidopsis was only 1/3rd compared to those found in rice,
total number of significant GO terms in Arabidopsis is close to
rice reflecting the lack of annotation for a number of rice genes.
Four way Venn diagram analysis revealed the number of GO
terms common and exclusive to same stress (28 terms
between RBU and ABU vs. 4 terms between RBU and ADU)

and same species (68 between ADU and ABU vs. 10 between
ADU and RDU) were higher than vice versa (Figure S5). The
top most significant GO term found in upregulated gene sets
were response to water (FDR 5E-11), ribosome (2.9E-37),
response to organic substance (3.4E-31) and response to
biotic stimulus (2.4E-30) in RDU, RBU, ADU and ABU,
respectively and in downregulated sets were catalytic activity
(1.7E-24), photosynthesis (1.7E-16), thylakoid (2.6E-18) and
response to chemical stimulus (1.3E-15) in RDD, RBD, ADD
and ABD, respectively. The terms, ‘polysaccharide catabolic
process’, ‘hydrolase activity, hydrolyzing O-glycosyl
compounds’, ‘aromatic amino acid family metabolic process’,
‘regulation of gene expression’, ‘transcription factor activity’
were significantly enriched in upregulated gene sets, while
‘photosynthesis’, ‘circadian rhythm’, ‘cofactor biosynthetic
process’, ‘substrate-specific transmembrane transporter
activity’ were significantly enriched in downregulated gene sets
(Figure 2).

Terms related to hormones and their related functions
showed clear distinction between the processes that are up or
downregulated in a stress response especially in Arabidopsis.
While terms related to the hormones auxins, cytokinins and
gibberellins were downregulated, abscisic acid, salicylic acid,
ethylene and jasmonic acid was upregulated both in drought
and bacterial stresses. Abscisic acid (ABA) is known to play a
central role in abiotic stress response by inducing stomatal
closure resulting in reduction of transpiration [48], regulating
root growth, ion channels and gene expression [49]. Further, it
was found that ABA can have both positive and negative effect
on biotic stress signaling [50]. For example, ABA-induced
stomatal closure prevented invasion of microbes through open
stomata. Thus, recent findings increasingly suggest ABA as a
key player in fine-tuning of cross talk between abiotic and biotic
stress responses and therefore ABA production can be the
crucial factor determining how well a plant responds to multiple
stresses [51]. While the terms ‘response to ethylene stimulus’
and ‘response to salicylic acid stimulus’ were found both in
ADU and ABU, the terms ‘ethylene mediated signaling
pathway’ and ‘salicylic acid mediated signaling pathway’ were
significant only in ABU, which is in agreement with their known
functional roles in defense against pathogens and senescence
[52,53]. Further, the terms ‘host programmed cell death
induced by symbiont’ and ‘systemic acquired resistance (SAR)’
mechanisms that are induced by salicylic acid were also found
only in ABU. On the other hand, jasmonic acid biosynthetic
process was significant only in ADU although jasmonic acid
mediated signaling pathway was significant both in ADU and
ABU. Jasmonic acid (JA) plays a key role in defense response
especially against necrotrophic pathogens and wounding acting
antagonistically to salicylic acid which is majorly involved in
resistance to biotrophic pathogens [54]. JA also has a role in
the formation of antioxidants that regulate ascorbate and
glutathione metabolism [55] explaining our observation of its
increased synthesis in drought stress. The downregulation of
all of the major plant growth and development promoting
hormones such as auxins, cytokinins and gibberellins across
diverse stress conditions indicates various processes including
cell differentiation, chloroplast biogenesis, flowering and
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reproduction [56,57], controlled by them are pushed to
backseat while processes related to reprogramming of
metabolism, gene expression, balancing of homeostasis and
modulation of defense and immunity are given higher priority.
The above observations are further supported by a number of
terms related to photosynthesis and biosynthesis of its
components including ‘chloroplast’, ‘photosystem’,
‘photosynthetic membrane’, ‘photosynthesis, light reaction’,
‘photosynthetic electron transport chain’ that were highly
enriched in all four downregulated gene sets but none of the
upregulated gene sets.

GO terms related to various metabolic processes including
carbohydrates, amino acids, proteins, ribosomes, translation
and nucleobases were significantly enriched in RBU.
Translation is a highly energy expensive process and its
regulation via protein phosphorylation, initiation factor isoforms,
RNA sequence element interactions, and small RNAs enable
cells to rapidly and reversibly control gene expression in
response to environmental changes [58]. Upregulation of a
number of translation related GO terms in rice under bacterial
stress suggests cellular adjustments at translational level upon
bacterial infection. The term ‘response to water’ was highly
enriched in RDU (FDR 5E-11) and ADU (FDR 4.6E-19) and the
term ‘response to water deprivation’ was highly enriched in
ADU (1.5E-18). A number of terms related to regulation of gene
expression and metabolic processes including ‘transcription
factor activity’, ‘nucleic acid metabolism’, and ‘chitin catabolic
process’ were enriched in three or all of the upregulated gene
sets. Both positive and negative regulation of response to
stimulus was found in ABU. The term ‘negative regulation of
defense response’ was also significantly enriched in ABU (FDR
8.5E-05). The SRGs associated with the above GO term,
EDS1 (Enhanced disease susceptibility 1) and PAD4
(Phytoalexin deficient 4) directly interact and induce salicylic
acid biosynthesis in response to biotrophic pathogens [59]. A
mutant of EDS1 was found to be disease resistant [60].

KEGG pathway analysis of SRGs identified
upregulation of fatty acid, aromatic amino acid, glucose
metabolism and biosynthesis pathways of secondary
metabolites

The enriched KEGG orthology (KO) terms in different SRG
sets revealed many similar patterns as that of GO analysis that
can be seen by the top KO terms and their associated
pathways in Table 2. Enrichment of ‘jasmonate ZIM domain-
containing’ proteins (JAZs) and ‘auxin responsive GH3 gene
family’ proteins in the upregulated SRGs of Arabidopsis
substantiate recent findings that these proteins negatively
regulate downstream processes of hormonal activity especially
those related to plant growth and development [61,62,63]. On
the other hand, KO terms, ‘two-component response regulator
ARR-A family’ involved in negative regulation of cytokinin
signaling via phospho relay [64] and ‘SAUR family proteins’
which are primary auxin-inducible genes involved in auxin
transport and organ elongation [65] were enriched in
downregulated gene sets of both the stresses. Reactive
oxygen species (ROS) have been proposed as a central
component of plant adaptation to both biotic and abiotic
stresses [66]. Glutathione S-transferase (GST) plays a key role
in scavenging ROS and detoxification and is differentially
activated by stress-induced plant growth regulators [67]. GST
was upregulated in both the stresses and was also part of
ADD.

A number of terms related to enzymes involved in
biosynthetic pathways of amino acids including ‘peroxidase’,
‘tyrosine aminotransferase’ and ‘serine O-acetyltransferase’
were part of downregulated gene sets (Table S5 in File S1).
The KO term ‘Cellulose synthase A (CesA)’ was highly
enriched in RDD. Several studies reported disruption of genes
involved in biosynthesis of cellulose enhanced stress tolerance
[68,69,70]. As also revealed by GO analysis, the term ‘small
subunit ribosomal protein S4e’ was enriched in RBU and

Figure 2.  Summary of significant GO terms found in different stresses.  Terms in green arrow indicate those that are
commonly upregulated in drought and bacterial stress, and the terms besides the green arrow indicate those that are specifically
upregulated in one stress. Similarly the terms in red arrow and those besides indicate the terms that are downregulated in both
stresses and specific to one stress respectively. Terms in yellow oval were found both in up and downregulated gene sets. The
terms in bold and those in italics are highly significantly found in rice and Arabidopsis respectively. B.P: Biological Process, M.F:
Molecular Function, C.C: Cellular Component.
doi: 10.1371/journal.pone.0077261.g002
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‘ferredoxin’ involved in photosynthesis was enriched in RBD.
Heat shock protein 70 (Hsp70) is one of the most abundant
heat shock proteins in eukaryotic cells which bind to
hydrophobic patches of partially unfolded proteins preventing
protein aggregation [71]. Hsp70 was enriched in both the
upregulated gene sets of rice.

The KEGG pathways found significant by the tool DAVID
with p-value <0.05 in SRG sets are shown in Figure S6. The
pathway ‘fatty acid metabolism’ was enriched both in RDU and
RBU. Plants acclimating to stress modulate membrane fluidity
and levels of oleic acid and linolenic acid using lipases
facilitating proper functioning of critical integral proteins during
stress [72]. α-linolenic acid released under stress from
chloroplast membranes is a major parent compound for an
array of messenger compounds derived via oxidative
modification by ROS [73] including jasmonic acid [74,75]. The
pathway ‘α-linolenic acid metabolism’ was highly significant in
ADU and RBU. A number of pathways related to biosynthesis
of secondary metabolites were enriched in upregulated sets
including biosynthesis of alkaloids from shikimates, purines,
histidine, terpenoids and polyketides. Phenylpropanoids,
derived from a very limited set of core structures of shikimate
pathway are modified by oxygenases, ligases, oxidoreductases
and transferases to generate an enormous number of
secondary metabolites (>200,000) including lignins, suberins
and tannins which contribute substantially to the robustness of
plants facing stress [76] and are also implicated in providing
nutritional and medicinal benefits for animals and humans due
to their potent antioxidant activity [77]. Phenylpropanoid
biosynthesis was enriched in drought especially in rice but was
found both in up and downregulated gene sets suggesting
differential regulation of the enzymes resulting in synthesis of
different end-products. The biosynthetic pathway of flavonoids
from phenylpropanoid derivatives was enriched in ABD.

Biosynthesis and metabolic pathways of aromatic amino
acids, phenylalanine, tyrosine and tryptophan and degradation
pathways of lysine, valine, leucine and isoleucine were
enriched in upregulated gene sets (ABU, ADU, RBU and RDU).
The aromatic amino acids are also synthesized via the
shikimate pathway playing crucial roles in plant growth,
development, reproduction, defense, and environmental
responses [78,79]. Recent reports indicate reduction in starch
biosynthesis and accumulation, and increased consumption of
storage substances under drought [80,81] resulting in elevated
levels of hexose sugars (glucose and fructose) [82]. Our
analysis revealed upregulation of starch and sucrose
metabolism, glycolysis/gluconeogenesis and pentose
phosphate pathway in both drought and bacterial stresses. As
observed in GO analysis, a number of pathways related to
photosynthesis were enriched in downregulated gene sets
including porphyrin and chlorophyll metabolism, carbon fixation
in photosynthetic organisms and carotenoid biosynthesis.
Similar to the observation of enrichment of GO term
‘nucleobase, nucleoside, nucleotide and nucleic acid
biosynthetic process’ in RDD, ‘amino sugar and nucleotide
sugar metabolism’ pathway was also enriched in RDD.

Differential enrichment ‘CO-like’ TF family members
under drought and bacterial stresses

Out of the 82 and 56 known TF families/regulators, 34 (41%)
and 38 (67%) were found in one or more gene sets of
Arabidopsis and rice, respectively (Figure S3C). A comparative
list of the number of TFs belonging to each TF family found in
different stresses is given in Table S6 in File S1. Among the
large TF families, higher numbers of NAC, ERF, AP2-EREBP
and C2H2 family members were found in upregulated gene
sets while higher numbers of bHLH and MYB_related family

Table 2. Top KO terms and their associated pathways. 

KO ID Definition Pathway Ref No.ADD ADU ABD ABU
K00430 Peroxidase Phenylalanine and methane metabolism; Phenylpropanoid biosynthesis 144 11    
K00511 Squalene monooxygenase Sesquiterpenoid and triterpenoid biosynthesis 6   3  
K00799 Glutathione S-transferase Glutathione metabolism 46 4 6  7
K09580 Protein disulfide-isomerase A1 - 7    3
K13464 Jasmonate ZIM domain-containing protein Plant hormone signal transduction; Plant-pathogen interaction 20  7   
K14487 Auxin responsive GH3 gene family Plant hormone signal transduction 18    4
K14488 SAUR family protein Plant hormone signal transduction 59 9  5  
K14492 Two-component response regulator ARR-A family Plant hormone signal transduction 10 4  3  
K14497 Protein phosphatase 2C Plant hormone signal transduction 9  4   
    RDD RDU RBD RBU
K00815 Tyrosine aminotransferase Phenylalanine, tyrosine and tryptophan biosynthesis 4  3 3  
K02639 Ferredoxin Photosynthesis  5   4  
K02987 Small subunit ribosomal protein S4e Ribosome  3    3
K03283 Heat shock 70kDa protein 1/8 Spliceosome; MAPK signaling pathway; Protein processing in ER  6  3  4 
K05953 Nicotianamine synthase -  3 3    
K09874 Aquaporin NIP -  6 4    
K10999 Cellulose synthase A Starch and sucrose metabolism  9 6     
K00640 Serine O-acetyltransferase Cysteine and methionine metabolism 5    3  

doi: 10.1371/journal.pone.0077261.t002
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members were found in downregulated gene sets. WRKY TFs
were the highest in the upregulated set of bacterial stress both
in rice and Arabidopsis. WRKY TFs are considered to be at the
heart of global regulation of plant immunity by modulating its
immediate downstream target genes which include MAP
kinases and other TFs [83]. ‘CO-like’ TF family members were
the highest in RBU (17 TFs) and RDD (11) but low in RBD (1)
and RDU (3) indicating an inverse expression relationship
between drought and bacterial stress.  CO (CONSTANS) gene
and other members of CO-like TF family play an important role
in regulation of flowering and act between the circadian clock
and genes controlling meristem identity [84]. A high number of
HSF (heat shock transcription factor) family members were
found in upregulated gene sets of rice. Seven HD-ZIP
(heomodomain leucine zipper motif) members were found in
RDU only. Out of 16 Tify family members in Arabidopsis, seven
were found in ADU. Tify is a novel TF family with JAZ motifs, is
implicated to play a critical role in jasmonate signaling pathway
[85]. Members of this family were reported to be strongly
induced under drought conferring improved tolerance to
drought and high salinity [86].

Gene network analysis revealed tightly co-expressed
modules of SRG sets

Gene coexpression networks, built using a set of microarray
samples as input, can help elucidate tightly coexpressed
modules that are a mixture of genes with known and unknown
functions, identify hub genes, and candidate genes which can
be used as biomarkers [15,87]. Using Weighted Gene Co-
expression Network Analysis (WGCNA), we divided SRGs into
11, 10, 5, 8 modules of RD, RB, AD and AB, respectively,
excluding a grey color module listing genes that did not
significantly co-express with any other group of genes (Table
S7 in File S1). The module of each SRG indicated by module
color, kIM (intramodular connectivity), a measure of how well
connected or co-expressed a given gene is, with respect to
other genes in its module,  MM (Module Membership), a
measure of module membership correlating its gene
expression profile with the Module Eigengene (ME, which is the
first principal component of a given module also considered as
a representative of the gene expression profile of the module)
[23] and p-values are given in Table S8 in File S1.

The long length of the dendogram branches and
corresponding intense red color in the heat maps of co-
expression modules illustrate high co-expression of SRGs
within modules and less co-expression outside the module
(Figure 3). We used unsigned correlations so that positively
and negatively correlated genes could be grouped into the
same module. Yet, a number of modules showed high
enrichment of either up or down regulated genes (Table S7 in
File S1). For example, the largest module (turquoise) found in
RD with 846 SRGs was made up of 663 (78%) downregulated
genes while the second largest module (blue) with 763 SRGs
was made up of 618 (79%) upregulated genes. We compared
the 11 RD modules detected by us against 15 drought-
responsive modules of rice found by another recent study using
Markov Cluster (MCL) algorithm [22]. Out of those 15 modules,
14 modules were made up of 28-75% of RD SRGs, most of

which significantly overlapped with one of the RD modules
(Table S9 in File S1). For example, module 2 found by Zhang
et al [22] was made up of 213 genes, out of which 146 (68.5%)
were part of SRGs and 116 (90%) of those overlapped with RD
turquoise module. The module eigengene (ME) of the RD
turquoise module has low values in all drought arrays
compared to control indicating that most of the genes are
downregulated (green color in the heatmap) (Figure 4A). The
top functional terms enriched in this module were
predominantly related to photosynthesis. In the blue module,
ME has higher values in all drought arrays compared to control
indicating that most of the genes are upregulated (red color in
the heatmap) (Figure 4B). The top functional term of blue
module was ‘response to water’ followed by protein domains
‘dehydrin’ and ‘LEA’. Late embryogenesis abundant (LEA)
proteins are extremely hydrophilic proteins implicated in
desiccation tolerance and stabilization of proteins and
membranes during drying [88]. The blue module had a very
high number of TFs than turquoise (64 compared to 38 TFs)
(Table S7 in File S1) although it was made up of less number
of genes than turquoise. Majority of blue module TFs were from
ERF and NAC families while turquoise had higher number of
bZIP and CO-like TFs.

Functional enrichment analysis of each of the co-expression
modules revealed a number of significant terms with FDR
<0.05 (Table S10 in File S1) especially in Arabidopsis which
were proportional to their module size. However, in rice, there
was large variation in number of significant functional terms
compared to module size (Table S7 in File S1). For instance,
the RD module brown (size 732) had 83 significant terms but
blue (size 763) had only 8 terms with FDR <0.05. Further
analysis of these modules revealed higher number of genes
annotated as ‘expressed protein’, ‘DUF – Domain of unknown
function’ in blue module (129, 26 and 260) compared to brown
module (96, 9 and 211). There were 51 and 278 genes in blue
and brown modules, respectively, with high intramodular
connectivity (kIM value >100), out of which 11 and 31 genes
were annotated as ‘expressed protein’ in blue and brown
modules, respectively. These genes would be important
candidates for further investigation as they might be playing
significant role in stress response.

Under same stress, a number of modules in rice and
Arabidopsis showed relatedness in functionality, indicating
conservation of co-expression of functionally related genes
across species. The module AD turquoise was related to RD
brown with shared terms, response to oxidative stress (GO:
0006979, AD FDR=5.18E-07, RD FDR=5.32E-07) and calcium
ion binding. The module AD blue was related to RD turquoise
with terms photosynthesis (GO:0015979, AD FDR=9.24E-07,
RD FDR=2.0E-19) and other similar terms. AB yellow was
related to RB magenta with shared terms, ‘aromatic compound
biosynthetic process’ and ‘cellular amino acid biosynthetic
process’. RB red with 203 upregulated genes out of 206, had
26 TFs which is double the percent of TFs found in other
modules. Most of the TFs in this module belong to WRKY and
MYB families with the top gene being a MYB TF,
LOC_Os04g43680. The only downregulated genes in this
module are LOC_Os05g37820 (major facilitator family
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transporter), LOC_Os09g35010 (dehydration-responsive
element-binding protein) and LOC_Os02g51910 (cytokinin-O-
glucosyltransferase 2).

Among the modules found in AD, brown (size 64) had 63
upregulated genes and 22 TF genes (34%), and showed
enrichment of 44 functional terms including response to various
hormones and endogenous stimuli like water deprivation, salt,
cold, temperature and chitin. There were 6 TFs including
WRKY33 and WRKY40 in the top 10 genes in this module
based on kIM values. Among AB modules, yellow module with

90% (72 out of 80) downregulated genes and 18.75% of TFs
showed enrichment of a number of terms related to secondary
metabolic process including biosynthesis of aromatic
compounds, flavonoids and phenylpropanoids.

Consensus co-expression modules of drought and
bacterial stresses

The expression profiles of the SRGs common to drought and
bacterial stresses was utilized to detect consensus modules

Figure 3.  Dendrograms and heatmaps of SRGs divided into tightly co-expressed modules by the R statistical package
WGCNA.  A) RB, B) RD, C) AB, and D) AD. The DEGs were clustered based on co-expression patterns as represented by the
dendrogram and correlation heat map. Clusters of like-regulated genes are referred to as modules and are indicated by different
colors. Grey color represents the genes that could not be assigned to a module. Intensity of red coloring in the heat map indicates
strength of correlation between pairs of genes on a linear scale.
doi: 10.1371/journal.pone.0077261.g003

Figure 4.  Heatmaps of turquoise and blue modules in rice under drought stress.  The x-axis represents microarray samples
grouped into drought treated and control samples and y-axis represents genes found in the module. Below the heatmap the
corresponding module eigengene expression values are shown. The most significant functional terms found in the module are also
shown. The number of genes found in each module and the percentage of up and downregulated genes in each module are shown
as a pie chart.
doi: 10.1371/journal.pone.0077261.g004
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that would reveal sets of genes with similar co-expression
patterns in both the stresses. We found 9 and 4 consensus
modules (excluding grey module for genes that did not co-
express with others) based on 1214 and 272 SRGs
differentially expressed both in drought and bacterial stress in
rice and Arabidopsis, respectively (Figure 5 and Table 3). The
color coded tables below the dendrograms in Figure 5 show
the correspondence between consensus modules and modules
found individually in drought and bacterial stress revealing
several of the modules with preserved module structure.
Consensus modules brown, turquoise and blue in rice and
turquoise and brown in Arabidopsis showed significant overlap
with their counterparts indicating the module structure in

drought and bacterial stress to be very similar. A complete list
of SRGs with their consensus modules and kME values which is
a measure of module membership by correlating its gene
expression profile with its module eigengene is given in Table
S11 in File S1.

Among the 9 consensus modules found in rice, three
modules showed conservation of differential expression in
>90% of genes. Of these, module red contains majorly
downregulated genes while brown contains upregulated genes.
Red module was enriched with terms ‘ribonucleoprotein’ and
‘rotamase’ and brown was enriched with terms ‘valine, leucine
and isoleucine degradation’ and ‘NAM protein’. Interestingly,
two modules (magenta and black) showed >92% of genes with

Figure 5.  Clustering dendrogram of genes and consensus modules found in A) rice and B) Arabidopsis.  The
correspondence between consensus modules and modules found individually in drought and bacterial stress based on the
expression values of the common genes are also shown as a table. Each row of the table corresponds to individual stress specific
module (labeled by color as well as text along with the number of genes in the module), and each column corresponds to one
consensus module. Numbers in the table indicate gene counts in the intersection of the corresponding modules. Coloring of the
table encodes -log(p), with p being the Fisher's exact test p-value for the overlap of the two modules. The stronger red color
indicates more significant overlap.
doi: 10.1371/journal.pone.0077261.g005

Table 3. List of consensus co-expression modules found in each stress gene set.

Rice Modules Module Size No. of TFs RD Down/Up RB Down/Up Conservation of gene expression (%)

Brown 106 10 8/98 4/102 94.34

Red 81 2 72/9 75/6 93.83

Yellow 99 8 32/67 39/60 90.91

Turquoise 505 19 396/109 363/142 82.38

Blue 125 5 114/11 88/37 72.80

Green 90 5 17/73 33/57 48.89

Pink 62 2 57/5 28/34 46.77

Black 67 7 62/5 2/65 7.46

Magenta 37 3 37/0 1/36 2.70

Arabidopsis Modules   AD Down/Up AB Down/Up  

Turquoise 140 14 63/77 98/42 53.57

Blue 39 6 22/17 20/19 64.10

Brown 31 7 2/29 1/30 90.32

Yellow 22 0 7/15 0/22 68.18

doi: 10.1371/journal.pone.0077261.t003
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reversed expression status suggesting that these set of genes
possibly play a co-ordinated role specific to the stress
condition. Most of the genes in these modules were
downregulated under drought but upregulated under bacterial
stress elucidating the differences in abiotic and biotic stress
responses. We further investigated if this trend can be
observed in other stresses, using the tool Genevestigator [89].
Analysis of the expression profile of genes in magenta module
under salt (3 microarray studies) and fungal (3 studies and 2
pathogens, B. graminis and M. oryzae) stress conditions
identified most of the genes to be highly up and downregulated
under fungal and salt stresses, respectively (Figure 6).
Magenta color module showed enrichment of GO terms
‘electron transport’ and ‘oxidoreductase activity’ and black was
significantly enriched in the following protein domains:
‘Glycoside hydrolase, chitinase active site’, ‘DNA-binding
WRKY’, ‘Bet v I allergen’ and ‘VQ’. Bet v 1 belongs to plant
pathogenesis-related proteins (PR-10) family that is involved in
plant development and defense systems via interactions with
plant hormones [90]. VQ is a small motif found only in plants. A
recent study has shown that VQ motif containing proteins act
as co-activators of WRKY33 in Arabidopsis as part of plant
defense response [91,92]. The gene LOC_Os01g61080
(WRKY24) which is an ortholog of WRKY33 of Arabidopsis was
also part of black module. Occurrence of VQ motif containing
genes (LOC_Os05g44270 and LOC_Os03g20440) and
WRKY24 in the same module and upregulation of all three
under bacterial stress and downregulation under drought stress
suggests these genes play a similar role in rice.

Among the Arabidopsis consensus modules, brown and
yellow were made up of mostly upregulated genes. In brown
module, 28 (90%) out of 31 SRGs were upregulated in both the
stresses. It contained four WRKY TF genes including WRKY33
(AT2G38470) which was also found in rice consensus module
black. The top three SRGs of brown module based on kIM

values are AT3G23250 (MYB15), AT2G22880 (VQ motif-
containing protein) and AT3G25780 (allene oxide cyclase 3),
which is one of the enzymes involved in jasmonic acid
bioysnthesis. The top three SRGs found in yellow module are
AT5G67340 (armadillo/beta-catenin repeat family protein)

which functions in ubiquitin-protein ligase activity, AT4G01700
(chitinase family protein) and AT5G50200 (wound-responsive
gene 3), which encodes a high-affinity nitrate transporter.

We further analyzed the consensus co-expression modules
by constructing a network based on co-expressed genes with
high absolute Pearson correlation coefficient (r >0.8) in both
drought and bacterial stresses. There were 16,576 edges
between 585 co-expressed genes in rice (Figure 7A and Table
S12A in File S1). One of the top edges was between
LOC_Os02g43790, an ethylene-responsive TF and
LOC_Os02g41510, a MYB TF with r >0.98 in both stresses.
Color coding of nodes in network with their consensus module
color showed clear grouping of genes from the same module
with high number of intra-modular edges. For example, majority
of blue consensus module genes had edges within the group
and was largely isolated from all other modules. This indicates
that these set of genes are co-regulated and exhibit stress
specific co-functionality. Gene ontology analysis revealed
enrichment of terms ‘cytoplasmic membrane-bounded vesicle’
(FDR=0.003) and ‘endopeptidase activity’ (FDR=0.02).
Interestingly, these blue module genes were connected to the
largest module (turquoise) via only one gene,
LOC_Os05g09724 a HAD (haloacid dehalogenase)
superfamily phosphatase which are involved in diverse
housekeeping and secondary metabolism activities [93]. Red
module showed the highest percent of genes (71 out of 81 or
87.6%) with a number of edges having r >0.8 in both the
stresses. Black module had 15 genes (out of 67 or 22%)
including 5 TFs with edges showing r >0.8, all of which showing
non-conserved expression status between drought and
bacterial stresses. In Arabidopsis, there were 509 edges
between 119 genes showing r >0.8 in both stresses. Color
coding the nodes with consensus module colors revealed that
most of the edges were between genes of turquoise module
(Figure 7B and Table S12B in File S1). The top most co-
expressed genes were AT3G51420 (Strictosidine synthase-like
4) and AT1G70760 (Chlororespiratory reduction 23) with r
>0.98 in both the stresses.

Out of the 642 orthologous SRGs between rice and
Arabidopsis, 92 were part of 585 genes showing high

Figure 6.  Gene expression profile of rice consensus module magenta under fungal and salt stresses using the tool
Genevestigator.  The heatmap shows color coded values based on Log(2)-ratio of test/control samples in different studies. A brief
description of test/control samples including tissue, treatment and cultivar is also given. The top TF gene WRKY47
(LOC_Os07g48260) is highlighted with a red box and the corresponding log(2)-ratio, fold change and p-values across different
microarray studies are shown.
doi: 10.1371/journal.pone.0077261.g006
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coexpression in rice and 49 were part of 119 genes showing
high coexpression in Arabidopsis. Out of these, 15 orthologs
were part of genes showing high coexpression in both rice and
Arabidopsis (Table 4) including four genes (PEX11B, ACA1,
CYCP2 and CRR23) that showed conserved downregulation in
both stresses in both the species. The genes peroxisomal
biogenesis factor 11 (PEX11) and cyclin P2 had high number
of co-expression edges in both the stresses. Four genes
including two TFs (MYB and NAC) were upregulated in three or
more stress genesets. The orthologous genes
LOC_Os01G72530 and AT1G76650 coding for calcium sensor
proteins showed conserved upregulation in both the stresses.
AT1G76650 was previously shown to be involved in abiotic and
biotic stresses such as wound and metal stress response
[94,95].

Conclusion

In this study, we performed meta-analysis of microarray
studies and identified differentially expressed genes in rice and

Arabidopsis from a wide variety of samples under drought and
bacterial stresses. This type of approach enhances sensitivity
in the identification of important stress response genes that
could be missed by studies that are limited to specific tissue or
developmental stage or level of stress. Comparative analysis of
the DEGs identified common stress responsive genes between
stresses and across species. Functional enrichment analysis
revealed the biological processes, cellular pathways and
transcription factor families that are commonly and exclusively
altered under different stresses. The knowledge gained in this
study on various molecular mechanisms like biosynthesis of
secondary metabolites and stress specific roles of plant
hormones vastly adds on to our understanding of stress
response and its regulation. Weighted gene co-expression
network analysis divided genes into individual and consensus
modules and revealed sets of genes with conserved and
reversed expression status. A number of genes with high
connectivity, conserved expression but with poor annotation
were identified. We propose these genes as potential
candidates for stress response engineering.

Figure 7.  Coexpression network of SRGs common to drought and bacterial stresses.  (A) rice (B) Arabidopsis. Nodes are
color coded based on consensus modules found by WGCNA. Edges are constructed between genes with correlation coefficient (r)
>0.8. The edges with r >0.8 are show in red. The gene IDs, description and number of edges of top 2 nodes in each of the networks
are shown in green colored boxes.
doi: 10.1371/journal.pone.0077261.g007
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Table 4. Orthologous SRGs with high co-expression edges and their expression status in drought and bacterial stresses.

TAIR ID (AT) TAIR annotation
MSU ID
(LOC_Os) MSU annotation

No. of
edges
(rice)

No. of edges
(Arabidopsis) AD AB RD RB

3G47430 PEX11B 04G45210 Peroxisomal biogenesis factor 11 220 28 Down Down Down Down

4G15440
HPL1 (Hydroperoxide lyase 1);
electron carrier/ heme binding /
iron ion binding / monooxygenase

02G02000 Cytochrome P450 217 3 Up Down Down Down

3G52720
ACA1 (Alpha carbonic anhydrase
1); carbonate dehydratase/ zinc
ion binding

02G33030
Bifunctional
monodehydroascorbate reductase
and carbonic anhydrasenectarin-3

197 4 Down Down Down Down

3G21870
CYCP2;1 (cyclin p2;1); cyclin-
dependent protein kinase

04G53680 Cyclin 184 14 Down Down Down Down

1G42550
PMI1 (Plastid movement
impaired1)

09G38090 Expressed protein 130 15 Up Down Down Down

1G19150 LHCA6; chlorophyll binding 09G26810 Chlorophyll A-B binding protein 116 34 Up Down Down Down

4G16146 Protein_coding 03G19220 Expressed protein 28 2 Up Down Down Down

5G22580 Protein_coding 11G05290
Stress responsive A/B Barrel
domain containing protein

24 1 Down Up Down Down

5G13930
TT4 (Transparent testa 4);
naringenin-chalcone synthase

11G32650 Chalcone synthase 14 1 Up Down Down Down

3G23250
MYB15 (MYB domain protein 15);
DNA binding / transcription factor

02G41510 MYB family transcription factor 7 2 Up Up Down Up

1G76650
Calcium-binding EF hand family
protein

01G72530
OsCML31 - Calmodulin-related
calcium sensor

6 1 Up Up Up Up

3G04070
Anac047 (Arabidopsis NAC
domain containing protein 47);
transcription factor

03G21060 No apical meristem protein 4 2 Down Up Up Up

5G22630 ADT5 (arogenate dehydratase 5) 04G33390
Prephenate dehydratase domain
containing protein

3 2 Up Up Down Up

1G70760
CRR23 (chlororespiratory
reduction 23)

05G28090 Expressed protein 1 33 Down Down Down Down

4G23290 Protein kinase family protein 07G35370
TKL_IRAK_DUF26-lc.15 - DUF26
kinase

1 21 Down Down Down Up

doi: 10.1371/journal.pone.0077261.t004
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Supporting Information

Figure S1.  Histogram plot of intensities from probe sets of
rice under bacterial stress studies before and after inter-
quartile range filtering and intensity filtering.
(TIF)

Figure S2.  Analysis of network topology for various soft-
thresholding powers. Y-axis indicates scale-free fit index as a
function of the soft-thresholding power (x-axis). The red line
indicates soft power at which the scale-free fit index cut-off
value 0.8 is reached.
(TIF)

Figure S3.  Distribution of up and downregulated genes
and GO terms in different SRG sets. A) Number of up and
downregulated genes found in each stress B) Number of
significant GO terms and C) Number of transcription factor
(TFs) genes found in up and downregulated genes of each
stress. D) Number of common SRGs showing conserved gene
expression status between drought and bacterial stress. Both
Down and Both Up indicate genes with conserved expression
status and, D (Drought) Down - B (Bacteria) Up and D Up – B
Down indicate genes with non-conserved expression pattern.
(TIF)

Figure S4.  Conservation of expression status of
orthologous SRGs between rice and Arabidopsis.
(TIF)

Figure S5.  Four way Venn diagram comparing significant
GO terms found in A) up and B) downregulated SRG sets.
(TIF)

Figure S6.  Significant KEGG pathways identified by the
functional enrichment analysis tool DAVID in different SRG
sets. X-axis shows fold enrichment of the pathway by

comparing number of genes of a pathway found in SRG set to
total number of genes in pathway found in the genome.
Pathways found significant (p-value <0.05) in A) upregulated
SRG sets and B) downregulated SRG sets. RDU: Rice Drought
Up, RBU: Rice Bacteria Up, ADU: Arabidopsis Drought Up,
ABU: Arabidopsis Drought Up, RDD: Rice Drought Down,
RBD: Rice Bacteria Down, ADD: Arabidopsis Drought Down,
ABD: Arabidopsis Drought Down.
(TIF)

File S1.  Description GEO series and samples. Table S2: List
of differentially expressed genes. Table S3: Orthologous DEGs
between rice and Arabidopsis. Table S4: List of significant GO
terms. Table S5: List of significant KEGG orthology (K.O) terms
found in various up and downregulated gene sets below
hypergeometric p-value ≤0.05. Table S6: Number of TFs
belonging to different TF families in in up and downregulated
stress gene sets. Table S7: List of co-expression modules
found in each stress gene set. Table S8: Modules of each SRG
set along with their kIM (intramodular connectivity), MM
(Module Membership) and p-values. Table S9: Comparision of
RD modules against those detected by Zhang et.al. (2012) by
MCL. Table S10: List of significant functional terms associated
with genes in different co-expression modules. Table S11: List
of DEGs in consensus modules along with their module
membership (kME) values, z-score and associated p-values.
Table S12: Common genes between drought and bacterial
stresses showing correlation coefficient r >0.8.
(XLSX)
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