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ABSTRACT: Coal is a heterogeneous mineral substance mainly composed of carbon, along with various amounts of other
elements. The carbon content is an important and pertinent parameter for coal quality. To achieve the rapid and accurate online
measurement of the carbon content in coal, four different calibration strategies are applied to coal analysis by laser-induced
breakdown spectroscopy (LIBS). Four calibration models based on support vector regression (SVR), back-propagation training
(BP), random forest (RF), and partial least-squares regression (PLSR) were proposed, and the prediction accuracy, prediction
precision, model stability, and training velocity of the four calibration models were compared for the quantitative analysis of the
carbon content. A total of 65 coal samples were ablated, and the plasma spectra were used as the input data. Among the four
calibration models, the results indicate that SVR and BP are the most promising calibration models for finding a better optimized
model with a better prediction accuracy and prediction precision, and PLSR has a better prediction stability and a faster training
velocity; however, RF has a prediction performance worse than those of the other three models.

1. INTRODUCTION

Although with the great demand to reduce CO2 emissions
from fossil fuel combustion has become a major task for every
government to meet the global warming crisis, switching from
the traditional energy system to a renewable one requires time
and world-wide efforts. Fossil fuels still play an important role
in the current energy system. Coal still acts as the dominant
fuel for power generation at a global level, especially for
developing countries. The share of coal for power generation
in the world was still 35.1% in 2020.1 According to the BP
Statistical Review of World Energy 2021, the world coal
reserves in 2020 stood at 1074 billion tones, with the top four
coal reserve nations being the USA (23%), Russia (15%),
Australia (14%), and China (13%).1 If the combustion
efficiency of the existing power station could be greatly
improved, it would make a great contribution to reducing CO2

emissions. Therefore, online operation optimization has
become more and more important, while the fuel quality
online monitoring technique has become the short board.
Calorific value is a basic characteristic of fuel, which is very
important for combustion adjustment. The calorific value of
coal depends mostly on the carbon content, and measuring the
carbon content is useful for coal quality analysis. Considering
the large amount of coal used in both industry and power
generation, the real-time measurement of the carbon content
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of coal is of great significance for combustion optimization, fuel
quality monitoring, and pollution abatement.
The development of laser-based optical technology, namely

laser-induced breakdown spectroscopy (LIBS), as a potential
online measurement technology has received a lot of attention
in the field of coal quality analysis.2−4 LIBS as an optical
measurement method has several advantages, such as
simultaneous and fast in situ multielemental analysis, minimal
sample preparation, and better security.5−7 During the LIBS
measurement, a laser beam is focused on the sample surface to
generate a plasma spark, and the emission spectra are collected
during the plasma cooling process and analyzed.8 Because of
matrix effects and the fluctuation of experimental conditions,9

there is not a simple linear relationship between the carbon
content and the signal intensity of carbon.
A lot of analysis work for coal has been conducted using

LIBS, including elemental analysis (C, H, N, and S)10−13 and
proximate analysis (calorific value, ash content, fixed carbon
content, and moisture content).14−17 To improve the accuracy
and precision of the LIBS quantitative analysis, researchers
have carried out a lot of studies on the experimental setup,
operating conditions, and different calibration models to
enhance the spectral signal and improve the accuracy of the
quantitative analysis.18,19 The enhanced spectral signal can
increase the signal-to-noise ratio of the spectrum and thus
improve the accuracy of measurement. Main methods to
enhance the spectral signal include ambient conditions,20,21

microwaves,22,23 spatial confinement,24,25 double-pulse,26,27

etc.
Aside from improving the LIBS signal, the calibration model

between the line intensity and the element content of coal is
also important. Methods used to improve the accuracy of the
calibration model include partial least-squares regression
(PLSR), support vector regression (SVR), principle compo-
nent analysis (PCA), artificial neutral network (ANN),
etc.28−30 It is of great significance to evaluate and improve
the performance of different chemometric methods. Wang et
al.31 presented a multivariate model based on the dominant
factor for LIBS that combined the advantages of both the
conventional univariate and PLS models. Zhang et al.32

compared the modeling efficiencies and prediction accuracies

of four calibration models for the quantitative analysis of ash,
volatile matter, and the calorific value of coal based on PLSR,
SVR, ANN, and PCR and found ANN could offer the best
compromise between modeling efficiency and prediction
accuracy. Wei et al.33 used wavelet neural network (WNN)
and ANN for the quantitative analysis of the major
components in coal ash and found that the WNN model
had a better performance than the ANN model. These studies
show that the quantitative analysis of coal quality by LIBS
combined with suitable calibration models can be achieved
with a high degree of accuracy. However, the performance of
the calibration model is related to different input variables and
optimization methods. To realize the real-time measurement of
the carbon content of coal, it is necessary to carry out
comparative studies of different calibration models and select a
suitable model to achieve a high measurement accuracy.
In this study, a LIBS setup was established, and the spectral

data of 65 coal samples were acquired for the quantitative
analysis of the carbon content of coal. Four calibration models
based on SVR, back-propagation neutral network (BP),
random forest (RF), and PLSR were used to build the
relationship between the carbon content and line intensities,
and the performances of the four calibration models were
evaluated and further discussed.

2. RESULTS AND DISCUSSIONS
2.1. Data Preprocessing. To measure the carbon content,

the carbon atomic line at 247.856 nm (C I) was selected as the
characteristic spectral line of carbon based on information
from the National Institute of Standards and Technology
(NIST). The original LIBS spectrum of a coal sample, which
was acquired after 30 laser shots, is shown in Figure 1.
Before training the model, the spectral data need to be

preprocessed. To reduce the signal fluctuations due to changes
in experimental parameters and the matrix effect of coal, the
input spectral lines were preprocessed with local spectral
normalization to get the normalized line intensities. In local
spectral normalization, the peak area of spectra line was
divided by the integral area of the waveband in which the
spectral line was located. Every waveband has a width of
around 3 nm. For the normalization of the C I 247.856 nm

Figure 1. LIBS spectrum of a coal sample.
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line, the spectral range of the waveband is between 245.400
and 248.130 nm. As shown in Figure 2, the correlation
coefficients (R2) of the fitting curve increased from 0.0167 to
0.7892 after preprocessing.

2.2. Selection of Characteristic Spectral Lines. To
improve the prediction accuracy, we introduced spectral lines
of other elements within the spectral range of 190−350 nm as
input data. The introduction lines selected are shown in Table
1. In the spectrum of coal, the main spectral lines in the

spectral range of 190−350 nm are carbon lines, Mg lines, Fe
lines, and Si lines, followed by some other lines that are
independent, distinguishable, and detectable, as shown in
Figure 1. PLSR was used to build the linear relationship
between the intensity of the spectral lines and the carbon
content. After the introduction of multiple spectral lines in the
spectral range of 190−350 nm, the R2 of the calibration curve
increased from 0.7892 to 0.9271, as shown in Figure 3.
Therefore, the introduction of multiple spectral lines in

spectral range of 190−350 nm is helpful to improve the
prediction accuracy of the calibration models.
2.3. Comparison of Different Models. Comparisons

among the prediction accuracy and the model training velocity
of the four calibration models (SVR, BP, RF, and PLSR) were
performed. When training the four models, we chose 52
samples as the calibration set and 13 samples as the prediction
set. The input data for the four models were the intensities of
the characteristic spectral lines of C, Si, Mg, Ca, Al, and Fe
mentioned in Table 1 and the carbon content of coal samples

measured before the experiment. The output data were the
predicted values of the carbon content. All spectral lines were
preprocessed, and the key parameters of the four models were
optimized. To evaluate the performance of the four calibration
models, R2, the root-mean-square error of calibration
(RMSEC), the root-mean-square error of prediction
(RMSEP), and the model training times of the four models
were calculated and compared.
Figure 4 shows the flowchart of the training process. For BP

and RF, the model with the maximum R2 for the prediction set
among the 20 run times was selected as the final optimized

Figure 2. Fitting curve of the carbon content with the intensity of the
CI 247.856 nm line.

Table 1. Selected Characteristic Spectral Lines of Different
Elements for Model Establishment

element spectral emission lines (nm)

C 247.86
Si 221.67, 250.69, 251.43, 251.61, 251.92, 252.41, 252.85, 288.16
Mg 279.55, 280.27, 285.21
Ca 315.89, 317.93
Al 308.22, 309.28
Fe 238.20, 239.56, 240.49, 248.81, 258.59, 259.84, 259.94, 260.71,

261.19, 273.96, 275.57, 323.46, 357.03, 358.12

Figure 3. Predicted results for the carbon content with input lines in
the spectral range of 190−350 nm.

Figure 4. Flowchart of the model training process.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06752
ACS Omega 2022, 7, 9443−9451

9445

https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06752?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06752?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model. The R2 and corresponding values of RMSEC and
RMSEP for the optimized model were calculated as the final
results for BP and RF.
To better evaluate the prediction abilities of the four

calibration models, the results with both the selected random
prediction set and the calibration set were calculated and
compared.
2.3.1. Randomly Selected Calibration Set and Prediction

Set. To better describe the prediction accuracy and stability of
the four calibration models, the calibration set and the
prediction set were randomly selected each time. Every
model was run 100 times, and the R2 and RMSE values of
each model were calculated. The R2, RMSEC, and RMSEP
values of the BP and RF models were calculated as mentioned

in the previous section. After changing the calibration set and
the prediction set, a different distribution of R2, RMSEC, and
RMSEP values for the calibration set and the prediction set can
be seen when different calibration models are used. Figure 5
provides the distribution of R2 values for the calibration set and
the prediction set of four calibration models in 100 run times.
For a more intuitive view, we counted the maximum,
minimum, and average value of R2 for the 100 run times.
The statistical results of the four calibration models are listed
in Table 2.
It can be clearly seen from Figure 5 that the R2 values of the

calibration set were more stable than those of the prediction
set, and the R2 values for the calibration sets of SVR, BP, and
RF were larger than those for the prediction set in most cases.

Figure 5. Predicted results from the four different calibration models.

Table 2. Results of the Different Calibration Models for the Carbon Content under Different Calibration Sets and Prediction
Sets

calibration set prediction set

algorithm R2 > 0.90 (%) R2 > 0.80 (%) Rmax
2 Rmin

2 RMSECavg R2 > 0.90 (%) R2 > 0.80 (%) R2 > 0.70 (%) Rmax
2 Rmin

2 RMSEPavg

SVR 100 100 0.99 0.97 0.04 16 72 90 0.95 0.60 0.24
BP 95 100 0.99 0.85 0.10 47 85 94 0.99 0.61 0.21
RF 97 100 0.94 0.89 0.17 14 58 80 0.97 0.45 0.27
PLSR 69 100 0.95 0.83 0.17 41 90 100 0.97 0.72 0.21
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This may be due to overfitting caused by over training on the
calibration set, resulting an overly complex model. Using more
coal samples can effectively reduce overfitting.
R2 values for the calibration sets of SVR and BP were larger

than those of RF and PLSR in general. This shows that SVR
and BP can find a more accurate and complex correlation
between the intensities of multiple lines and the carbon
content. SVR and BP as nonlinear calibration models are
superior to the linear model PLSR. In addition, the average
RMSEC and RMSEP values of SVR and BP were smaller than
those of RF. This indicates that SVR and BP have better
prediction precision.
From the percentage distribution of the R2 value for the

prediction set in Table 2, the R2 value for the prediction set
was larger than 0.80 for 72% of SVR results, 85% of BP results,
58% of RF results, and 90% of PLSR results, showing that BP
and PLSR have prediction performances more stable than SVR
and RF when changing the calibration set and the prediction
set. In addition, 47% of results for the R2 value of the the
prediction set in the BP model were larger than 0.90, with a
maximum value of 0.99, indicating that BP performed better
than other models. The R2 value of the calibration set in the
PLSR model was lower than those in the SVR and BP models.
This means that the prediction ability of the PLSR model is
limited. In the RF model, only 14% results for the R2 value of
the prediction set were larger than 0.90, and the minimum
value was 0.45, which was smaller than those of other models.
This indicates that the RF model performed worse relative to
other models, with a lower prediction accuracy and a poorer
generalization performance.
The PLSR model had the best stability among the four

models. This means that PLSR is less dependent on input data
because PLSR is a linear calibration model and there is a strong
positive correlation between the carbon content and the
spectral line intensity of carbon.
In summary, BP and PLSR had better model stabilities, SVR

and BP could achieve better training performances, and RF
performed worse than other models when the calibration set
and the prediction set were changed.
2.3.2. Selected Calibration Set and Prediction Set. For a

more visual analysis, the total 65 samples were divided into 13
groups according to the carbon content, and one sample from
each group was selected as the prediction set. Then, the rest
were selected as the calibration set. Each of the four models
was trained with the same calibration set and prediction set,
and the results were compared.
The final result is shown in Table 3. In general, the results

with the selected calibration set and prediction set were in
good agreement with the results with a randomly selected
calibration set and prediction set. The R2 values of the
prediction set for all models were above 0.91, among which

SVR and BP performed better. The R2 values of the calibration
set for SVR and BP were above 0.97, which demonstrated a
high degree of fitness. On the other hand, the RMSEC and
RMSEP values of SVR and BP were smaller than those of RF
and PLSR. This means that the prediction precision and
prediction accuracy of SVR and BP are superior to those of RF
and PLSR.
It is worth noting that the R2 value of calibration set was

larger than that of the prediction set for SVR and BP.
Additionally, the R2 value of the calibration set for PLSR was
0.87, which was lower than other calibration models.
To further evaluate the prediction abilities of the different

calibration models, the model training time was recorded. The
modeling time depends on the algorithm and the optimization
method used in the calibration models. When training the four
calibration models, the model training time for SVR was 6 s,
that for BP was 15 s, that for RF was 14 s, and that for PLSR
was 1 s for each calculation. However, it is difficult to achieve a
good result in just one run for the BP and RF models, so we
ran the BP and RF models 20 times. The model training time
for the BP model changed little when the run time increased
20, but the model training time for the RF model increased to
about 45 s. It can be seen that PLSR and SVR had faster
training velocities, BP ranked second, and RF was the most
time consuming.
With this selected calibration set and prediction set, SVR

and BP performed better than RF and PLSR considering the
prediction precision and prediction accuracy, while SVR and
PLSR had faster training velocities. Among the four models,
SVR and BP are more likely to find a better relationship
between the carbon content and line intensities with a higher
prediction accuracy and precision. Considering that BP has a
better prediction stability with an acceptable training velocity,
BP is a better choice for the quantitative analysis of the carbon
content in coal. Meanwhile, when the amount of input data is
too small to train the model well, PLSR can be used to
establish a linear relationship between the carbon content and
line intensities with an acceptable accuracy.

3. CONCLUSIONS

In this study, a LIBS-based online experimental setup for the
analysis of coal samples was established. Four calibration
models (SVR, BP, RF, and PLSR) were employed for the
quantitative analysis of the carbon content of coal, and the
performances of four calibration models were compared and
evaluated. The results show that SVR and BP are more
promising calibration models for finding a better regression
between input line intensities and the carbon content, PLSR
has a better prediction stability and training velocity, and RF
has a performance worse than those of the other three models.
In summary, when the amount of data is small it is more

suitable to choose the PLSR model considering its better
stability, and when the amount of data is large enough it is
more suitable to choose BP model considering its better
prediction accuracy and prediction precision. In this work, four
calibration models were built, developed, and compared,
demonstrating that the LIBS technique with appropriate
calibration models was a good way to achieve the online
analysis of the carbon content.

Table 3. Results of the Different Calibration Models for the
Carbon Content with the Same Calibration Set and
Prediction Set

calibration set prediction set

algorithm R2 RMSEC R2 RMSEP

SVR 0.99 0.04 0.95 0.17
BP 0.97 0.10 0.95 0.16
RF 0.92 0.18 0.91 0.28
PLSR 0.87 0.19 0.92 0.19
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4. EXPERIMENT AND METHODS

4.1. Experimental Setup. The experimental system
consists of a Q-switched Nd:YAG laser (PRO-250−10H,
Spectra Physics) with an output wavelength of 532 nm. The
laser pulse energy was set to be 115 mJ, the pulse duration was
9 ns, and the repeat frequency was 10 Hz. The laser beam was
focused on the sample surface using a quartz lens with focal
length of 150 mm. The focal plane was positioned
approximately 2 mm under the sample surface. The plasma
emission was collected by a collector and coupled into the
spectrometer (Aryelle Butterfly, LTB) equipped with an
electron-multiplying CCD (EMCCD) camera (Andor)
through a SMA fiber. The spectrometer has a wide wavelength
range of 195−950 nm, with a high spectral resolution of 12 pm
in the spectral range of 195−350 nm and a spectral resolution
of 36 pm in the spectral range of 350−950 nm. To improve the
signal-to-noise ratio of the spectra, highly purified argon
(99.99%) was used as purge gas with a flow rate of 8 L/min.
The coal sample was placed on a two-dimensional rotating
stage. The schematic of the setup is shown in Figure 6.
In total, 65 coal samples were utilized in the experiment.

The carbon content of these samples is shown in Table 4. The
carbon content of the coal samples was analyzed according to
the national standard of China (GB/T 476-2008). All coal
samples were air-dried, crushed, and sieved to a size of 80−200
mesh. The coal powder was then pressed into pellets by a
hydraulic press. The pressure was set to 25 MPa, and the
pellets were kept under this pressure for 5 min. In total, 30
shots at different ablation points at the surface of the coal
sample were accumulated for one spectrum, five spectra were
obtained for each sample, and the average spectrum of the five
spectra was used as the final spectrum. In this analysis, 52 coal
samples were chosen for calibration and 13 coal samples were
chosen for prediction.
4.2. Methods. 4.2.1. Support Vector Regression (SVR).

Support vector regression is a regression algorithm that works
on the principle of the support vector machine with a few
minor differences. The basic principle is to find a fitting curve
from which the distance to the data point will be minimized.
All SVM models in this study were implemented using the
shareware program LibSVM that was developed by Chih-
Chung Chang and Chih-Jen Lin.34 The radial basis function
(RBF) was used as the kernel function for nonlinear regression,
and the key hyperparameters γ and C of the RBF kernel were

optimized. Parameters γ and C took values within a certain
range and were optimized by cross-validation. The mean
squared error of calibration set with fivefold cross-validation
was calculated to optimize the values of γ and C. Figure 7
provides the results of the mean squared error for different
values of γ and C. When the mean square error was at a

Figure 6. Schematic of the experimental setup.

Table 4. Carbon Content of the Coal Samples

sample
number carbon content (%)

sample
number carbon content (%)

1 70.35 34 51.33
2 63.38 35 56.78
3 68.58 36 64.28
4 59.30 37 57.01
5 65.10 38 63.21
6 64.18 39 50.86
7 58.17 40 62.32
8 76.89 41 62.03
9 76.30 42 40.60
10 72.84 43 60.84
11 71.09 44 61.43
12 66.17 45 68.58
13 64.27 46 59.65
14 76.04 47 53.17
15 75.68 48 41.65
16 81.45 49 42.69
17 79.60 50 56.55
18 74.16 51 55.18
19 68.81 52 53.81
20 74.87 53 54.36
21 75.59 54 47.06
22 81.90 55 51.06
23 79.24 56 49.06
24 78.40 57 46.07
25 76.68 58 49.71
26 76.28 59 42.56
27 68.20 60 53.63
28 50.13 61 52.96
29 74.29 62 49.04
30 72.57 63 48.03
31 70.96 64 44.05
32 65.35 65 45.24
33 54.69
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minimum, the values of γ and C were determined as the
optimal parameters.
4.2.2. Back Propagation (BP). The BP neural network is a

multilayer feed-forward network trained according to an error
back-propagation algorithm.35 In this study, the obtained
optimal architecture of the BP neural network involved an
input layer, a single implied layer, and an output layer. The
learning rate was set to 1, the training times were set to 1000,
the allowable error was 0.001, and the Levenberg−Marquardt
algorithm was used for BP neural network training and
prediction. In this study, the number of neurons (P) in the
hidden layer was decided by an experience formula36

λ= + +P m n , where m and n are the number of neurons
in the input and output layers, respectively, and λ is a constant
between 1 and 10. In this study, the number of neurons in the
input and output layers were set at 30 and 1, respectively;
therefore, the value of P was between 7 and 16. To further
optimize the number of neurons in the hidden layer, the
average mean squared error of the prediction set was calculated
after 15 runs for each number of neurons in the hidden layer.
Figure 8 provides the results for the average mean squared
error of the prediction set with different numbers of neurons.
The number of neurons in the hidden layer was selected when

the average mean squared error of the prediction set was a
minimum in each run.

4.2.3. Random Forest (RF). Random forest is an ensemble
learning algorithm and is commonly used to solve regression or
classification problems. Random forest can handle very high
dimensional data and a nonlinear relationship between
predictors. In this study, we do regression with the TreeBagger
in MATLAB to create bag of decision trees. There are some
main parameters that need to be set before training:37 (1) the
number of predictor variables, which were randomly selected
from the data (fboot); (2) the number of decision trees
(ntree); and (3) the optimum terminal nodes (leaf). In this
study, leaf = 5, 10, 15, 20, and 25; ntrees = 50, 100, 200, 250,
and 400; and fboot = 0.2, 0.4, 0.6, 0.8, and 1 were assumed,
and the model was run in MATLAB R2019a software to find a
best combination. As shown in Figure 9, the mean squared

errors obtained by regression for various leaf sizes were
compared to verify the optimal leaf size and ntree values with
fboot set to 1. After the optimal leaf size and ntree valeus was
determined, the mean squared errors obtained by regression
for various fboot values were calculated, as shown in Figure 10.
When the MSE was at the minimum, the optimal leaf, ntrees,
and fboot values were determined and used to construct the

Figure 7. MSE vs gamma and C for SVR.

Figure 8. MSE vs the number of neurons in the hidden layer for BP.

Figure 9. MSE vs the leaf size for RF.

Figure 10. MSE vs the fboot for RF.
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RF model. The best combination of parameters to generate the
RF model is leaf = 5, ntrees = 250, and fboot = 1.
4.2.4. Partial Least-Squares Regression (PLSR). PLSR is a

statistical method that integrates advantages of multiple linear
regression analysis, principal component analysis, and typical
correlation analysis. PLSR finds a linear regression model by
projecting the input data into a new space. The number of
principal components is a key parameter of PLSR. In this
study, the number of principal components was selected by the
variance explained in the input data with a fivefold cross-
validation, the percentage of variance explained by the model
containing the percentage of variance explained in predictor
variables by each PLS component, and the percentage of
variance explained in response variables. Figure 11 provides the

percentage of variance explained in the input data with
different PLS components. When determining the optical
number of principle components, both the cumulative
percentage of variance explained in predictor variables and
that in response variables need to be greater than 0.9.
4.3. Evaluation Index for the Calibration Models. To

evaluate the performance of the above-mentioned four models,
the correlation coefficients (R2), the root-mean-square error of
calibration (RMSEC), and the root-mean-square error of
prediction (RMSEP) were employed to represent prediction
accuracy and precision of the calibration models; the model
training time was used to evaluate the model training velocity.
R2 and RMSE are defined as follows:
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where N is the number of samples, yi is the carbon content of
sample i measured before the experiments, yi is the average
carbon content of the samples, and ̂yi is the predicted carbon
content.
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where n1 is the number of samples for the calibration set and n2
is the number of samples for the prediction set.
R2 reflects the correlation between the carbon content

measured before the experiments and the predicted value of
the carbon content. The RMSE reflects the deviation between
the predicted value and the measured value for the carbon
content. The closer R2 is to 1, the closer RMSEC and RMSEP
are to 0, and the stronger the prediction ability of the model.
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