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Abstract: Zeolitic imidazole framework-8 (ZIF-8) with tunable pore sizes and high surface areas have
recently emerged as a promising support for immobilizing enzymes. However, the instability in
the aqueous acidic environment and difficulty of recovery has limited their practical applications in
some cases. In this study, catalase/ZIF-8 composites with a protective nanocoating were prepared
by the controlled self-assembly of silanes or coordination complexes (tannic acid (TA) and Fe3+).
The properties of the catalase (CAT)/ZIF-8 composites with a protective nanocoating were also
determined. The recovered activity of CAT/ZIF-8 and CAT/ZIF-8 with protective nanocoating was
70% and 65%, respectively. Compared with the conventional CAT/ZIF-8 composites, CAT/ZIF-8
with protective nanocoating exhibited excellent acid resistance. For example, after treatment for 60
min in phosphate buffer solution (pH 3.0), CAT/ZIF-8 composites only maintained 20% of their initial
activity (about 12 U/mg). However, CAT/ZIF-8 with a protective nanocoating could still retain about
50% of its initial activity (about 10 U/mg). Meanwhile, the thermostability and storage stability of the
CAT/ZIF-8 composites was enhanced significantly due to the presence of nanocoating compared with
conventional CAT/ZIF-8. More importantly, the CAT/ZIF-8 with a protective nanocoating retained
40% of its initial activity after 7 cycles, whereas CAT/ZIF-8 only retained 8% of the initial activity.
The approach in this study could be an efficient strategy to prepare enzyme/ZIF-8 composites with
both high acid resistance and excellent recyclability.
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1. Introduction

Enzymes, as natural catalysts, have long been of abundant interest for the fine chemicals,
pharmaceutical, cosmetic, and food industries [1,2]. However, their low stability, and the difficulty
in the recovery and reusability of enzymes hampers their implementation in industries [3,4].
In this regard, immobilization can overcome these disadvantages [5,6]. Generally, immobilization
technology is able to prevent subunit dissociation, aggregation, and autolysis or proteolysis. Multipoint
covalent immobilization can also increase the rigidification of the enzyme and produce better
microenvironments [7,8]. Furthermore, the solid supports for enzyme immobilization include
microparticles [9], silica gel [10], hydrogels [11], and nanoporous materials [12]. However,
these conventional supports for enzymes are not finely tunable and crystalline, thus exhibiting
non-uniformity and long-range ordering from the atomic to microscale regime, which leads to
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low protein-loading efficiency, low stability, and/or enzyme leaching [13–15]. Therefore, it is very
important to find an immobilization carrier and relative technique that cause the minimum loss of
biocatalytic activity.

In recent years, a new interesting class of hybrid porous material, called the metal–organic
framework (MOF), has generated a great deal of research interest. MOFs are a new type
of porous hybrid materials and are constructed by metal ions and organic ligands which are
linked together by strong coordination bonds [16–18]. Owing to their well-defined pore structures
with high surface areas and chemical functionality, MOFs serve as promising candidates for the
immobilization of enzymes [19–21]. Four main routes have been described for the immobilization
of enzymes into/onto MOFs: surface adsorption, covalent linkage, diffusion into the pores of MOF,
and co-precipitation [19,22]. Among these routes, the surface adsorption has the widest generality, as
any stable MOFs can be employed without the consideration of the dimensions of enzyme molecules.
For surface immobilization, enzymes are usually immobilized on MOFs by a relatively weak physical
interaction such as hydrogen bonds, ionic bands, molecular interaction and so on [23]. Among the
different kinds of MOFs, zeolitic imidazole frameworks-8 (ZIF-8) is widely known and is often used for
the immobilization of enzymes because of their high surface area, exceptional chemical and thermal
stability, and ease of synthesis in alcohol or water phase [24,25]. However, enzymes adsorbed on the
surface of ZIF-8 may suffer significant leaching during recycled usage due to the weak non-covalent
interactions between enzymes and ZIF-8. Furthermore, the enzymes adsorbed on the external surface
of ZIF-8 particles were directly exposed in the external environment and suffer inactivation caused by
denaturing stresses and a hazardous external environment [8]. Therefore, the stability issue should be
paid special attention when the surface immobilization strategy is adopted for enzyme immobilization.
Especially, the structure of ZIF-8 crystals would be easily broken under acidic conditions, which
would obstruct the extension of the applied range of hybrid composites under acidic conditions [26,27].
Overcoming these limitations would facilitate the fabrication of novel enzymes@MOF composites and
their exploitation for bioapplications [28]. Catalase (CAT) is a multimeric enzyme and is applied in
various fields including the food industry and for environmental protection. However, CAT is easy
to inactivate due to its subunit dissociation [29,30]. Furthermore, as a substrate of CAT, hydrogen
peroxide is able to chemically modify the peptide core of CAT, and also produce the oxidation of some
cofactors and prosthetic groups [31]. To overcome these problems, CAT was immobilized onto/into
various supports, such as activated glyoxyl or glutaraldehyde agarose [32], functionalized polymer [33],
and mesoporous silica sphere [34]. Moreover, CAT was successfully embedded into the uniformly
sized ZIFs crystals, and the resultant CAT/ZIFs composites exhibited high activity [35,36]. However,
the CAT/ZIFs composites are extremely unstable in the aqueous acidic environment and easily
decomposed by acids, thus causing enzyme leakage and inactivation under acid conditions. In this
study, CAT was adsorbed on the surface of ZIF-8, and then CAT/ZIF-8 composites with a protective
nanocoating were prepared by the controlled self-assembly of silanes or coordination complexes
(tannic acid (TA) and Fe3+). The preparation process consists of a sequential reaction involving the
adsorption of CAT on the surface of prefabricated ZIF-8, the controlled self-assembly of silanes,
or Fe3+-TA coordination complexes, and thus results in the growth of a mesoporous nanocoating
(silica layer or Fe3+-CA film) on the surface of the immobilized CAT on ZIF-8 particles (Figure 1).
The CAT/ZIF-8 composites with a protective nanocoating showed excellent recyclability and stability
against denaturants and heat. More interestingly, we found that the stability of CAT/ZIF-8 composites
with a protective nanocoating was significantly improved in low pH solution, which might greatly
extend the enzymes/MOF composite application range in future.
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Figure 1 Schematic illustration of the synthesis of catalase (CAT)/ Zeolitic imidazole framework (ZIF)-
8, Fe3+-TA@CAT/ZIF-8, and SiO2@CAT@ZIF-8. 

2. Materials and Methods 
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Fluorescein isothiocyanate (FITC), 2-methylimidazole, tannic acid, hydrogen peroxide (H2O2, 
30%), tetramethoxysilane, and zinc nitrate were purchased from International Aladdin Reagent Inc. 
(Shanghai, China). Catalase (EC 1.11.1.6 from bovine liver, 1× 104 U/mg protein) was purchased from 
Sigma-Aldrich (Shanghai, China). Tris, Bradford reagent, coomassie brilliant blue R-250 were from 
Beijing Chemical Reagent Company (Beijing, China). 

2.2. Synthesis of the ZIF-8 and Catalase/ZIF-8 Composites (CAT/ZIF-8) 

For the ZIF-8, 2-methylimidazole water solution (0.05 M, 10 mL) was added into Zn(NO3)2 water 
solution (0.3 M, 1 mL). After the mixture was stirred for 30 min, the product was collected by 
centrifuging at 6000 ×g for 10 min, washed with deionized water three times and dried. For CAT/ZIF-
8, a certain amount of the ZIF-8 (0.1 g) was immersed in 1 mL of catalase solution (1 mg/mL) for 3 
hours with stirring at 25 °C. After centrifugation at 6000 ×g for 10 min, the resulting precipitate was 
washed with DI water three times and lyophilized.  
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For the catalase/ZIF-8 composites with mesoporous silica shell (SiO2@CAT/ZIF-8), 1.2 mL 
cetyltrimethylammonium bromide (CTAB) (0.05%) and 75 μL tetramethoxysilane (TMOS) (98%) were 
added to the aqueous CAT/ZIF-8 suspension. The suspension was vigorously mixed for 1 h. The 
product SiO2CAT/ZIFs was recovered by centrifugation at 10,000 × g for 10 min and washed by DI 
water three times, and re-suspended in DI water. For catalase/ZIF-8 composites with Fe3+-TA film 
(Fe3+-TA@CAT/ZIF-8), 5 μL FeCl3 ·6H2O (10 mg/mL) and TA (40 mg/mL) solutions were added to the 
aqueous CAT/ZIF-8 suspension (500 μL). The suspension was mixed for 10 min. The product Fe3+-
TA@CAT/ZIF-8 was separated by centrifugation, washed by DI water, and re-suspended in DI water. 

2.4. Characterization Methods 

Scanning electron microscopy (SEM) was performed by JEOL JSM6700 (Japan electron optics 
laboratory CO., LTD, Beijing, China), and the acceleration voltage was 15 kV. Transmission electron 
microscope (TEM) images were obtained on JEOL JEM2100 (Japan electron optics laboratory CO., LTD, 
Beijing, China) operated at 120 kV. Fourier transform infrared (FTIR) spectra were obtained using a 
NEXUS870 infrared spectrometer (Thermo Nicolet Corporation, Madison, WI, USA) using the 
standard KBr disk method. FT-IR measurements were conducted in the region of 400-4000 cm−1. 
Powder X-ray diffraction (PXRD) patterns were recorded using a X-ray powder diffraction (D/Max-
2500 diffractometer, Shimadzu, Japan) at 40 kV and 40 mA. The elemental composition was obtained 
by using an energy-dispersive spectrometer (EDS) (S2 Ranger, Bruker, Karlsruhe, Germany). 

Figure 1. Schematic illustration of the synthesis of catalase (CAT)/ Zeolitic imidazole framework
(ZIF)-8, Fe3+-TA@CAT/ZIF-8, and SiO2@CAT@ZIF-8.

2. Materials and Methods

2.1. Materials

Fluorescein isothiocyanate (FITC), 2-methylimidazole, tannic acid, hydrogen peroxide (H2O2,
30%), tetramethoxysilane, and zinc nitrate were purchased from International Aladdin Reagent Inc.
(Shanghai, China). Catalase (EC 1.11.1.6 from bovine liver, 1 × 104 U/mg protein) was purchased from
Sigma-Aldrich (Shanghai, China). Tris, Bradford reagent, coomassie brilliant blue R-250 were from
Beijing Chemical Reagent Company (Beijing, China).

2.2. Synthesis of the ZIF-8 and Catalase/ZIF-8 Composites (CAT/ZIF-8)

For the ZIF-8, 2-methylimidazole water solution (0.05 M, 10 mL) was added into Zn(NO3)2

water solution (0.3 M, 1 mL). After the mixture was stirred for 30 min, the product was collected by
centrifuging at 6000× g for 10 min, washed with deionized water three times and dried. For CAT/ZIF-8,
a certain amount of the ZIF-8 (0.1 g) was immersed in 1 mL of catalase solution (1 mg/mL) for 3 h
with stirring at 25 ◦C. After centrifugation at 6000× g for 10 min, the resulting precipitate was washed
with DI water three times and lyophilized.

2.3. Synthesis of Catalase/ZIF-8 Composites with a Protective Nanocoating

For the catalase/ZIF-8 composites with mesoporous silica shell (SiO2@CAT/ZIF-8), 1.2 mL
cetyltrimethylammonium bromide (CTAB) (0.05%) and 75 µL tetramethoxysilane (TMOS) (98%) were
added to the aqueous CAT/ZIF-8 suspension. The suspension was vigorously mixed for 1 h. The
product SiO2CAT/ZIFs was recovered by centrifugation at 10,000× g for 10 min and washed by DI
water three times, and re-suspended in DI water. For catalase/ZIF-8 composites with Fe3+-TA film
(Fe3+-TA@CAT/ZIF-8), 5 µL FeCl3·6H2O (10 mg/mL) and TA (40 mg/mL) solutions were added to
the aqueous CAT/ZIF-8 suspension (500 µL). The suspension was mixed for 10 min. The product
Fe3+-TA@CAT/ZIF-8 was separated by centrifugation, washed by DI water, and re-suspended in DI water.

2.4. Characterization Methods

Scanning electron microscopy (SEM) was performed by JEOL JSM6700 (Japan electron optics
laboratory CO., LTD, Beijing, China), and the acceleration voltage was 15 kV. Transmission electron
microscope (TEM) images were obtained on JEOL JEM2100 (Japan electron optics laboratory CO., LTD,
Beijing, China) operated at 120 kV. Fourier transform infrared (FTIR) spectra were obtained using a
NEXUS870 infrared spectrometer (Thermo Nicolet Corporation, Madison, WI, USA) using the standard
KBr disk method. FT-IR measurements were conducted in the region of 400–4000 cm−1. Powder
X-ray diffraction (PXRD) patterns were recorded using a X-ray powder diffraction (D/Max-2500
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diffractometer, Shimadzu, Japan) at 40 kV and 40 mA. The elemental composition was obtained by
using an energy-dispersive spectrometer (EDS) (S2 Ranger, Bruker, Karlsruhe, Germany).

2.5. Labeled Catalase with FITC

Catalase (50 mg) was mixed with FITC solution (50 mg/mL, FITC in acetone) for 3 min. Modified
FITC-labeled catalase was then absorbed on ZIF-8. Confocal laser scanning microscopy (CLSM)
observation was performed with a Leica TCS SP5 microscope (Leica Camera AG, Wetzlar, Germany).
The samples were excited at 390 nm, and FITC fluorescence was detected between 460 and 480 nm.

2.6. Activity Assay

The activities of free catalase and immobilized catalase were measured by the modification of
the procedure in [37]. A small amount of enzyme samples were added to phosphate buffer solution
(pH 7.0, 50 mM) and then incubated at 30 ◦C for 1 h. After incubation, the samples were added to 0.2%
hydrogen peroxide solution, and the final concentrations of hydrogen peroxide were monitored by
measuring their absorbance at 240 nm on a 2800H spectrophotometer (Unicoi Instrument Co., Ltd.
Shanghai, China). One unit of catalase activity is defined as the amount of enzyme that decomposes
1 µmol of hydrogen peroxide per minute.

2.7. Acid Tolerance Measurement (pH 3.0) of SiO2@CAT/ZIF-8 and Fe3+-CA@CAT/ZIF-8

The CAT/ZIF-8, SiO2@CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8 were added into 2.5 mL phosphate
buffer solution (pH 3.0) and incubated for 30–90 min. After incubation, the morphological change
of samples was observed by TEM, and the activity of samples was measured as per the above
enzymatic assays.

2.8. Stability of Free CAT, CAT/ZIF-8, and CAT/ZIF-8 with Nanocoating

The thermal stability of free CAT and immobilized CAT was investigated by incubating at 50 ◦C
for 10–60 min, respectively. The sample was collected and assayed for enzyme activity. The pH
stability of free CAT and immobilized CAT was measured in the system over a pH range between 3
and 11 for 1 h at 25 ◦C. The residual activities were determined. For the storage stability, free catalase,
CAT/ZIF-8, SiO2@CAT/ZIF-8, and Fe3+-TA@CAT/ZIF-8 were stored at 25 ◦C. The residual activities
of CAT samples were determined for a certain storage time. In addition, the reusability of immobilized
CAT was evaluated by performing several consecutive operating cycles using 0.2% H2O2 solution
as the substrate. The CAT/ZIF-8, SiO2@CAT/ZIF-8, and Fe3+-TA@CAT/ZIF-8 were collected and
washed with 50 mM phosphate buffer (pH 7.5) solution after each batch and then added to the next
cycle, respectively. The reusability was defined as the ratio of the activity for the immobilized CAT
after recycling to its initial activity.

3. Results and Discussion

3.1. Synthesis and Characterization of the CAT@ZIF-8 Composites with a Protective Nanocoating

The synthesis of the CAT@ZIF-8 composites with a protective nanocoating are shown schematically
in Figure 1, and the process comprises three steps. In the first step, ZIF-8 nanoparticles are synthesized by
mixing 2-methylimidazole solution (0.05 M) and zinc nitrate solution (0.3 M) together and selected as
carrier materials. Then, the CAT was adsorbed onto the ZIF-8 surface by mixing CAT solution and ZIF-8.
In a final step, for the Fe3+-TA@CAT/ZIF-8 composites, the obtained CAT/ZIF-8 particles were mixed
with TA and FeCl3·6H2O water solution to enable the growth of an Fe3+-TA nanocoating at the surface
of the enzyme by the crystallization and deposition of Fe3+-TA crystals, thus resulting in the formation
of a mesoporous Fe3+-TA nanocoating on the surface of the immobilized CAT. For SiO2@CAT/ZIF-8
composites, CTAB was utilized to direct the overgrowth of mesostructured silica on the external surface
of CAT/ZIF-8. In this process, the self-assembled layer of CTAB molecules served as a structure-directing
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agent of the mesostructure, and it bridged the mesoporous silica and CAT/ZIF-8 as well. After
centrifugation and washing, CAT@ZIF-8 composites with a protective nanocoating could be found
by SEM (Figure 2). SEM images revealed that the CAT/ZIF-8 had a standard polyhedron morphology
with relatively smooth surface (Figure 2A,C). Compared to CAT/ZIF-8, both SiO2@CAT/ZIF-8 and
Fe3+-TA@CAT/ZIF-8 exhibited rough surfaces (Figure 2E). TEM images showed a thin and dense silica
layer surrounding the CAT/ZIF-8, which was observed clearly for the SiO2@CAT/ZIF-8 (Figure 2B)
compared to the CAT/ZIF-8 (Figure 2B,D). Likewise, a thick and loose Fe3+-TA film was formed around
the CAT/ZIF-8 (Figure 2F). The nanocoating structure around CAT/ZIF-8 was further confirmed by a high
resolution TEM image (Figure 3). Both the Fe3+-TA film and silica layer had a clear mesoporous structure
(Figure 3B,D). In contrast to Fe3+-TA film, the silica layer exhibited an orientated mesoporous structure,
and all the mesopores of silica were perpendicular to the surface of ZIF-8 cubes (Figure 3B). The FTIR
spectra showed that the characteristic bands of CAT/ZIF-8, SiO2@CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8
at 1650 cm−1 were attributed to the amide I band, indicating the presence of CAT in the composites
(Figure 4A) [38]. The band of SiO2@CAT/ZIF-8 at 1080 cm−1 was assigned to Si–O–Si [39]. However,
the band was not observed in CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8. This result indicated the presence
of SiO2 in the SiO2@CAT/ZIFs. Besides this, the bands at 1335 and 1580 cm−1 (catechol ring vibration)
were observed, corresponding to the chemical structure of TA [40]. In addition, the PXRD pattern showed
that the crystallinity of the SiO2@CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8 was unchanged compared to the
experimental XRD patterns of CAT/ZIF-8 (Figure 4B), indicating that the incorporation of the silica layer
or Fe3+-TA film did not significantly affect the morphology of the CAT/ZIF-8 crystals [41]. In addition,
EDS analysis showed that the presence of the Fe element indicated that CAT was embedded in the
CAT/ZIF-8, mSiO2@CAT/ZIF-8, and Fe3+-TA@CAT/ZIF-8 because CAT has four porphyrin heme (iron)
groups. Meanwhile, the presence of the Zn and Si elements indicated the formation of ZIF-8 and a silica
shell (Figure 5).
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3.2. Acid Resistance Measurement of CAT/ZIF-8, SiO2@CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8

To assess whether the silica shell and Fe3+-TA film could improve the acid resistance of CAT/ZIF-8
composites, we examined the catalytic activity and pH stability of CAT/ZIF-8, SiO2@CAT/ZIF-8 and
Fe3+-TA@CAT/ZIF-8 in an acidic environment (pH 3.0). The results are shown in Figure 6. Under
an acidic environment, the activity of the three enzymes decreased. However, SiO2@CAT/ZIF-8 and
Fe3+-TA@CAT/ZIF-8 showed more stable performance than CAT/ZIF-8 in the acidic environment
(pH 3.0). CAT/ZIF-8 composites only maintained 20% of their initial activity (about 12 U/mg).
However, SiO2@CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8 still retained 50% and 40% of their initial
activity (about 10 U/mg), respectively. These results showed that the stability of CAT/ZIF-8 against
acid degradation was remarkably improved due to the protection of nanocoating (silica layer or
Fe3+-TA film) on the outside surface of CAT/ZIF-8. The increased tolerance against acid degradation
may be due to the fact that the nanocoating can provide an appropriate microenvironment for the
enzyme, and protect CAT from structural changes under extreme pH values [42]. Besides this, the
turbidity of the three immobilized enzymes solutions exhibited obvious differences before and after
acid treatment (Figure 7). After acid treatment, the three immobilized enzyme solutions became clearer
than before acid treatment, indicating that all of the immobilized CAT experienced acid degradation.
Furthermore, CAT/ZIF-8 solution became clearer than Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8. At
the same time, CAT/ZIF-8 solution after acid treatment displayed the minimum absorbance (OD600)
compared with Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8 (data not shown). The results showed
that CAT/ZIF-8 was easily degraded by acid. TEM images showed that the morphologies of the
three enzymes underwent changes under the acidic environment (pH 3.0). After acid treatment for
30 min, the complete polyhedron morphology could not be observed for CAT/ZIF-8 (Figure 7A).
CAT/ZIF-8 composites experienced obvious degradation. With the increase of processing time,
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CAT/ZIF-8 composites were absolutely degraded, no intact CAT/ZIF-8 was observed, and only small
nanoparticles are observed (Figure 7B,C). In contrast, Fe3+-TA@CAT/ZIF-8 retained their polyhedron
morphology after acid treatment for 30 min (Figure 7D). After 60 min, the polyhedron morphology of
Fe3+-TA@CAT/ZIF-8 could be clearly observed (Figure 7E). However, no intact Fe3+-TA@CAT/ZIF-8
was observed after 90 min, indicating that Fe3+-TA@CAT/ZIF-8 composites were degraded. It is worth
noting that SiO2@CAT/ZIF-8 still retained its polyhedron morphology after acid treatment for 90
min (Figure 7G,H,I), which protected it from CAT leaching. Furthermore, the significant leaching of
CAT in CAT/ZIF-8 under an acid environment was further confirmed by SDS-PAGE. CAT/ZIF-8,
Fe3+-TA@CAT/ZIF-8 and mSiO2@CAT/ZIFs were dissolved under an acid environment (pH 3.0) for
90 min and the CAT protein molecules were released. SDS-PAGE was then used to determine the
presence of CAT protein molecules (Figure 8). Protein bands corresponding to the molecular weight
of CAT (the subunit of CAT) appeared on the gel for free CAT, CAT/ZIF-8 and Fe3+-TA@CAT/ZIF-8
samples (lane 1, lane 2 and lane 4). However, no band was observed for the SiO2@CAT/ZIFs sample
(lane 3). These results indicated that the embedded protein molecules in CAT@ZIF-8 were easily
released from ZIF-8 scaffolds once digested by acetic acid, whereas the embedded protein molecules
in CAT/ZIF-8 with a protective nanocoating were difficult to released due to the protection of the
nanocoating for CAT protein. This hypothesis was further confirmed by using CLSM. The CLSM
images showed that the fluorescently labeled CAT molecules were clearly present in the CAT/ZIF-8,
Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8 before acid treatment, suggesting that CAT molecules were
embedded in the CAT/ZIF-8, Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8, respectively (Figure 9A,C,E).
However, after acid treatment for 60 min, no fluorescence was observed for CAT/ZIF-8, indicating
that the embedded CAT molecules in CAT@ZIF-8 were released from the ZIF-8 scaffolds due to acid
degradation (Figure 9B). In contrast, the fluorescently labeled CAT molecules were clearly observed in
the Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8 (Figure 9D,F). These results showed that the stability
of CAT/ZIF-8 against acid degradation was remarkably improved due to the protection of nanocoating
on the outside surface of CAT/ZIF-8.
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3.3. Stability of CAT/ZIF-8, Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8

Generally, immobilization can improve the stability of enzymes in extreme conditions such as high
temperatures [43,44]. We examined the stability of the free CAT, CAT/ZIF-8, Fe3+-TA@CAT/ZIF-8,
and SiO2@CAT/ZIF-8 against heat. The results are shown in Figure 10A. Immobilized CAT showed a
more stable performance than free CAT at 50 ◦C. Compared to CAT/ZIF-8, Fe3+-TA@CAT/ZIF-8, and
SiO2@CAT/ZIF-8 exhibited better thermal stability. The increased tolerance towards high temperatures
may be due to the fact that the nanocoating/enzyme interactions reduced the conformational changes
of CAT, preventing enzyme dissociation. Likewise, Fe3+-TA@CAT/ZIF-8, and SiO2@CAT/ZIF-8 also
displayed more stability than free CAT and CAT/ZIF-8 against extreme pH values. For example,
Fe3+-TA@CAT/ZIF-8 and SiO2@CAT/ZIF-8 still retained about 80% of their initial activity (about 10
U/mg) at pH 11 for 1 h, respectively. However, free CAT and CAT/ZIF-8 (about 12 U/mg) only retained
35% and 60% of their initial activity, respectively (Figure 10B). In addition, the storage stability of free
CAT and immobilized CAT was also evaluated. As shown in Figure 10C, the SiO2@CAT/ZIF-8 and
Fe3+-TA@CAT/ZIF-8 could retain 50% of their initial activity after 20 days. In contrast, free CAT almost
lost all of its activity, while the CAT/ZIF-8 only maintained 20% of initial activity. It was likely that the
nanocoatings provided a hydrophilic microenvironment for the enzyme, thus reducing the possible
distortion effect on the active structure of the enzyme. Besides this, the reusability of CAT/ZIF-8,
Fe3+-TA@CAT/ZIF-8, and SiO2@CAT/ZIF-8 for performing several consecutive operating cycles using
0.2% H2O2 solution as the substrate was evaluated. As shown in Figure 10D, the SiO2@CAT/ZIF-8
and Fe3+-TA@CAT/ZIF-8 still retained about 40% of their initial activity after the 7 cycles, whereas
CAT/ZIF-8 lost activity, suggesting that the CAT/ZIF-8 with a protective nanocoating has better
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reusability than CAT/ZIF-8. The suitable stability enabled the immobilized enzyme to be reused in
industrial applications.Polymers 2018, 10, x FOR PEER REVIEW  11 of 13 
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4. Conclusions

In conclusion, we successfully synthesized novel CAT@ZIF-8 composites with protective
nanocoatings. The CAT@ZIF-8 composites with protective nanocoatings exhibited better
thermostability, storability and reusability than conventional CAT/ZIF-8 composites. More importantly,
the acid resistance of CAT/ZIF-8 was significantly improved due to the presence of nanocoatings.
Thus, we have provided an efficient strategy for preparing stable enzyme/ZIF-8 composites with acid
resistance, which has potential for practical applications even in acidic environments.
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