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Purpose of review

Noninvasive brain stimulation (NIBS) is increasingly used to enhance the recovery of function after stroke.
The purpose of this review is to highlight and discuss some unresolved questions that need to be addressed
to better understand and exploit the potential of NIBS as a therapeutic tool.

Recent findings

Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather
inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the
question of how NIBS can be developed further to improve its therapeutic efficacy.

Summary

This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which
brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be
used? Does the location of the stroke influence the therapeutic response? How often should NIBS be
repeated? Is the functional state of the brain during or before NIBS relevant to therapeutic efficacy of
NIBS2 We argue that these questions need to be tackled to obtain sufficient mechanistic understanding of
how NIBS facilitates the recovery of function. This knowledge will be critical to fully unfold the therapeutic
effects of NIBS and will pave the way towards adaptive NIBS protocols, in which NIBS is tailored to the

individual patient.
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Together with basic research in animal models,
functional neuroimaging techniques have signifi-
cantly advanced the understanding of neuroplastic
changes following stroke. The therapeutic use of
noninvasive brain stimulation (NIBS) is a promi-
nent example for an interventional procedure that
has been motivated by basic research on stroke
recovery. Repetitive transcranial magnetic stimu-
lation (rTMS) and transcranial direct current stimu-
lation (tDCS) are the two NIBS techniques that have
been predominantly tested in stroke patients.
Promising results have been reported with both
stimulation modalities [1,2%], but many questions
still remain to be answered. In this review, we raise
some open questions regarding the therapeutic
application of NIBS in poststroke patients. We focus
on the use of NIBS to facilitate motor recovery, but
we will also touch on the treatment of aphasia
or neglect.
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The overall therapeutic efficacy of rTMS in stroke
patients was recently evaluated in a Cochrane
review based on 19 randomized and controlled trials
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KEY POINTS

e The treatment effects of NIBS in patients with stroke are
rather inconsistent across studies.

e Some neuroimaging markers have been identified to
better characterize the individual physiopathology and
to better predict the individual response to
therapeutic NIBS.

o A number of relevant issues still need to be tackled to
obtain sufficient mechanistic understanding of how
NIBS facilitates the recovery of function.

[3®"]. In a population of 73 patients, the Cochrane
review found no consistent beneficial effects of ‘real
rTMS’ on motor function as measured with three
different scales. The authors reviewed two studies
regrouping 183 patients investigating the effects of
rTMS on the activities of daily living, and report a
trend for an improvement after real rTMS. Only
limited evidence was found for a beneficial effect
of 'TMS on aphasia and neglect.

A recent meta-analysis focussed on the thera-
peutic effects of anodal tDCS in stroke including
eight randomized placebo-controlled trials [4"].
According to this meta-analysis, anodal tDCS has
a beneficial effect on upper limb motor function in
chronic stroke patients with arm paresis [4"]. How-
ever, the small sample size of the published tDCS
studies in stroke is a major limitation. Together,
these meta-analyses show that the value of NIBS
as a therapeutic intervention to promote motor
stroke recovery is promising, but still needs to be
confirmed in large multicentre trials with an effort
of standardization of the measured outcome
variables to better understand the effect of NIBS
on different components of stroke recovery: from
hand functions to more global scales.

Many hypotheses have been proposed in order to
explain how NIBS might produce an improvement
of function in stroke patients. We will discuss local
and more distributed mechanisms of action associ-
ated with NIBS effects.

Local effects: altering the functional state of
the stimulated cortex

The local aftereffects of NIBS on corticomotor excit-
ability have been extensively studied in healthy
individuals. These electrophysiological studies
applied single-pulse TMS of the primary motor
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cortex (M1) before and after NIBS and used the mean
amplitude of the motor-evoked potential (MEP) as
an index of corticomotor excitability. It was shown
that rTMS and tDCS of the M1 can induce a
bi-directional shift in corticomotor excitability
depending on the stimulation parameters [S]. Here,
it is important to recall that the MEP amplitude is
determined by cortical and spinal excitability. The
few studies that investigated the effects of 1TMS or
tDCS on spinal cord excitability [6-9] suggest that
changes in MEP size after NIBS might at least parti-
ally be caused by a change in spinal excitability. At
the cellular level, an increasing body of animal
studies have consistently demonstrated a multitude
of long-term effects of NIBS on gene expression,
intrinsic excitability, or synaptic efficacy [S]. There-
fore, it has been suggested that the bi-directional
effects of NIBS over M1 on corticospinal excitability
in humans might reflect long-term potentiation
(LTP) and long-term depression (LTD)-like plasticity
[S].

The NIBS-induced shifts in regional excitability
may contribute to the therapeutic effects of NIBS in
motor stroke. In healthy individuals, a slight shift in
excitability might not or only moderately impact on
the neural computations in the stimulated cortex.
This may be different in the pathological con-
ditions. In motor stroke, a NIBS-induced increase
in corticospinal excitability might improve motor
function by facilitating the volitional recruitment of
corticomotor output neurons. However, the causal
link between a change in excitability and functional
improvement requires more detailed studies.

Distributed effects: remodelling functional
network architecture

An alternative hypothesis is that NIBS induces
beneficial effects by modifying the distributed
activity and connectivity in functional brain sys-
tems. A popular assumption is that in motor stroke,
NIBS of M1 can re-establish a functional balance
between the damaged and undamaged hemisphere.
The underlying hypothesis is that an abnormal
increase in interhemispheric inhibition from the
contralesional to the ipsilesional hemisphere con-
tributes to motor impairment [10-12]. A functional
dysbalance between homologous regions in the
right and left hemisphere is also thought to contrib-
ute to poststroke aphasia, in which the temporal or
frontal over-excitability in the nondamaged hemi-
sphere is suppressed to improve naming (e.g.
[13,14]) and spatial neglect [15]. The ‘interhemi-
spheric dysbalance model’ predicts that suppress-
ing cortical over-excitability in the contralesional
hemisphere or boosting cortical excitability in the
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ipsilesional hemisphere will ‘release’ the ipsilesional
cortex from excessive interhemispheric inhibition.
This, in turn, will allow for a more effective neural
processing in the lesional hemisphere and facilitate
the recovery of function.

When NIBS of M1 is used to re-balance the
interactions between the damaged and nondam-
aged hemisphere, two issues are worth considering.
First, the recent studies, in which the distribution of
the electrical field induced by rTMS or tDCS was
modelled, raised the possibility that NIBS targeting
M1 might induce effective neurostimulation in
the adjacent premotor cortex as well (e.g. [16,17]).
Thus, ‘focal’ NIBS over M1 might induce its effects at
least partially via premotor-to-M1 connections.
Second, according to the interhemispheric dysbal-
ance model, NIBS protocols that decrease excit-
ability in the damaged hemisphere or increase
excitability in the unaffected hemisphere should
have transient detrimental effects on motor func-
tion. This prediction remains to be explicitly tested
in order to substantiate the validity of the interhe-
mispheric dysbalance model.

As NIBS can induce lasting effects on the dis-
tributed activity and effective connectivity in func-
tional brain networks [18"], NIBS may produce its
therapeutic effects by tuning the efficacy of intra-
hemispherical and interhemispherical interactions
[19]. These lasting effects of NIBS on the distributed
activity and connectivity can be captured by non-
invasive brain imaging methods such as functional
magnetic resonance imaging (fMRI) or electroence-
phalography [20,21]. Indeed, brain-imaging studies
confirmed that efficient NIBS therapies in stroke
patients are associated with increased task-related
activity in ipsilesional brain areas and decreased
activity in contralesional areas [22"%,23,24]. Func-
tional brain mapping also revealed NIBS-induced
changes in effective connectivity. For instance,
Gretkes et al. [25] observed an improvement in
the motor function of the paretic hand in motor
stroke patients who received ‘inhibitory’ 1-Hz rTMS
of the contralesional M1. Dynamic causal modelling
of the functional MRI data [26] revealed that the
individual improvement in motor function was
correlated with the ability of 1-Hz rTMS to reduce
effective connectivity from contralesional to ipsile-
sional M1 [25]. In addition, 1-Hz rTMS of contrale-
sional M1 enhanced endogenous coupling between
ipsilesional premotor areas and M1.

Together, these data suggest that the bene-
ficial effects of NIBS involve changes in functional
interactions between key network nodes in the ipsile-
sional and contralesional hemispheres. Interestingly,
NIBS might also leave microstructural traces in the
stimulated brain networks: a recent diffusion MRI
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study in patients with poststroke aphasia reported
increases in fMRI activation after intermittent theta
burst stimulation (iTBS) over the ipsilesional
hemisphere [27]. These functional changes were
mirrored by an increase in fractional anisotropy in
the same area [27].

Bridging the neuronal and network level

A complementary account attributes the thera-
peutic effects of NIBS to an increase in the noise
level in the stimulated neural systems evoking sto-
chastic resonance [28,29]. Stochastic resonance
refers to the phenomenon that a small increase in
noise improves signal processing in nonlinear sys-
tems that deal with small signals (i.e. that work in a
context of low signal-to-noise ratio). NIBS-induced
stochastic resonance can explain state-dependent
effects of NIBS. Stochastic resonance also constitutes
an efficient means to influence endogenous
neuronal oscillations, which play an essential role
for the integration of information on the network
level [30]. This is potentially relevant to the thera-
peutic use of NIBS, as NIBS may alter brain function
by biasing endogenous cortical and cortico-subcort-
ical oscillations [31,32].

WHICH BRAIN REGIONS SHOULD BE
TARGETED BY NONINVASIVE BRAIN
STIMULATION?

Most NIBS studies in stroke have targeted the hand
area of M1 to improve motor hand function. NIBS
has also been applied to M1 to relieve nonmotor
symptoms such as neuropathic poststroke pain [33].
NIBS of nonmotor cortical sites has been used to
improve other functions after stroke. For instance,
parietal cortex stimulation has been used to treat
visuo-spatial neglect [34], stimulation of the
temporal regions to treat aphasia [35,36], or stimu-
lation of the prefrontal cortex to treat poststroke
depression [37].

To promote the recovery of motor function,
NIBS might be used to target other brain regions
than M1. Experimental work conducted in healthy
individuals showed that NIBS of the dorsal premotor
cortex (PMd) can induce bi-directional shifts in
ipsilateral corticomotor excitability [38-40] and
facilitate motor learning [41,42]. Similarly, it has
been shown that NIBS of the cerebellum can influ-
ence corticomotor excitability through the cere-
bello-thalamo-cortical pathways [43], and the
potential role of the cerebellar structures in neuro-
rehabilitation was discussed recently [44,45]. There-
fore, nonprimary motor cortex regions or the
cerebellum might represent alternative targets in
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motor stroke [46,47]. Of note, the choice of the
optimal target area might depend on the stage of
recovery. Different neural targets for NIBS might be
considered in the acute, subacute, and chronic state
after stroke.

Most studies implicitly assume that NIBS
should target a single brain area only. Yet, it might
be worth considering a multisite NIBS approach in
which NIBS is used to stimulate simultaneously or
consecutively a set of motor regions, including the
M1 or premotor, parietal and cerebellar cortex in
the ipsilesional or contralesional hemisphere
[48-50]. Such multisite NIBS might be more effi-
cient than single-site NIBS. This hypothesis is at
least worth testing. Along the same line, diffuse
NIBS using a round transducing coil (for rTMS) or
nonfocal arrangements of electrodes (for tDCS)
might also be useful in poststroke patients in order
to induce more widespread neuromodulation in
multiple functional brain areas and systems. Such
‘diffuse’ NIBS protocols have not yet been tested
and might be combined with focal or multisite NIBS.

IS THERE A PARTICULARLY EFFECTIVE
NONINVASIVE BRAIN STIMULATION
MODALITY THAT SHOULD BE USED?

A lot of tDCS and rTMS studies have described
similar effects on brain excitability and motor out-
comes, but the two modalities are not exchangeable.
There are profound differences in the way tDCS and
rTMS stimulate cortical neurons, in their respective
spatial and temporal resolution, in the possibility to
implement an effective sham condition, and the
profile of side-effects. However, because of a lack
of comparative studies, there is no evidence show-
ing superior therapeutic efficacy for one modality.
Even within the same NIBS modality, stimulation
protocols have been rarely compared in the same
group of individuals (but see [22"%,51]). Further-
more, a multitude of patterned or associative rTMS
protocols have been introduced during the last
10 years, complementing regular rTMS at a constant
frequency [5,52]. Likewise, oscillatory tDCS, trans-
cranial alternative current stimulation, and trans-
cranial random noise stimulation have been
introduced in addition to conventional tDCS at
constant current intensity [S3]. At present, it is
unclear whether one of these NIBS modalities will
emerge as the ‘winning protocol’. As all these pro-
tocols show a substantial inter-subject variability in
their neuromodulatory effects, the most pressing
question is to identify the mechanisms that render
the aftereffects of NIBS more stable and predictable.
Solving this general question should have high
priority and is at least as important as comparative
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studies which contrast the efficacy of the various
NIBS modailities.

DOES THE LOCATION OF THE STROKE
INFLUENCE THE THERAPEUTIC
RESPONSE?

Clinical trials have tested the effects of NIBS in
patients with cortical and subcortical strokes [54],
but with a bias towards the inclusion of patients
with subcortical strokes. This can be explained by
the fact that cortical strokes may be less amenable to
stimulation-induced gains than subcortical strokes
[55-57]. Depending on the location and size of a
cortical stroke, NIBS might not be efficient to
improve a poststroke deficit, especially if the perile-
sional brain tissue does not contribute to the brain
function that is impaired. Task-related fMRI might
be useful to clarify whether patients with cortical
stroke still can recruit perilesional brain tissue and
whether the perilesional functional activation pat-
tern can predict the individual response to NIBS.
Even if the cortical area that is targeted by NIBS
is relatively far away from the site of the cortical
infarction, it is likely that the electrical current will
spread differently in the brain because of the expan-
sion of the space filled with cerebrospinal fluid. In
this case, it is particularly important to model the
expected field distributions of the NIBS-induced
tissue current in the brain and to estimate which
brain regions are effectively stimulated by NIBS
based on the calculated field distributions [58].

HOW OFTEN SHOULD NONINVASIVE
BRAIN STIMULATION BE REPEATED?

One single session of rTMS or tDCS can induce
temporary alterations in cortical excitability and
sometimes a transient improvement in performance
has been demonstrated [59,60%]. However, for many
simple tasks or motor functions, performance is
unaltered in stroke patients [61] and healthy partici-
pants [62,63]. In contrast, repeated NIBS sessions
with one or two NIBS sessions daily may prolong the
aftereffects of NIBS even days after the end of the
session (e.g. [64,65]). This explains why NIBS is
usually given repeatedly over several days or weeks
in therapeutic trials to produce cumulative thera-
peutic effects. However, there is little knowledge
about how often the NIBS sessions should be
repeated in stroke patients to obtain the best
possible clinical effect. Here, it would be very helpful
to establish and validate neurophysiological or neu-
roimaging biomarkers that indicate after how many
NIBS sessions the therapeutic effect has peaked and
no longer needs further enhancement.
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The effects of consecutive rTMS or tDCS sessions
might interact with each other. By changing the
initial state of the motor cortex (using a precondi-
tioning stimulation session), it is possible to reverse
the conditioning effects of 1-Hz rTMS in healthy
individuals [66]. These preconditioning effects
suggest the existence of a homeostatic mechanism
in the human motor cortex. In the context of
repeated NIBS interventions, homeostatic metaplas-
ticity-like effects might render the patients less sen-
sitive to further manipulations in order to prevent
destabilization of neuronal networks. In fact, it has
been suggested that homeostatic-like phenomena
might be one of the main factors that limit the
duration or effect size of post-TMS effects (e.g.
[67]). Yet, it is unknown whether homeostatic coun-
ter-regulation still applies when a night of sleep
separates two consecutive NIBS sessions. It is
possible that a night of sleep re-sensitizes the brain
networks to NIBS. In conclusion, the relevance of
homeostatic-like plasticity for producing a sus-
tained and stable clinical response after repeated
NIBS sessions needs to be systematically addressed
in therapeutic settings.

IS THE BRAIN STATE DURING OR BEFORE
NONINVASIVE BRAIN STIMULATION
CRITICAL TO THERAPEUTIC EFFICACY?

In the recent years, it has become increasingly clear
that the functional aftereffects of NIBS depend
strongly on the ‘neural context’ of the stimulated
brain networks at the time just before and during the
administration of NIBS.

Activity-dependent noninvasive brain
stimulation

If NIBS is applied in isolation (i.e., at rest), the
functional state of the stimulated brain networks
is ill defined and may spontaneously fluctuate
rendering NIBS less efficient. Alternatively, one
might couple NIBS with motor training or other
neurorehabilitative interventions to boost the func-
tional impact of NIBS to produce synergistic effects
[68]. In patients with chronic stroke, a combination
of NIBS and motor training may result in more
enduring performance improvements and func-
tional plasticity in the affected hemisphere com-
pared with motor training or stimulation alone
[69%,70]. An additional advantage is that the com-
bination of NIBS and motor learning is involving the
participants more than NIBS alone (see [71] for a
reference in healthy individuals).

Given the short-term homeostatic interactions
described above, the relative timing between
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training and NIBS might also have an important
impact. Motor learning and NIBS could be per-
formed simultaneously, alternating, or sequen-
tially, but it is currently unclear which temporal
relationship between NIBS and motor learning will
be most effective in a therapeutic setting. Further-
more, it is likely that some motor tasks are more
suited to facilitate NIBS-induced neuromodulation
than others, because the effects of NIBS on motor
learning have been shown to be task dependent in
healthy individuals [72]. If so, the choice of the
motor training task in a combined NIBS-motor
learning trial might be a critical factor for the success
of the therapy.

Pharmacologically enhanced noninvasive
brain stimulation

Emerging evidence suggest that pharmacological
interventions targeting ion channels or modulatory
transmitter systems (i.e., the dopaminergic, cholin-
ergic, serotonergic, and noradrenergic systems) may
have a potential to enhance motor recovery [73,74].
It has also been shown that the plasticity-inducing
effects of NIBS can effectively be modulated by
pharmacological interventions in healthy individ-
uals [75%]. Combining NIBS with pharmacological
interventions may indeed improve our understand-
ing of the pathophysiology of the abnormal
plasticity in particular in stroke patients. The evi-
dence supporting that the combination of pharma-
cotherapy and NIBS might be superior to NIBS alone
is still limited. Amongst the very few published
trials, Kakuda et al. [76] combined low-frequency
rTMS, occupational therapy and dopamine substi-
tution (levodopa), and found improved motor func-
tions in the affected upper limbs. Unfortunately, the
study design had no control arms in which the
therapeutic effect of each intervention was tested
in isolation.

CONCLUSION

We argue that the questions discussed in our review
need to be tackled in future studies to gain sufficient
mechanistic understanding of how NIBS facilitates
the recovery of function after stroke. In tune with
this view, there has recently been increased interest
in the field to better characterize the individual
physiopathology and to better predict the individ-
ual response to therapeutic NIBS. Several potential
predictive markers have been identified, including
changes in ipsilesional/contralesional M1 activity
and residual perilesional activity [22*"], impaired
connectivity between key motor regions [77], meta-
bolic markers such as GABA levels in ipsilateral M1
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[78™], or asymmetry in microstructural measures
based on diffusion MRI [27].

These promising lines of research need to be
expanded in the future in order to pave the way
towards adaptive NIBS that can be tailored to the
individual patient. This might be realized through
closed-loop stimulation using a brain stimulation
interface (BSI). BSI could be used to track online
whether NIBS evokes the intended neurobiological
response. This information could then be fed back
into the NIBS device to adjust the stimulation
parameters in order to induce or maintain the
desired functional effect. However, adaptive NIBS
will require a thorough understanding of the
neurobiological mechanisms that facilitate stroke
recovery.
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