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ABSTRACT
Background: Hepatitis B virus (HBV) infection is a leading cause of chronic hepatitis, liver 
cirrhosis, and hepatocellular carcinoma worldwide. Due to their shared routes of transmission, 
approximately 10% of HIV-infected patients worldwide are chronically coinfected with HBV. 
Additionally, liver disease has become a major cause of morbidity and mortality in HBV/HIV 
coinfected patients due to prolonged survival with the success of antiretroviral therapy. The rela-
tionship between immune exhaustion markers (PD-1/PD-L1) and apoptotic markers such as Fas/
FasL, TGFβ1, TNF-α, and Th1/Th2 cytokines are not clearly delineated in HBV/HIV coinfection. 

Methods: Levels of soluble Fas/FasL, TGFβ1, TNF-α, and sPD-1/sPD-L1 as well as Th1 and Th2 
cytokines were evaluated in the sera of HBV-monoinfected (n = 30) and HBV/HIV-coinfected 
(n = 15) patients and compared to levels in healthy controls (n = 20). 

Results: HBV-monoinfected patients had significantly lower levels of the anti-inflammatory cy-
tokine IL-4 (P < 0.05) and higher levels of apoptotic markers sFas, sFasL, and TGFβ-1 (P < 0.001) 
compared to healthy controls. Coinfection with HIV was associated with higher levels of sFas, 
TNF-α, and sPD-L1 (P < 0.005), and higher levels of the pro-inflammatory cytokines IL-6, IL-8, 
and IL-12p70 (P < 0.05) compared to healthy controls. Patients with HBV infection had a unique 
biomarker clustering profile comprised of IFN-γ, IL12p70, IL-10, IL-6, and TNF-α that was 
distinct from the profile of the healthy controls, and the unique HIV/HBV profile comprised 
GM-CSF, IL-4, IL-2, IFN-γ, IL12p70, IL-7, IL-10, and IL-1β. In HBV monoinfection a significant 
correlation between sFasL and PD1(r = 0.46, P = < 0.05) and between sFas and PDL1 (r = 0.48, 
P = <0.01) was observed.

Conclusion: HBV-infected and HBV/HIV-coinfected patients have unique apoptosis and in-
flammatory biomarker profiles that distinguish them from each other and healthy controls.   The 
utilization of those unique biomarker profiles for monitoring disease progression or identifying 
individuals who may benefit from novel immunotherapies such as anti-PD-L1 or anti-PD-1 
checkpoint inhibitors appears promising and warrants further investigation.

Keywords: HBV; HIV; coinfection HBV/HIV; Immune exhaustion markers; sFas; PD-1; TNF-α

INTRODUCTION
Hepatitis B virus (HBV) infection is a leading cause of chronic hepatitis, liver cirrhosis, and hepa-
tocellular carcinoma (HCC) worldwide. It is estimated that 257 million people are infected with 
chronic HBV with approximately 3300 new cases per year in the United States alone. HBV is a 
non-cytopathic virus; therefore, liver damage — leading to fibrosis, cirrhosis, and HCC — is due to 
the immune response to viral infection [1, 2].

Due to their shared routes of transmission, HIV is common among patients infected with HBV. 
Approximately, 10% of HIV-infected patients worldwide are thought to be coinfected with HBV. 
Additionally, liver disease has become a major cause of morbidity and mortality in HBV/HIV 
coinfected patients due to prolonged survival with success in antiretroviral therapy (ART) [3, 4]. 

The development of chronic HBV infection is influenced by several factors: (1) Exhausted or 
tolerant HBV-specific CD8+ T cells [5, 6]; (2) Suppressed CD4+ T-cell responsiveness mediated 
by dendritic cell impairment[7-9] or upregulation of PD-1 expression [10, 11]; (3) Impaired innate 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 4, No 1

www.PaiJournal.com

41

immune responses through decreased natural killer cell function [12]; (4) Increased number of 
regulatory T cells (Treg)  leading to suppression of HBV-specific T-cell responses and decreased 
viral clearance [13, 14];  and (5) Induced apoptosis of Fas-expressing lymphocytes through activa-
tion of Fas/FasL pathways in Kupffer cells prompting immune tolerance to HBV and overcoming  
HBV clearance by the induced Fas/FasL apoptosis of hepatocytes [15].  

Immune dysregulation is also thought to be a major factor leading to chronic HBV infection and 
the resulting liver diseases and carcinogenesis.  A strong Th1-like immune response, character-
ized by high levels of functional cytolytic T lymphocytes (CTL), correlates with virus control and 
functional cures. A Th2-like inflammatory response is associated with viral persistence and pro-
gression of immunopathogenesis of HBV [16, 17]. The interactions among the different immu-
nological pathways are complicated. For example, the pro-inflammatory cytokine IL-8 has been 
shown to be a marker of liver damage and can also inhibit the antiviral activity of IFN-α [18-20]. 
TGF-β1 is a major regulator of liver fibrosis; it can downregulate Th1 responses [21-26] and has 
been implicated in the development of HCC [27, 28]. Determining serum levels of cytokines and 
other immunoregulatory proteins may provide a measure to determine the likelihood of resolving 
an HBV infection or the risk of developing HCC.

In addition to the Th1/Th2 cytokine regulations, the PD-1/PD-L1 mechanism plays an important 
role in T-cell homeostasis, and it is involved in the regulation of anti-viral and anti-tumor im-
mune response. PD-1 is expressed on both T and B cells in response to most immune challenges. 
The PD-1 protein is a negative regulator of T-cell activation [29]. The PD-1 signalling pathway is 
activated by binding PD-1 to its cognate receptors PD-L1 and/or PD-L2 [29, 30], which induces 
the inhibitory signal to impede the proliferation of T and B cells and to maintain peripheral toler-
ance [29, 30]. On chronically stimulated Ag-specific T cells, PD-1 expression remains high, lead-
ing to an impaired response to stimuli. On hepatic T cells, PD-1 is expressed on the cell surface 
and is an important checkpoint molecule which can transduce co-inhibitory signals to immuno-
competent cells and exert immunosuppressive roles. In addition to the membrane-bound PD-1 
on T cells, there is a soluble PD-1 (sPD-1) [31] which is encoded by an alternative splice variant 
PD-1 Delta ex3 that lacks the transmembrane domain of the PD-1 molecule and can enhance an-
ti-tumor immune responses [32-34]. In inflamed liver cytoplasmic expression of PD-L1 has been 
detected and may represent intracellular stores of PD-L1, which could be expressed upon proper 
stimulation on the cell surface or released in a soluble form into the microenvironment to sup-
press the anti-HBV immune responses [34-37]. PD-1 expression on CD8+ T cells correlates with 
viral load in patients with chronic HBV [38].  In vitro blocking of PD-1/PD-L1 interactions results 
in functional restoration of HBV-specific CD8+ T cells [39]. During HBV infection, higher levels 
of sPD-1 have been associated with immune tolerance and increased prevalence of HCC [40, 41]. 
These data suggest that monitoring sPD-1 or PD-L1 levels during infection may have prognostic 
value, and that PD-1 or PD-L1 may be an attractive target for restoring anti-HBV-specific T-cell 
responses in patients to either control or eradicate HBV.

The Fas/FasL system also plays an important role in the regulation of the immune response to 
HBV in the liver and the apoptosis of infected hepatocytes. HBV-specific CD8+ T cells can kill 
HBV-infected hepatocytes via the perforin/granzyme mechanism of killing or by the Fas/FasL 
mediated mechanism of killing.  However, death of HBV-infected hepatocytes is thought to 
occur primarily through Fas-mediated killing. Soluble Fas (sFas) and soluble Fas ligand (sFasL) 
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have been shown to inhibit hepatocyte apoptosis [42-44] allowing for the persistence of HBV in 
hepatocytes [45]. The Fas pathway is also involved in the apoptosis of activated T cells as a mech-
anism to maintain peripheral tolerance.  A high level of Fas expression in HBV infected hepato-
cytes is thought to delete HBV-specific T cells leading to chronic infection and the development 
of HCC [46]. Interestingly, human HCC cell lines have been shown to be resistant to Fas-medi-
ated apoptosis [47]. Soluble Fas and sFasL have much higher in cirrhosis and patients with HCC 
compared to normal controls [46]. 

In HBV/HIV-coinfected patients, there is acceleration of the immunologic and clinical progres-
sion of HIV infection with an increased risk of hepatotoxicity. Additionally, HIV infection in-
creases the risk of hepatitis events, cirrhosis, and end-stage liver disease related to chronic HBV 
infection[48]. The immunological profiles associated with high morbidity in HBV/HIV coinfect-
ed patients are not fully understood. In this cross-sectional study we measured the serum levels of 
immunologic (Th1/Th2 and pro-inflammatory) cytokines and immunoregulatory proteins (sFasL, 
sFas, sPD-L1, and sPD-1) to test the hypothesis that their levels differ among individuals with 
chronic HBV or HIV/HBV coinfections and healthy controls.

MATERIAL AND METHODS
Enrolled Patients
Thirty HBV-monoinfected patients and 15 HBV/HIV-coinfected patients from the University of 
Cincinnati Infectious Disease Center (UC IDC) and Hepatology clinics were previously evaluated 
in a retrospective study to determine HBV status [49]. To diagnose HBV, serological diagnoses 
of HBV infection (HBsAg) were detected by ELISA (BioChain, Hayward, CA). In some cases, 
HBV DNA was quantified using real-time PCR performed in triplicate and compared to a stan-
dard panel to determine viral titer (lower limit of detection [50] of 100 IU/mL). To diagnose HIV, 
serological diagnoses of HIV were performed. When available, HIV RNA levels were determined 
by either qualitative or quantitative reverse transcriptase polymerase chain reactions (RT-PCR) 
obtained from clinical databases. Healthy controls were selected from volunteer lab workers with 
no history of HIV or HBV and negative serological markers for both HIV and HBV. Stored sera 
from healthy controls (20) were used as controls. 

Multiplex Assay
The Human MILLIPLEX assay (EMD Millipore Corporation, Billerica, MA) was employed to 
measure serum concentrations of 13 immune markers: GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, 
IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, TNF-α, a 2-plex assay to measure apoptosis markers 
sFas and sFasL and a single-plex assay to measure TGF-β1. Mean fluorescence intensity (MFI) 
analyte-specific signals were interpolated using standard curves and analyte concentrations were 
calculated using a 5-parameter logistic curve fitting algorithm on the Bio-Plex Manager 6.1.

Serum sPD-1 was measured using a sandwich ELISA assay (R&D, Minneapolis, MN). Mean 
absorbance sPD-1 values were measured on a Biotek reader (Biotek, Winooski, VT) and sPD-1 
concentrations (pg/mL) were calculated from a standard curve generated using a 4- parameter 
logistic curve fitting model. The dynamic range of the assay was 156 to 10,000 pg/mL. 
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Soluble PD-L1 Assay
An ECL immunoassay was used to measure the concentration of sPD-L1 in human serum using 
the MSD platform that has been previously described [51]. In brief, standards, controls, and test 
samples were incubated with biotinylated anti-PD-L1 capture antibody clone 2.7 A4 (MedIm-
mune) that was immobilized on an MSD streptavidin-coated 96-well plate. After incubation, 
unbound material was washed away, and captured sPD-L1 was detected by addition of anti-PD-LI 
primary detection antibody clone 130021 (R&D Systems). Unbound primary detection antibody 
was removed by washing. Bound primary detection antibody was detected by the addition of 
ruthenium-labeled secondary detection antibody (MSD), and the signal for each plate well was 
measured by an MSD Sector. The assay quantitation range was 15.6 to 1000 pg/mL.

Concentrations below the lower limit of quantitation for all assays were assigned a value of one-
half the lower limit of the quantitation value for statistical comparisons. Samples with values 
greater than the upper limit of quantitation were further diluted, and dilution-corrected analyte 
concentrations were calculated accordingly.

Statistical Analyses
A general linear regression model was used to compare cytokine levels of individuals with disease 
to healthy controls adjusted for age, sex, and race effects. For each cytokine, to assess the differ-
ence between disease groups, the age, sex, and race were included in the model as covariates to 
evaluate potential effects on cytokine levels due to these covariates. If any of the covariates dis-
played statistical significance (P value ≤ 0.05), the covariate would be included in the final general 
linear regression model, in addition to disease groups, to adjust for the effect due to covariates. 
The Spearman correlation coefficient was used to assess correlation between paired cytokine 
levels. The cluster analysis was applied to the correlation coefficient matrix to identify clusters of 
cytokines with average correlation coefficient values ≥ 0.55. Statistical software packages includ-
ing SAS 9.4 and R 3.4.3 were used for analysis.

RESULTS
Characterization of Enrolled Individuals
Demographics for the 30 patients with chronic HBV infection, the 15 with HBV/HIV coinfection 
and the 20 healthy controls are listed in Table 1. The average age for chronic HBV patients was 
41.1 years, 45.1 years for HBV/HIV-coinfected patients, and 26.9 years for healthy controls. Pa-
tients who were HBV monoinfected and HBV/HIV coinfected were significantly (P < 0.001) older 
than the healthy controls. HBV-infected patients were predominantly Asian (40%), while HBV/
HIV-coinfected patients and healthy controls were predominantly white (73%, and 55%, respec-
tively). Median alanine aminotransferase (ALT) levels were 40 U/L in chronic HBV patients and 
115.5 U/L in HBV/HIV-coinfected patients. Median aspartate transaminase (AST) levels were 
29.5 U/L in chronic HBV patients and 109.5 U/L in HBV/HIV-coinfected patients. 
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Table 1. Participant demographics

Participants

HBV Monoinfec-
tion

N = 30

HBV/HIV  
Coinfection

N = 15

Healthy  
Controls
 N = 20

P val-
ueHB-
V&H-

BV/
HIV

P value
HB-

V&HC

P value
HC&
HBV/
HIV

Age  
(Avg ± STD) 
Median (IQR)

41.1 ± 14.95 
35 (27.5)

45.1 ± 7.9 
45 (40)

26.9 ± 6.1 
26 (22) NS < 0.001 < 0.001

Race  

Black 8 3 5

White 9 11 11

Asian 12 0 4

Hispanic 0 1  0
ALT U/L 
(Avg  ±  STD) 
Median (IQR)

47.75 ± 47.8 
40 (23.25)

153.7 ± 132.8 
115.5 (59.25) ND < 0.01 < 0.01 < 0.01

AST U/L 
(Avg  ±  STD) 
Median (IQR)

31.1 ± 26.8 
29.5 (21)

108.1 ± 73.4 
109.5 (41)  ND < 0.01 < 0.01 < 0.01

HBV log copies/mL 
(Avg  ±  STD) 
Median (IQR)

4.98 ± 2.3 
4.65 (3.46)

6.4 ± 1.2 
6.47(5.3)  ND NS ND ND

*% of patient with 
Cirrhosis 25% 25% 0 NS ND ND
HIV log copies/mL 
(Avg  ±  STD) 
Median (IQR)  NA

6501 ± 9369 
4440 (2.7) ND ND ND ND

% of patients with 
detectable HIV NA 91% ND ND ND ND
CD4 count 
(Avg  ±  STD) 
Median , IQR ND

536± 285 
520 (236) ND ND ND ND

ND = not done, NS = Not significant  
*AST/ALT ratio (AAR) was used as marker of cirrhosis (> 1) for the enrolled subjects  

ALT and AST were significantly higher (P < 0.01) in HBV/HIV-coinfected patients compared to 
those with HBV monoinfection, and compared to the normal levels for ALT (10-40 U/L) and 
AST (10-34 U/L).  At the time of serum sample collection, HIV RNA was detectable by either 
a qualitative or a quantitative assay in 10 of 11 (91%) HBV/HIV-coinfected patients tested, and 
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below the levels of detection in 1 (9%) of the HBV/HIV patients tested. Among the HBV/HIV 
individuals with quantitative HIV viral loads, the median HIV RNA level was 4.4 × 103 copies/mL. 
CD4 counts were available for 8 of 15 coinfected patients, with an average of 536 ± 285.85. No 
significant differences were observed between HIV-controlled and HIV-uncontrolled patients or 
the types of treatment. We utilized the AST/ALT ratio (AAR) as a marker of cirrhosis (> 1) for the 
enrolled patients [50, 52-55]. For those with HBV alone, 4 of 16 had indications of cirrhosis, and 
3 of 12 of the coinfected group had indications of cirrhosis. At the time of sample collection, only 
15% of those with HBV monoinfection were receiving anti-HBV therapy, and 60% of those with 
HBV/HIV coinfection were receiving antiretroviral therapy containing anti-HBV-active agents. 
The average HBV DNA level was not significantly different among persons with HBV monoin-
fection, 4.98 × 103 ± 2.3 × 103 IU/mL, compared to 6.4 × 103 ± 1.2 × 103  IU/mL among persons with 
HBV/HIV coinfection.

Distinct Serum Biomarker Profiles in HBV Versus HBV/HIV Infected Individuals
To determine whether serum cytokine and inflammatory biomarker levels were different be-
tween HBV- and HBV/HIV-infected patients compared to one another and to healthy controls 
we tested the sera in a multiplex cytokine panel assay, an sPD-1 ELISA, and a proprietary ECL-
based sPD-L1 assay (Table 2).  Since there were differences in age, gender, and race between the 
3 groups, a statistical model was developed to determine if the biomarker levels were different 
between the groups when adjusting for the covariates. The fold-differences between patients with 
HBV and controls and patients with HBV/HIV and controls and the 95% confidence intervals are 
shown in Figure 1. Comparing the fold-differences of the geometric means of the various bio-
markers in the individuals with HBV or HBV/HIV to the healthy controls revealed statistically 
lower levels of IL-4 (P = 0.036) and significantly higher levels of apoptotic markers such as sFas, 
sFasL, and TGFβ-1 (P < 0.001) for HBV-infected patients compared to healthy controls (Figure 1). 
Coinfection with HIV was associated with higher levels of sFas, TNF-α, and sPD-L1 compared to 
healthy controls (P < 0.005). Additionally, multiple inflammatory cytokines including IL-6, IL-8, 
IL-10, IL-12p70 were significantly higher (P < 0.05) compared to controls (Figure 1). Interestingly, 
sFasL levels were much higher in HBV-monoinfected patients compared to healthy controls and 
HBV/HIV-infected patients (Figure 1). To adjust for covariates between groups including age, 
gender, and race, regression analyses for biomarkers with statistically significant differences less 
than P=0.05 were examined. Regression analysis determined that the only significant covariate 
was age for sFas levels but not for gender and race.  To evaluate the relationship and the poten-
tial interactions among the biomarkers we examined the cluster correlation coefficient in the 3 
groups. The cluster coefficient analyses revealed a distinct profile for HBV monoinfection with 
GM-CSF-IL4-IL2-IFNγ-IL12p70; IL-10- IL-6-TNF-α) grouping together and a different, unique 
profile for HBV/HIV infection with (GM-CSF- IL-4- IL-2- IFN-γ- IL12p70; IL-7- IL-10 -IL1-β 
grouping together. The profiles of both HBV and HBV/HIV patients are distinctly different from 
the profile of the healthy controls with IL10-PD-1; IL13-IL4-IL5- IL1b- IL2-GM-CSF- IFN-γ- 
IL12p70; IL-6- TNF-α grouping together (Figure 2). In the group with HBV monoinfection a 
significant correlation between sFasL and PD1(r = 0.46, P = <0.05) and between sFas and PDL1 
(r = 0.48, P = <0.01) was observed (Figure 1 and Supplementary Figure 1). 
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Table 2. Geometric mean, standard deviation, and P value for comparison of HBV mono-infected and HBV/HIV co-infected 
subjects to healthy controls

 Cytokine

Healthy Controls 

(N = 20)

HBV Monoinfection 

(N = 30)

HBV/HIV Coinfection 

(N = 15)
Geometric Mean 

(SD)
Geometric 
Mean (SD)

P-Value q-Value a Geometric Mean 
(SD)

P-Value q-Value a

GM-CSF 142.6 (224.8) 94.6 (69.5) 0.7371 0.8420 120.3 (127.5) 0.4488 0.5814
IFN-γ 19.0 (26.2) 17.0 (18.9) 0.8026 0.8420 31.6 (32.6) 0.0783 0.2004
IL-1β 3.8 (3.6) 3.9 (4.1) 0.9597 0.9597 3.2 (3.0) 0.5358 0.6430
IL-2 6.2 (5.8) 2.4 (8.4) 0.0801 0.2004 6.8 (5.7) 0.1863 0.3353
IL-4 12.0 (29.8) 4.2 (22.7) 0.0360 0.1178 10.2 (18.5) 0.7762 0.8420
IL-5 3.3 (4.0) 2.6 (2.3) 0.4522 0.5814 5.0 (2.4) 0.1702 0.3225
IL-6 3.1 (2.0) 3.8 (2.7) 0.4043 0.5800 5.4 (3.0) 0.0161 0.0680
IL-7 20.2 (14.6) 15.2 (4.9) 0.1315 0.2959 15.8 (7.6) 0.3448 0.5397
IL-8 12.6 (6.5) 15.6 (17.2) 0.1627 0.3225 25.7 (29.9) 0.0052 0.0267

IL-10 9.8 (9.7) 13.2 (14.7) 0.0835 0.2004 16.5 (21.8) 0.032 0.1152
IL-12p70 6.0 (6.0) 6.4 (4.8) 0.8186 0.8420 12.0 (5.7) 0.017 0.0680

IL-13 7.7 (7.4) 6.7 (11.8) 0.8163 0.8420 7.7 (5.9) 0.2624 0.4498

TNF-α 14.9 (5.2) 16.4 (10.8) 0.3878 0.5800 28.5 (16.8) <.0001 < .0001

sFas 7,114.2 (2682.4)
10,129.1 
(3511.4) < .0001 < .0001 18,384.1 (9775.4) < .0001 < .0001

sFasL 9.2 (76.7) 73.2 (29.1) < .0001 < .0001 7.0 (10.9) 0.3412 0.5397

TGF-β1 22,135.1 (7,812.3)
34,987.2
(7331.2) < .0001 < .0001 16,992.7 (7756.2) 0.4189 0.5800

sPD-1 389.9 (2569.2) 862.7 (3972.1) 0.169 0.3225 264.5 (2308.1) 0.5087 0.6315
sPD-L1 176.3 (104.7) 234.5 (232.8) 0.0652 0.1956 366.4 (367.1) 0.0025 0.0150

aq-value is for false discovery rate adjusted P value
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Figure 1. Fold-differences in biomarker values between HBV- and HBV/HIV-infected patients relative 
to healthy controls. Difference from healthy control is statistically significant if 95% CI does not cross “1”.  
Analysis adjusted for covariates including age, gender, and race when effects of covariates were statistically 
significant (P < 0.05).

http://www.PaiJournal.com


Pathogens and Immunity - Vol 4, No 1

www.PaiJournal.com

48

Figure 2A) Healthy Controls
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Figure 2B) HBV monoinfection
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C) HBV and HIV coinfection

Figure 2. Cluster correlation biomarker profiles.  Correlation coefficients of the immune and apoptotic 
biomarkers are shown for (A) healthy controls, (B) HBV-monoinfected patients and (C) HBV/HIV-coin-
fected patients.

Correlation Among Clinical Parameters and Immunological Markers
There are no significant correlations among HBV levels, HIV levels, CD4 counts, presence of 
cirrhosis, and the different immunological markers tested. However, there are significant positive 
correlations between ALT levels and IL-4 (P = 0.04, r = 0.39) and TNFα (P = 0.009, r = 0.48), and 
significant negative correlations with TGF-β (P = 0.007, r = -0.49). Additionally, there are signif-
icant positive correlations between AST and IL-10 (P = 0.03, r = 0.41), IL-4 (P = 0.01, r = 0.47), 
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IL-8 (P = 0.01, r = 0.48), and TNFα (P = 0.008, r = 0.59), and significant negative correlations with 
TGF-β (P = 0.0001, r = -0.66). 

DISCUSSION
In this cross-sectional study, we examined the serum immunological profiles and apoptotic mark-
ers of patients with HBV monoinfection (n = 30) or HBV/HIV coinfection (n = 15) and healthy 
controls (n = 20).  Significantly higher levels (P < 0.001) of sFas (CD95; tumor necrosis factor re-
ceptor superfamily member 6, TNFR-SF6) were observed in the HBV and HBV/HIV- coinfected 
patients compared to the controls. Fas receptor is a member of the death receptor family, a sub-
family of the tumor necrosis factor receptor superfamily. Fas is activated through oligomerization 
upon binding of FasL or the agonistic anti-Fas antibody. This causes formation of the death-in-
ducing signaling complex (DISC), and the downstream activation of the death signal pathway, a 
cascade of interleukin-1β-converting enzyme-like cysteine proteases [56]. Fas-induced apoptosis 
is involved in the cytotoxic activity of T cells and natural killer cells [57]. The Fas/FasL pathway 
plays an important role in controlling the local inflammatory response during viral infection 
[58]. Increasing evidence suggests that the Fas receptor is a mediator of apoptosis-independent 
processes such as induction of activating and pro-inflammatory signals [57-61]. Previous stud-
ies reported enhanced Fas system-mediated hepatocyte apoptosis in HIV- and HBV-associated 
chronic inflammation. In HBV viral hepatitis, liver-infiltrating lymphocytes that recognize the 
viral antigen on hepatocytes become activated and express FasL. In contrast, hepatocytes exhibit 
enhanced Fas expression and become susceptible to FasL-mediated death. Thus, Fas‐mediated 
apoptosis plays an important role in HBV viral hepatitis and HIV infection [24, 62, 63]. It is in-
teresting to note that the sFasL levels in HBV/HIV-coinfected patients were decreased in contrast 
to HBV infection (Figure 1 and Table 2). A previous study found a negative correlation between 
sFasL and CD4+ count in HIV-infected patients [64]. Since FasL is mainly expressed on CD4+ T 
cells, and in those patients with HBV/HIV coinfection the numbers of CD4+ T cells are known to 
be lower than in those with HBV monoinfection or in healthy controls [65], it is not surprising to 
see lower sFasL shed from exhausted and numerically decreased CD4+ T-cell populations. More-
over, the balance between expression of sFas and sFasL is complicated. For example, in juvenile 
Systemic lupus erythematosus, a distinct profile from adult SLE, there is increased sFas and 
reduced sFasL, notably in patients with active disease and with nephritis [66]. Additionally, Pinti 
et al, reported an increase in the production of Fas with age [67], while the production of sFasL 
is consistently reduced [67] and suggested a dissociation between the levels of sFas and sFasL. 
Further longitudinal studies are warranted in HBV-and HBV/HIV- infected patients to better 
understand the role sFas and sFasL are playing in HBV-mediated liver disease and whether there 
is any prognostic value in monitoring sFas and sFasL levels [46, 62, 68]. 

Soluble PD-L1 was similarly significantly (P < 0.005) higher in HBV/HIV coinfection compared 
to controls (Figure 1 and Table 2). In chronic viral infection, including HBV and HIV, persistent 
exposure to high concentrations of viral antigens leads to T-cell exhaustion. PD-1/PD-L1 inter-
action plays a critical role in T-cell exhaustion [69, 70]. In HBV infection, PD-1 expression on T 
cells correlates with viral load [38] and PD-L1 expressed on infected hepatocytes [71-74]. In ad-
dition to membrane-bound PD1 and PD-L1, there are circulating soluble PD-1 (sPD-1)[31] and 
soluble PD-L1 (sPD-L1) [75, 76]. Several lines of evidence implicate a role for the soluble forms 
in regulating the PD-1/PD-L1 pathways [77, 78]. 
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In chronic viral infection, viral-specific T-cell reactivity is weak or absent (exhausted immune 
response) and characterized by poor cytotoxic activity, impaired Th1 cytokine production, and 
sustained expression of multiple inhibitory receptors, such as PD-1 [72, 79, 80]. Many studies 
have validated the existence of T-cell exhaustion in chronic viral diseases [79-81] and cancers 
[82, 83]. Blocking of the inhibitory receptors with their ligands leads to the development of more 
effective immune responses. For example, PD-1 blockade has already been proven to restore the 
functional activity of HCV-specific [84, 85] and HIV [86]-specific CD8+ T cells and improved the 
immunological control of tumors in humans [87]. PD-1 blockade can increase IFN-γ production 
in cells derived from HBV-monoinfected and HBV/HIV-coinfected patients as well [88].

There is accumulating evidence of a complicated interplay between the Fas/FasL pathway and 
PD-1/PD-L1 pathways. For instance, the neutralizing antibodies to PD-L1 and FasL significantly 
reduced the suppressive effect on T-cell proliferation [89]. However, only anti-PD-L1 antibody 
partially restored early T-cell activation. Anti-FasL antibody, but not anti-PD-L1 antibody, 
reduced apoptosis of activated T cells indicating that FasL molecule plays a role in inducing 
apoptosis of activated T cells. Therefore, the presence of different effects of PD-L1 and FasL 
molecules on T-cell activation and apoptosis of activated T cells suggests that these 2 molecules 
influence T-cell responses at different stages [89]. Only in the group with HBV monoinfection 
was a significant correlation observed between sFasL/PD1and sFas/PDL1. These data suggest that 
HBV-monoinfected and HBV/HIV-infected patients have different biomarker profiles that may 
relate to different immune responses and disease pathogenesis processes.

TGF-β1 was significantly higher in HBV monoinfection compared to healthy controls. TGF-β 
plays a major immunological role during HBV viral infection through both direct and indirect 
mechanisms. TGF-β directly stimulates hepatic stellate cells to synthesize and deliver extracellu-
lar matrix molecules such as collagens, fibronectin, and laminins within the stromal milieu [90]. 
There is also a strong cross talk among TGF-β and the tissue extracellular matrix components. 
TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding 
protein (LTBP), and matrix binding of latent TGF-β complexes is required for adequate TGF-β 
function. Once TGF-β is activated, it regulates extracellular matrix remodeling and promotes 
fibroblast to myofibroblast transition, which is essential in fibrotic processes. Therefore, within the 
liver, TGF-β is pro-fibrogenic. TGF-β also exerts immunosuppressive activity by inhibiting the 
host immune response. It is released by T cells, and it inhibits the secretion of TNF-α, IFN-γ, and 
other interleukins [91]. It also serves as a differentiation factor for T-regulatory cells [92], and its 
increase may be playing a significant role in the reduction of inflammation within the liver. The 
significant positive correlations between ALT and AST with TNFα and the significant negative 
correlations with TGF-β suggested a distinct role for each of those 2 cytokines in liver inflamma-
tion.

To evaluate the relationship and the potential interactions among the immunological biomark-
ers we examined the cluster correlation coefficient of the tested markers in the groups with 
HBV, HBV/HIV coinfection, and in healthy controls. The cluster coefficient profile analyses 
revealed distinct profiles for each group. In HBV monoinfection, IFN-γ-IL-2; IL12p70- IL-10- 
IL-6- TNF-α; and GM-CSF-IL1β are clustered together (Figure 2B). In contrast, the HBV/HIV 
coinfection group has a different unique profile with GM-CSF-IL-4- IL-2-IFN-γ-IL12p70; and  
IL-7-IL-10 -IL1-β grouping together (Figure 2C). The control group also has a unique profile with 
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IL-10-sPD-1; IL-13- IL4-IL5-IL-1β-IL2-GM-CSF-IFNγ-IL12P70, and IL6-TNFα all grouping 
together (Figure 2A). 

Cluster correlation of the apoptotic and exhaustion markers in the sera of the enrolled patients 
identified at least 2 independent apoptotic pathways. The first involved PD-1/PD-L1 and both 
FasL and TGFβ pathways. The second involved Fas and TNFα. The complex interaction between 
those 2 different pathways in HBV and HIV will be investigated in future studies.

The presence of unique biomarker profiles for each group is notable. The utilization of those 
unique biomarker profiles for disease progression is promising and will need further investiga-
tion. Additionally, the association of high levels of sPD-L1 and sFas with HBV infection suggests 
that targeting the PD-L1/PD-1 and/or Fas/FasL molecules in HBV-infected patients may be of 
therapeutic benefit in boosting the immune responses against HBV leading to viral clearance and/
or functional cure. 

One of the limitations of our study, is its cross-sectional design. Furthermore, we did not have 
PBMCs or follow-up samples from the enrolled patients. Additionally, the number of studied 
individuals is relatively small, and the control group was not matched to HBV and HBV/HIV 
groups for age and race. However, this descriptive study will be followed with a longitudinal study 
to test unresolved hypotheses. 

In summary, HBV-infected patients had a unique biomarker clustering profile comprising IFN-γ, 
IL12p70, IL-10, IL-6, and TNF-α that was distinct from the profile of the healthy controls and 
from those with HBV/HIV coinfection. Longitudinal evaluation that better characterizes these 
markers in patients during different immunologic stages of the HBV natural history appear war-
ranted. 
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SUPPLEMENTARY MATERIALS

Supplementary Figure 1A) Healthy Controls
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Supplementary Figure 1B) HBV monoinfection
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C) HBV and HIV coinfection

Supplementary Figure 1. P Values for Figure 2. Correlation coefficients P values for biomarker levels are 
shown for (A) healthy controls, (B) HBV-monoinfected patients and (C) HBV/HIV-coinfected patients, P 
value<0.05 (*), <0.01(**), <0.001(***), >0.05(n.s.)
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