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Abstract

Motivation: The process of placing new drugs into the market is time-consuming, expensive and complex. The ap-
plication of computational methods for designing molecules with bespoke properties can contribute to saving
resources throughout this process. However, the fundamental properties to be optimized are often not considered
or conflicting with each other. In this work, we propose a novel approach to consider both the biological property
and the bioavailability of compounds through a deep reinforcement learning framework for the targeted generation
of compounds. We aim to obtain a promising set of selective compounds for the adenosine A2A receptor and, simul-
taneously, that have the necessary properties in terms of solubility and permeability across the blood–brain barrier
to reach the site of action. The cornerstone of the framework is based on a recurrent neural network architecture, the
Generator. It seeks to learn the building rules of valid molecules to sample new compounds further. Also, two
Predictors are trained to estimate the properties of interest of the new molecules. Finally, the fine-tuning of the
Generator was performed with reinforcement learning, integrated with multi-objective optimization and exploratory
techniques to ensure that the Generator is adequately biased.

Results: The biased Generator can generate an interesting set of molecules, with approximately 85% having the two
fundamental properties biased as desired. Thus, this approach has transformed a general molecule generator into a
model focused on optimizing specific objectives. Furthermore, the molecules’ synthesizability and drug-likeness
demonstrate the potential applicability of the de novo drug design in medicinal chemistry.

Availability and implementation: All code is publicly available in the https://github.com/larngroup/De-Novo-Drug-
Design.

Contact: top@dei.uc.pt

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug development, the process of placing new drugs into the mar-
ket, is a lengthy and costly task that, in practice, can take around
ten years and cost 2.6 million USD (Chan et al., 2019). The gener-
ation of an initial set of promising molecules (lead compounds) can
speed up this complex process. These lead compounds are usually
discovered using iterative organic synthesis and screening assays
with a high failure rate (Hughes et al., 2011). In recent years, com-
putational methods have contributed significantly to development in
all areas, and drug discovery has not been an exception.
Remarkably, given the large amounts of available data, methods
based on machine learning (ML) and deep learning (DL) have been
integrated into this field to generate and optimize molecules. The
goal is to increase effectiveness and reduce the resources spent in
this process (Chen et al., 2018).

In the generation of potential drug compounds, one must con-
sider the molecular characteristics such as binding affinity towards
specific targets as well as the properties associated with its

bioavailability. One crucial parameter is the optimization of drugs’
permeability through the Blood–Brain Barrier (BBB). Even in proto-
cols that generate molecules designed to act on the brain, it is often
ignored or treated lightly due to biological membrane’s restrictive-
ness. Consequently, identifying properties in the compounds associ-
ated with their BBB permeability is a challenge that has not been
tackled as desired in the drug discovery field.

There are several approaches in the literature for the generation
and optimization of key molecular properties. Targeted generation
requires an evaluator of the newly generated compounds to conduct
the training process towards the most promising solutions.
Therefore, these works typically integrate a quantitative structure-
activity relationship (QSAR) model into their frameworks. QSAR
modelling allows predicting the characteristics of interest on the mo-
lecular structure of the compounds. The most common descriptors
for this model are the extended connectivity fingerprint (ECFP) (Liu
et al., 2019). However, QSARs can be built using neural networks
to extract the descriptors directly from the simplified molecular-in-
put line-entry system (SMILES) or graphs of the compounds
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(Duvenaud et al., 2015; Popova et al., 2018). Then, it’s possible to
use the QSAR model’s outcome to guide the process of generation
and optimization of molecules. evolutionary algorithms (EAs) (Devi
et al., 2015) and reinforcement learning (RL), have been applied to
conduct in this task (Sanchez-Lengeling and Aspuru-Guzik, 2018;
Ståhl et al., 2019).

Nicolaou et al. (2009) employed evolutionary techniques to re-
construct atoms and bonds in molecules described through graphs.
This manipulation of the original molecules aimed to produce mole-
cules optimized in terms of one or more molecular objectives of
interest. DL models, together with RL, are the alternative approach
to produce and optimize compounds properties. Sanchez-Lengeling
et al. (2017) have explored the integration of a generative adversar-
ial network (GAN) with RL to perform a biased molecular gener-
ation. An alternative was implemented by You et al. (2018)
applying a graph-based convolutional network (GCPN) with RL for
targeted generation of molecules. Moreover, Popova et al. (2018),
Olivecrona et al. (2017) and Liu et al. (2019) have adopted the pol-
icy-based RL method named REINFORCE with SMILES notation
and recurrent architectures for the targeted generation of molecules.
Zhou et al. (2019) have implemented a value-based Reinforcement
Learning approach to design molecules with specific properties, for-
malizing the problem through a Markov decision process (MDP).
Also, several types of policy-based RL setups have been imple-
mented, namely, proximal policy optimization where the molecule
is generated with the addition of a new bond in each step in order to
optimize the affinity-related properties for specific targets
(Khemchandani et al., 2020). Ståhl et al. (2019) implemented an RL
approach based on an actor-critic model for the generation of novel
molecules. They optimized properties such as the partition coeffi-
cient (logP), polar surface area (PSA) and molecular weight (MW)
starting from a set of lead molecules. Recently, Deng et al. (2020)
implemented a solution with a multi-objective reward function,
designed to bias the generation towards molecules with both suffi-
cient opioid antagonistic effect and ability to cross BBB and stay in
the brain. However, one of the main problems with this approach is
that BBB permeation is not being considered directly but instead by
basic properties that cannot describe all the complexity of the mech-
anisms of drugs passing through BBB. There are several mecha-
nisms, either passive or active and non-obvious interactions
responsible for controlling molecules’ permeation across the BBB.
Hence, the inability of computational generative methods to com-
bine the optimization of biological and psycho-chemical properties
with BBB permeation is one major critique in this work.

To maximize the chance of finding interesting hits for a given
target, generated drug candidates must possess biological affinity as
well as absorption capacity and permeability across the body mem-
branes. Although most current computational solutions concentrate
on one aspect or the other, drug design protocols should provide the
same importance to the drug–target interaction factor and the drug’s
potential to reach the site of action.

This article proposes a framework to automatically generate new
molecules from scratch. Specifically, the aim is to perform a broader
exploration of the chemical space, to identify molecules with bio-
logical affinity for the desired target, bioavailability and novelty
comparing with the existing solutions. This work’s particular inter-
est is the optimization of two molecular properties simultaneously,
one being a drug–target affinity and the other the bioavailability at
the central nervous system.

The proposed framework is a deep RL model that generates mol-
ecules with high affinity to inhibit adenosine A2A receptor (AA2AR)
(Chen et al., 2013), and that can also pass through the blood–brain
barrier. This target is a type of G Protein-Coupled Receptor (GPCR)
that is involved in the treatment of conditions such as insomnia,
pain, depression, Parkinson’s disease, cardiovascular diseases and
inflammatory disorders (Chen et al., 2013). Therefore, identifying
effective AA2AR antagonists is a task of utmost importance in com-
putational drug discovery. Moreover, it introduces specific proce-
dures to enhance diversity and novelty in the newly generated
compounds. To prevent the repetitive generation of molecules, it
creates a dynamic memory cell to penalize the reward whenever the

set of molecules’ diversity decreased during exploring chemical
space. Finally, it introduces the multi-objective optimization mech-
anism joined with RL to optimize the compounds’ properties
simultaneously.

2 Materials and methods

The general overview of the proposed framework has been shown in
Figure 1. The framework contains a Generator based on recurrent
neural networks (RNNs) and two Predictors for the two considered
molecular properties. The applied RL methodology is based on a
policy-gradient algorithm. For the RL application, we create a copy
of the initially trained Generator. One of the models is kept unin-
volved, the unbiased Generator (Fig. 1A), and the other is updated
throughout the RL process, the biased Generator (Fig. 1B). Thus, we
integrate the two generators interchangeably sharing the same archi-
tecture but with different internal parameters: the biased Generator
is involved with exploration. The unbiased Generator is focused on
exploitation. The two predictors conduct the updates in the biased
Generator weights considering the maximization of the measure
drug–target binding affinity, and the BBB permeability.

The implementation of this framework divides into two phases.
In the first phase, Supervised Learning (SL) is employed to train the
unbiased Generator and both Predictors. The binding affinity
Predictor for AA2AR (Fig. 1C) is built with SMILES as input data.
The BBB permeability Predictor (Fig. 1D) is implemented using the
Extended Connectivity Fingerprint (ECFP) (Rogers and Hahn,
2010). In the second step, RL is applied to retrain the biased
Generator. The Predictors worked as guides of this training process
since the combination of the rewards from each drive the Generator
to explore new chemical spaces. The maximization of the combined
rewards would lead to the optimization of the desired molecular
properties. Multi-objective optimization is integrated through the
construction of the reward function that considers the two compet-
ing objectives fairly. Furthermore, throughout the RL training pro-
cess, the exploration/exploitation dilemma has been considered
since the compounds’ diversity, and validity is vital.

2.1 Generator
The Generator learns the basic rules for building molecules through
SMILES notation. The model architecture (described in Fig. 1A and
B) consists of an input layer converted to one-hot encoded vectors,
followed by two LSTM layers with 256 units, and a densely con-
nected layer with 43 units before the output layer with Softmax acti-
vation. In this regard, it is possible to associate each token with the
respective probability of being selected. Between each LSTM layer,
a dropout regularization is applied to minimize the learning inter-de-
pendency and maximize the model’s generalization ability.
Therefore, at each step, the prediction of the next token is made,
taking into account the molecule hitherto built. The Teacher
Forcing methodology is implemented throughout this process. Thus,
at each step, the set of correct tokens of the molecule is given as in-
put instead of the model’s previous predictions to accelerate conver-
gence (Gupta et al., 2018). The loss function is the negative log-
likelihood ratio between the correct and competing tokens, as
depicted in Equation 1. As a consequence, the probability of choos-
ing the correct token is maximized at each step.

JðhÞ ¼ � 1

T

XT

t¼1

½yt log ŷt þ ð1� ytÞ logð1� ŷtÞ�: (1)

Data is divided into batches of 16 SMILES, the model is trained
during 25 iterations, and the optimizer applied to update the weights
is Adam with a learning rate of 0.001. Moreover, the gradient mod-
ule is limited to 3 through gradient clipping to guarantee the value’s
stability during training (Pascanu et al., 2013). After the training
step, the Generator samples new molecules by predicting its struc-
ture token-by-token. Therefore, the next atom or bond integrating
the molecule heavily depends on the structure synthesized up to that
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point. Finally, molecules are syntactically validated by the RDKit
molecule sanitizer (Landrum, 2019).

2.2 Predictor
Predictor models are a fundamental part of this framework as they
perform the molecule’s evaluation and, consequently, the process of
exploring chemical space that is conducted by the assigned rewards.
The fundamental idea is to implement two QSAR models: one esti-
mate biological affinity for AA2AR and the other predict BBB perme-
ability for molecules. The methodology applied for each QSAR
implementation depends on the constraints imposed by the available
data. The first Predictor is implemented as a descriptor-free QSAR
model since it was possible to find datasets with a reasonable num-
ber of compounds to predict the molecules’ biological affinity. The
proposed QSAR model, depicted in Figure 1C, employs only
SMILES strings as the molecular descriptor to train the neural net-
work based on recurrent architecture. SMILES are encoded and then
given as input to the architecture formed by an embedding layer
(where each token is converted into a vector of 128 elements), two
GRU layers (128 units) and a densely connected layer (128 units
activated by ReLU) that connects to the output layer (one unit with
linear activation). Using the SMILES notation makes it possible to
keep all information about the molecules’ structure and chirality in-
side a string. This descriptor implies low computational cost to ob-
tain and not excessive overhead for the training process of the
QSAR. In addition, SMILES is a sequential representation of mole-
cules, and it is very well suited to GRU/LSTM cells. Therefore, it is
used as input data with varying lengths. More importantly, the
RNN architecture can capture the most prominent parts of the com-
pounds to build a reliable QSAR (Chakravarti and Alla, 2019).

For the BBB QSAR, depicted in Figure 1D, we followed a differ-
ent approach due to the constraints associated with predicting the
ability of molecules to cross the membrane. Firstly, the main obs-
tacle is related to the dataset: the scarcity of examples and class im-
balance. In DL, it is essential to support the implementation of
models in balanced datasets and with enough examples to avoid
overfitting. Specifically, the datasets used to predict BBB

permeability are often formed with more examples of molecules of
the permeable class (BBBþ) than of the class that cannot cross the
membrane (BBB-). For that reason, one of the most frequent un-
desirable outcomes of these models is the high false-positive rate
(Wang et al., 2018). Secondly, another limitation for implementing
these models is the high number of features needed to describe the
process’s complexity (Almutairi et al., 2016).

The proposed approach aims to find solutions for these draw-
backs in a coordinated way. The goal is to implement a binary clas-
sification model by testing two methods: the first is based on RNNs
and SMILES notation. The second is based on a deep fully con-
nected neural network (DFCNN) employs ECFP as the only molecu-
lar descriptor. The scarcity of data is the most challenging problem
to solve. Nonetheless, we gathered a collection of compounds from
other works, and it was possible to achieve a dataset of 4534 mole-
cules, which is an acceptable size for a DL model.

However, as explained, these datasets are unbalanced, and only
750 out of 4534 were of the BBB- class. The proposed solution is to
apply oversampling techniques to balance the ratio between the two
classes. Alsenan et al. (2020) have employed Synthetic Minority
Oversampling Technique (SMOTE) as the re-sampling method to
balance the class imbalance. This work will test the SMOTE and
Adaptive Synthetic (ADASYN) sampling algorithms to balance
classes. Each ECFP vector is a descriptor that incorporates mole-
cules’ structural and functional characteristics in a bit string format
and is commonly applied for tasks such as virtual screening, similar-
ity searching and clustering. In the case of circular fingerprints such
as ECFPs, which are obtained by implementing Morgan’s algorithm,
molecular structures are represented employing circular atom neigh-
bourhoods and, sequentially, assigning numbers to each atom of
each molecular structures. For the implementation of the BBB
QSAR, the vectors were created with 2048 elements and with radius
2, using the RDKit tool. Figure 2 shows the DFCNN contained five
fully connected hidden layers (with 4000, 2000, 1000, 500 and 250
neurons, respectively) activated by Rectified Linear Unit (ReLU).
The output layer had a sigmoid activation, and the binary cross-

Fig. 1. The general framework contains 4 DL modules: an unbiased Generator (A), a biased Generator (B) which sharing the same architecture and two QSAR models for pre-

dicting the binding affinity (C) and BBB permeation (D). The DL modules are interconnected by a policy-based Reinforcement Learning approach (G) applied with a particular

exploration/exploitation strategy (F) based on a multiobjective reward function (E)
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entropy was selected as the loss function since it is a classification
problem with two classes.

For the Predictor implementations, the best hyper parameters are
determined using a grid-search strategy. Moreover, the performance
of both QSAR models is performed using five-fold cross-validation
to split the data and prevent unwanted overfitting. The data is div-
ided into 85% for training/validation and 15% for testing. Then,
the training/validation data are divided into five folds to train an
equal number of models and in each fold, SMILES is randomly div-
ided into 85% of the training data 15% for validation. The robust-
ness of models is evaluated with an external test set. Moreover, to
avoid a too-tight adjustment of the models to the training data, the
early stopping technique is applied. In this way, it is possible to arbi-
trate a large number of epochs that the training process will end
when the performance of the model does not improve in the valid-
ation subset.

2.3 Reinforcement learning
The followed approach, represented in Figure 1G, is implemented
with the REINFORCE algorithm (Williams, 1992), and the goal is
for the Generator to learn the actions that must take at each state
during the process of synthesizing new molecules to optimize the
desired properties. This learning process is based on a Markov
Decision Process. It’s necessary to have an agent, the surrounding
environment with several possible states and a set of actions that the
agent can select. The dynamics of this process imply that, at each
step, the agent interacts with the environment by choosing one pos-
sible action. In the next step, a reward is attributed to the agent, tak-
ing into account the previous state’s action. A new state of the
environment is presented to the agent to repeat the process. The pol-
icy is the tool that performs the mapping between the current state
to the distribution of probabilities for choosing the next action. This
process’s objective is approximating the policy that ensures the max-
imum possible reward (François-Lavet et al., 2018).

In general, this formulation can be represented using the
Equation 2. On that account, lower rewards correspond to incorrect
behaviour/policy, whereas higher rewards indicate that the behav-
iour/policy is evolving in the right direction.

Rt ¼
XT

k¼0

ckrtþkþ1: (2)

where Rt is the return, t is the time step, T is the final time step and c
is a discount factor. It is a parameter that ranges from 0 � c < 1
and determines how much the future reward worths in the present
(Sutton and Barto, 1998). The process of generating molecules based
on SMILES notation can be adapted for an MDP. The Generator
represents the agent, and its weights correspond to the policy. The
choice of each token during the construction of SMILES can be seen
as each action’s choice. Furthermore, the successive intermediate
states of the molecules being generated correspond to the successive
states of the environment presented to the agent and based on which
the agent must decide what should be the next token/action.

The policy is the cornerstone of RL dynamics. The weights of the
Generator will be updated based on the gradient of a scalar perform-
ance measurement (JðhÞ in Equation 3) with respect to the policy
parameters. The goal is to maximize this performance objective so
that their updates approximate gradient ascent in J:

htþ1 ¼ ht þ arJðhtÞ; (3)

where t represents the time step, h the policy parameters, a the learn-
ing rate and rJðhtÞ is the estimation, through its expectation, of the
gradient of the performance measure with respect to ht (Sutton and
Barto, 1998). Equation 4 represents the REINFORCE update
obtained by using this sample to instantiate our generic stochastic
gradient ascent algorithm (Equation 3).

htþ1 ¼ ht þ actRtrlnpðAtjSt; htÞ: (4)

As it is explained in Section 2.5, it is through the manipulation
of the reward function (Rt) that we will take into account the two
properties to be optimized.

2.4 Learning process
The process of fine-tuning the Generator is based on the repetitive
sampling of new molecules. SMILES are generated in batches of 10
elements. Both Predictors assign a reward to the molecules that will
be higher, as the better the molecular properties fit to what is
desired. Afterwards, each molecule is ‘decomposed’ in the respective
tokens that compose it to analyze the probabilities associated with
the choice of each action. Based on the obtained reward, the loss
function shows to the policy whether the chosen actions in those
specific states of the molecule generation process are encouraged
(the reward obtained was satisfactory) or are discouraged (the re-
ward obtained was unsatisfactory) in future visits to the same state.
After performing this process for all molecules present in the batch,
we obtain a cumulative loss (Equation 5), with which the gradient
descent method is applied.

JðhtÞ ¼ �
1

n

XjSj

i¼1

XlengthðsiÞ

j¼1

Ri � ci � lnðpðsjjs0 . . . sj�1; hÞÞ: (5)

The gradient of the loss function is calculated with regard to the
policy, i.e. in relation to the weights of the Generator. Typically, the
negative gradient of a function at a given point will be a vector tan-
gential to the surface points in the direction where the function
decreases most rapidly (Ruder, 2016). In this case, the direction in
the parameter space (indicated by the gradient) that most minimizes
the loss function is the direction corresponding to the choice of
actions that provide the greatest reward during the molecule gener-
ation process. After several cycles of batches of molecules, the
parameters of the Generator should be biased to choose the actions
that maximize the reward and, consequently, the Generator should
be biased towards molecules with high affinity for AA2AR and poten-
tial to cross the BBB.

2.5 Multi-objective reward function
The design of the reward function is crucial for molecular optimiza-
tion, particularly when there are multiple objectives to be integrated.
The aim is to ensure that the importance assigned to each objective
is fairly distributed so that both the biological affinity for the recep-
tor and the permeability across BBB are skewed in the desired direc-
tion in the newly generated molecules. Thus, we develop several
possible solutions in order to build the approximated Pareto dia-
gram. This diagram is widely used to evaluate solutions in multi-ob-
jective reinforcement learning problems, as it illustrates
compromised solutions among the objectives (Nguyen, 2018). The
objective is to approximate the true Pareto front since it contains the
solutions that dominate all the others. A solution dominates another
if it is superior on at least one objective, and at least, equal on all
other objectives (Ehrgott, 2005). Therefore, considering that it is
mathematically and computationally challenging to find the true
Pareto front, we calculate the approximation set. In this work, we

Fig. 2. Predictor architecture for the BBB permeability: The ECFP vectors feed five

successive dense layers activated by ReLU function to which drop-out is applied. A

sigmoid function activates the output layer to guarantee outputs close to 0 (non-per-

meable) and 1 (permeable)

Blood–brain barrier permeation through deep reinforcement learning i87



compute two approximate Pareto fronts by applying two scalariza-
tion techniques that transform the vector with two rewards into a
single numeric.

The first applied method is linear scalarization, which combines
the two objectives. A weight is assigned to each of the objectives.
Then a weighted average is calculated, which enables to obtain a
unique value that reflects the influence of the two objectives (Van
Moffaert et al., 2013). This advantage of this method is straightfor-
ward to implement and the possibility of adopting a similar RL con-
figuration compared to the single-objective optimization.
Nonetheless, this scalarization technique has the limitation of find-
ing only policies that rely on the convex zones of the Pareto optimal
set (Ehrgott, 2005). Note that the weight assigned to each objective
can vary between 0 and 1, and the only condition is that the sum of
both objective values must be 1.

The second method is a non-linear scalarization technique, based
on Chebyshev metric (Ehrgott, 2005). In this case, before starting
the RL process, a utopian maximum of the reward is defined for
each objective. Since both objectives are normalized between 0 and
1, the maximum possible is 1. Then, at each step, the distance be-
tween the obtained reward and the previously defined maximum is
calculated (weighed by a factor between 0 and 1). The selected ob-
jective to be optimized is the one with the largest distance to the op-
timum point. This technique is non-linear because it uses only one
reward at each step and allows solutions to be sought in all locations
of the Pareto front (Brys et al., 2013).

2.6 Exploration/exploitation dilemma
As represented in Figure 1F, it is essential to control the exploration/
exploitation dilemma when employing RL to ensure that the chem-
ical spaces of interest are discovered. For that reason, it is necessary
to balance exploration (which seeks to acquire more information
about the environment so that future actions can be more advanta-
geous) with exploitation (which privileges the choice of actions
based on current knowledge) (Sutton and Barto, 1998). This trade-
off is controlled in three phases throughout this work.

First, a Softmax activation function with a temperature param-
eter is applied to the Generator’s last layer. In this sense, when sam-
pling SMILES, the randomness of the probabilities associated with
choosing the next token to integrate the molecule can be regulated
by adjusting this temperature. Therefore, it is possible to control the
model’s susceptibility to discover new actions.

Second, two agents having the same structure are integrated into
the RL process, simultaneously. The only difference between them is
the policy. In other words, we have two Generators with different
internal parameters to predict the constituent tokens of the mole-
cules alternately. The unbiased Generator in Figure 1A is the initial-
ly trained model to generate valid molecules and is focused on the
exploration. The biased Generator in Figure 1B results from succes-
sive updates of the parameters and is more focused on the exploit-
ation. The balance between using the two models is made through
random numbers at each step and the establishment of thresholds. If
the number generated is greater than the defined threshold, is used
and vice-versa. There are three possible values for this threshold.
The selected value depends on the most-recent reward evolution
(increasing, decreasing or indefinite). Therefore, we can guarantee
that the will be more likely to be selected if the reward increases.
This strategy considers the goal of discovering promising molecules
and the purpose of preserving the diversity of the compounds.

At last, we created an external memory that contains the last
SMILES generated that is updated dynamically. Then, as new
SMILES are generated, their diversity is calculated and compared
with the molecules present in memory. If the average diversity is
smaller than a given threshold, the reward is penalized. Thus, after
performing this correction, the weights will be adjusted for the next
step, and the Generator will be able to get out of possible relative
minimums. In order to calculate the diversity, we computed the
Tanimoto similarity (Ts) using the RDKit tool. This similarity is
computed by converting SMILES to ECFP3, which is a binary vector
that is constructed so that the more similar two molecules are, the
more elements are equal in the respective vectors. Therefore, the

distance between two sets of molecules A and B, dðA;BÞ is the aver-
age of the Tanimoto distance (1� Ts) of every pair of molecules
from the sets A and B (Benhenda, 2017):

dðA;BÞ ¼ 1

jAj � jBj
XjAj

a2A

XjBj

b2B

ð1� jmaj \ jmbj
jmaj [ jmbj

Þ; (6)

where jmaj \ jmbj indicate the coefficient between the number of
matching bits and jmaj [ jmbj the total number of bits formed by the
two compounds. Thus, Ts between two molecules varies from 0 (less
similar) to 1 (same molecule). The previously mentioned strategies
aim to preserve the compounds’ diversity while optimizing their af-
finity for the target. The binding affinity is measured using the
pIC50, and the higher this value, the higher the potential of the mol-
ecule to be an antagonist inhibitor of the AA2AR. Similarly as Liu
et al. during the presentation of the results, a compound will be
defined as desirable if the respective pIC50 is greater than 6.5 Liu
et al. (2019).

3 Datasets and results

3.1 Datasets
The Generator is trained with the SMILES compounds obtained
from the Zinc database (Sterling and Irwin, 2015). The dataset
included 499 915 SMILES with a logP ranging from -2 to 6, and,
molecular weight between 200 and 600 g=mol. The affinity property
Predictor is trained on a dataset of the ChEMBL (Mendez et al.,
2019), 4872 compounds, and their respective biological affinities
for the AA2AR (ChEMBL identifier: CHEMBL251). Finally, BBB
Predictor is implemented with a dataset composed of molecules col-
lected from various works (Adenot and Lahana, 2004; Roy et al.,
2019; Wu et al., 2018; Zhao et al., 2007). The respective SMILES
are canonicalized and formed a set of 4534 molecules.

3.2 Validity and analysis on QSAR models
The two Predictors integrated into the RL training process are con-
ceptually different, and it is necessary to ensure the robustness of
both to improve the reliability of subsequent results.

First, to estimate the compounds’ biological affinity for the
AA2AR, we implement a regression QSAR that maps SMILES strings
to the desired property. Therefore, metrics such as Mean Squared
Error (MSE), Coefficient of Determination (Q2) and Concordance
Correlation Coefficient (CCC) were evaluated as they are applied in
the literature (Gramatica and Sangion, 2016). Figure 3 summarizes
the obtained results for the AA2AR Predictor. The x-axis shows the
real biological activity values, and the y-axis shows the correspond-
ing predictions of the proposed QSAR. The goal is to have the points
as close as possible to the diagonal line. Therefore, both the eval-
uated metrics and the dispersion of the points close to the diagonal
line confirm the model’s robustness for the entire range of biological

Fig. 3. AA2AR QSAR scatter plot and evaluation metrics: MSE, Q2 and CCC
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affinity values. Thus, SMILES strings’ ability to be meaningful
descriptors is proven when integrated with networks based on recur-
rent architectures.

Second, the permeability BBB Predictor goal is to predict
whether compounds can cross the BBB or not. Therefore, the prob-
lem is a binary classification problem. However, as we apply over-
sampling techniques, it is necessary to evaluate the best molecular
descriptor to calculate the distances between the compounds (a ne-
cessary step in oversampling) and the most suitable oversampling
approach for this context. Table 1 depicts the results obtained in
terms of Accuracy (ACC), Area Under Curve (AUC), Sensitivity
(Sen), Specificity (Spe) and Mathews Correlation Coefficient
(MCC).

The results on the Table 1 confirms that the molecules that can
cross the BBB are more easily identifiable since sensitivity is higher
than specificity in all experiments. This is an expected result as the
initial dataset has far fewer examples of the BBB non-permeable
molecules. Oversampling techniques aim to minimize this tendency
through synthetic data generation but do not eliminate it entirely.
This difficulty in identifying non-permeable molecules can be par-
tially explained by the fact that the synthetically generated mole-
cules were based on the initial non-permeable molecules. As such,
they may not add information in quality but only in quantity. QSAR
models with ECFP descriptors achieve better results than SMILES
notation in terms of oversampling since they are binary vectors and,
consequently, it may be easier to synthetically synthesize new mole-
cules compared to SMILES notation. In other words, each token in
SMILES is encoded by a number from 0 to 44. Therefore, the syn-
thetic generation of new molecules of the underrepresented class is
more complicated due to the higher sparsity of SMILES.
Nonetheless, Table 1 indicates that ECFP and SMOTE is the best
combination of the descriptor and oversampling technique, respect-
ively, to implement the BBB Predictor.

3.3 Experimental analysis on the unbiased generator
The unbiased Generator is aimed to be as versatile as possible. In
other words, although it does not have to optimize the molecules’
properties, it has to be evaluated in terms of validity rate, diversity
and uniqueness. The analysis of these metrics was performed by gen-
erating 10 000 molecules, and the results are summarized in Table
2.

The percentage of molecules that respect the RDKit parsing dem-
onstrates that the Generator based on recurrent architectures and
SMILES notation can learn the rules for constructing chemically
valid molecules since roughly 93% are valid. Moreover, the remain-
ing parameters indicate that the model can sample new molecules
presenting diversity and novelty compared to the training dataset.
These properties are fundamental for the success of the next step in
which the fine-tune the biased Generator through RL.

3.4 Analysis on biased generator and multi-objective

optimization reward
The parameters and hyper-parameters that optimize the perform-
ance of the RL and ensure the proper convergence of the loss func-
tion have been determined by grid-search. Thus, we trained the
model for 400 episodes using Adam optimizer with a learning rate
of 0.001. Gradients have been clipped to [-3,3] to avoid abrupt var-
iations. The molecules had a maximum of 65 tokens, and each

generated batch contained 10 molecules. For adjusting the explor-
ation/exploitation dilemma, Softmax temperature set to 0.9, and the
thresholds when the reward is increasing, decreasing or following an
undefined trend are 0.01, 0.05 and 0.1, respectively. Finally, the
conversion from the predicted pIC50 of the molecule to the assigned
reward is performed using the following rule: Rt ¼ exp pIC50

4 � 1Þ
�

.
The integration of multi-objective optimization with RL aims to
find molecular characteristics that allow the compounds to inhibit
the AA2AR by maximizing the pIC50 value and cross the BBB. This
combination is produced using two scalarization techniques that
will transform the rewards of each property into a single numerical
value. However, it is necessary to previously assign a weight for
each objective in both techniques, between 0 and 1. The followed
approach was to perform a uniform sampling of the weights be-
tween the two extremes with a step of 0.1. Figures 4 and 5 represent
the solutions obtained for each weight assignment. Each solution is
a point whose coordinates are the average rewards obtained in the
last iterations of the RL process for each objective.

For both scalarization techniques, it is visible that the two objec-
tives are competing. In other words, as we assign more importance
(higher weight) to one of the objectives, the obtained reward at the
end of the process is much more significant for the objective with
greater weight compared to the other. Nonetheless, some unexpect-
ed results may be justified by the stochasticity of the model (it pos-
sesses some inherent randomness) and the influence of a third

Table 1. Comparison of different combinations of descriptor and

oversampling technique for the implementation of the BBB QSAR.

Descriptor Oversampling Acc AUC Spe Sen MCC

SMILES ADASYN 0.924 0.955 0.818 0.958 0.788

SMILES SMOTE 0.913 0.928 0.737 0.952 0.722

ECFP ADASYN 0.935 0.922 0.859 0.963 0.829

ECFP SMOTE 0.944 0.971 0.898 0.951 0.834

The approach that yielded the best result is highlighted in bold.

Table 2. Evaluation of Unbiased Generator

% desirable % valid Int. diversity Ext. diversity % Unique

86.3 93.1 0.91 0.91 99.9

Fig. 4. Dominated and non-dominated solutions obtained for linear weighted sum

scalarization

Fig. 5. Dominated and non-dominated solutions obtained for Chebyshev

scalarization
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objective to be optimized that is not directly represented: the diver-
sity of the compounds. Throughout the Generator’s fine-tuning pro-
cess, situations may arise in which one of the objectives is optimized
so strongly that the model enters a minimum of the loss function
that only allows the generation of similar molecules. As previously
mentioned, this repeatable generation will cause the reward to be
penalized so that the model can get out of that minimum. However,
this forced correction can also modify the expected result at the end
of the optimization process (for one or both objectives), taking into
account the earlier weight assignment.

The solutions highlighted in red are non-dominated policies, i.e.
these solutions optimize both objectives better than the dominated
solutions, represented in blue. Hence, it was impossible to find a sin-
gle solution that is considered the best for the two objectives, at the
same time. However, by comparing the possible pairs of non-domi-
nated solutions for each scalarization technique, we can see that
each solution has only one objective with a higher reward than the
other. For such a reason, the solutions are incomparable, and it is
necessary to carry out a more objective assessment to identify the so-
lution that presents the most beneficial trade-off for this context.

In this sense, the most promising policies were compared
through the characteristics of the respectively generated molecules.
These characteristics include the Generator’s ability to skew the two
desired properties while maintaining the validity, diversity and
uniqueness in the generated compounds. Further, for the best config-
uration identified, we ran an additional experiment in which it was
employed the same architecture but without the two-generator strat-
egy to demonstrate its effectiveness. It is noticeable the decrease in
the diversity and the uniqueness of the generated molecules. Table 3
summarizes the obtained results for two scalarization techniques:
Chebyshev and Linear Weighted Sum (LWS).

Although the two objectives are conflicting, they are not antag-
onistic since it’s possible to identify some policies that ensure an ap-
propriate trade-off between them. On that account, we can
highlight the solution obtained through Chebyshev scalarization
when we assigned 0.5 for the importance of both objectives. In this
case, nearly 82.7% of the molecules have both properties skewed in
the desired direction, and the percentage of syntactically valid mole-
cules has remained at a reasonable level. These findings are

comparable to the GCPN framework, in which the authors achieved
on average 75% and 70% success in the molecules generated in the
optimization of logP and MW, respectively. Figure 6 compares the
outcomes of the unbiased and biased Generators according to the
scalarization approach and weight assignment previously mentioned
by generating 5000 compounds.

Hence, we can verify that the molecules generated by this policy
are likely to simultaneously inhibit the AA2AR and penetrate across
the BBB. However, in addition to optimizing competing properties
as desired, we intend to demonstrate that this approach can generate
synthesizable and drug-like compounds that are necessary condi-
tions to consider the biased Generator’s outcome as promising lead

Table 3. Comparison of the non-dominated solutions obtained for each scalarization technique.

Technique Weight A2A A2A biasing BBB biasing Valid (%) Diversity Unique (%)

Chebyshev 0 0.154 0.343 94.4 0.827 77.8

Chebyshev 0.2 0.503 0.239 83.2 0.769 77.9

Chebyshev 0.3 0.420 0.182 88.6 0.758 75.4

Chebyshev 0.5 0.530 0.328 90.0 0.783 76.3

Chebyshev* 0.5 0.724 0.154 94.6 0.672 61.3

LWS 0 0.199 0.225 85.6 0.795 84.1

LWS 0.1 0.277 0.352 76.6 0.819 77.1

LWS 0.6 0.313 0.201 87.8 0.807 85.3

LWS 0.8 0.280 0.121 79.4 0.801 83.9

Note: Chebyshev* relates to the experiment that was carried out without the use of the two-generator strategy.

The best scalarisation strategy is highlighted in bold.

Fig. 6. Comparison between unbiased and biased Generators regarding the pIC50

probability density for AA2AR and percentage of permeable molecules across BBB

Fig. 7. Evaluation of the QED and SAS score for the molecules obtained from the

biased Generator. The desirable region for the properties is inside the red dashed

lines

Fig. 8. Evaluation of the logP and MW for the molecules obtained from the biased

Generator. The desirable region for the properties is inside the red dashed lines
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molecules. In this sense, two important properties were evaluated:
the Quantitative Estimate of Druglikness (QED) and Synthetic
Accessibility Score (SAS). The first allows compressing the evalu-
ation of diverse drug characteristics (such as octanol-water partition
coefficient, number of hydrogen bond donors, number of hydrogen
bond acceptors, molecular polar surface area, number of rotatable
bonds, number of aromatic rings and number of structural alerts) in
a single numeric value between 0 and 1 (Bickerton et al., 2012).
Maximizing this parameter guarantees drug-like molecules’ gener-
ation in terms of its absorption, distribution, metabolism, excretion
and toxicity (ADME/tox). The second metric is a tool to evaluate
the difficulty of synthesizing the molecules based on the knowledge
extracted from known synthetic reactions and high molecular com-
plexity penalization. This metric varies between 1 and 10, i.e. if a
molecule has scored more than 6, it is considered challenging to syn-
thesize (Ertl and Schuffenhauer, 2009). Figure 7 depicts the distribu-
tion of both properties for a set of 5000 molecules sampled from the
biased Generator.

It’s noticeable for the two properties that the most considerable
part of the molecules is located within the desired ranges. Therefore,
it confirms their potential to be drug-like and synthesizable mole-
cules. Regarding the BBB, we evaluate two properties that influence
the molecules’ permeability: the MW and the logarithm of the parti-
tion coefficient between octanol and water (logP). Generally, CNS
active molecules tend to have a lower MW. Namely, in order to
cross the BBB by passive diffusion, the molecules must have an MW
less than 500. Also, CNS active drugs must have appropriate lipo-
philicity to cross the hydrophobic phospholipid bilayer of cell mem-
branes. This property can be estimated through the logP whose
values should be range between 1 and 4. Theoretically, the higher
the lipophilicity, the more likely the drug is to cross the non-polar
phospholipid layer. However, excessively lipophilic compounds will
have penalization in its solubility, increased metabolism and eventu-
ally negatively affect the compound’s BBB penetration (Kerns and
Di, 2008). In other words, greater lipophilicity increases the non-
specific binding in the brain and, as such, decreases the biological
activity of the compound in the target of interest. Figure 8 shows the
distribution of the molecules generated by the biased Generator for
logP and MW.

In this case, the largest part of the molecules is also within the
optimal range mentioned above for both properties. However, in the
case of logP, we detect a high number of molecules with this param-
eter slightly above 4. This fact confirms that the biased Generator
also identified that, to a certain extent, the increase in lipophilicity

favours the permeability of the molecules. Figure 9 shows, on the
left side, some compounds obtained from the biased Generator and
their properties whose importance has already been discussed. On
the right side, we represent molecules—with a high degree of simi-
larity for each example of the biased Generator—that are known to
interact with the AA2AR. One of the possible weaknesses of this
work is the possibility that Predictors are unable to indicate which
actions are more favourable to create molecules with high biological
affinity and BBB permeability due to having been trained with a
restricted number of molecules. These similarities between mole-
cules are an important validation of the framework as it demon-
strates that it is possible to obtain novel compounds with a high
degree of similarity with other molecules already identified as likely
to bind to AA2AR and cross the BBB.

4 Conclusion

In summary, we have developed a de novo molecule generation
framework to make the process of identifying lead molecules more
effective. The novelty of our approach stems from its focus on creat-
ing molecules from the scratch that are likely to cross the BBB.
Usually, computational generation methods consider the optimiza-
tion of the drug–target affinity, disregarding the properties that in-
fluence its bioavailability. Hence, we were able to generate
molecules with two essential optimized objectives: biological on-tar-
get affinity and permeability across BBB. As a result, it was compu-
tationally possible to get closer to the real complexity of this
problem.

The implementation of this end-to-end framework involved the
combination of several techniques such as DL, multi-objective opti-
mization and RL. The backbone is the DL since the Generator and
Predictors are based on artificial neural networks with several
layers, which demonstrates the versatility and representativeness of
this approach. Multi-objective optimization was essential to com-
bine the two competing objectives accurately. Nevertheless, the
cornerstone of this framework is the RL. Its application allowed us
to update the properties of the sampled molecules as desired by max-
imizing a reward function.

The results demonstrate that in addition to having the two prop-
erties appropriately skewed, the molecules are synthesizable in the
laboratory and present an interesting drug-likeness degree. These
three factors are essential to consider the biased Generator a proper
source of potential lead molecules. However, although they are

Fig. 9. Comparison of generated molecules with similar biologically active compounds
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encouraging, the results need definitive validation both in terms of
affinity with the target and permeability at BBB. Future work will
focus on the implementation of more robust predictor models to fil-
ter the newly generated compounds. At a later stage, we plan to ex-
plore 3D information of the compounds and the corresponding
drug–target complexes to assess candidate drugs’ efficacy.
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