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OBJECTIVE—Endoplasmic reticulum (ER) stress has been
implicated in the pathogenesis of diabetes, but the roles of
specific ER Ca2� release channels in the ER stress–associated
apoptosis pathway remain unknown. Here, we examined the
effects of stimulating or inhibiting the ER-resident inositol
trisphosphate receptors (IP3Rs) and the ryanodine receptors
(RyRs) on the induction of �-cell ER stress and apoptosis.

RESEARCH DESIGN AND METHODS—Kinetics of �-cell
death were tracked by imaging propidium iodide incorporation
and caspase-3 activity in real time. ER stress and apoptosis were
assessed by Western blot. Mitochondrial membrane potential
was monitored by flow cytometry. Cytosolic Ca2� was imaged
using fura-2, and genetically encoded fluorescence resonance
energy transfer (FRET)–based probes were used to measure
Ca2� in ER and mitochondria.

RESULTS—Neither RyR nor IP3R inhibition, alone or in combi-
nation, caused robust death within 24 h. In contrast, blocking
sarco/endoplasmic reticulum ATPase (SERCA) pumps depleted
ER Ca2� and induced marked phosphorylation of PKR-like ER
kinase (PERK) and eukaryotic initiation factor-2� (eIF2�),
C/EBP homologous protein (CHOP)–associated ER stress,
caspase-3 activation, and death. Notably, ER stress following
SERCA inhibition was attenuated by blocking IP3Rs and RyRs.
Conversely, stimulation of ER Ca2� release channels accelerated
thapsigargin-induced ER depletion and apoptosis. SERCA block
also activated caspase-9 and induced perturbations of the mito-
chondrial membrane potential, resulting eventually in the loss of
mitochondrial polarization.

CONCLUSIONS—This study demonstrates that the activity of
ER Ca2� channels regulates the susceptibility of �-cells to ER
stress resulting from impaired SERCA function. Our results also
suggest the involvement of mitochondria in �-cell apoptosis
associated with dysfunctional �-cell ER Ca2� homeostasis and
ER stress. Diabetes 58:422–432, 2009

I
nappropriate activation of cell death pathways in the
pancreatic �-cell is involved in the pathogenesis of
type 1 diabetes, type 2 diabetes, and rare diabetic
disorders such as maturity-onset diabetes of the

young, Wolcott-Rallison syndrome, and Wolfram syn-
drome (1–5). �-Cell apoptosis also hampers clinical islet
transplantation (6). The endoplasmic reticulum (ER) plays
a key role in multiple programmed cell death pathways
(7–9). Apoptosis caused by ER stress has been associated
with diabetes (1,2,5,10) and can be induced by the accu-
mulation of unfolded proteins resulting from disrupted
Ca2�-dependent chaperone function in the ER (1,11). Both
thapsigargin, a potent and specific inhibitor of sarco/
endoplasmic reticulum ATPase (SERCA), and endogenous
factors that downregulate SERCA, evoke ER stress and
apoptosis in �-cells (12,13). However, the detailed mech-
anisms underlying Ca2�-dependent apoptosis and the roles
played by specific �-cell ER Ca2� channels and pumps in
ER stress remain unclear.

In addition to multiple SERCA isoforms (14), the �-cell
ER expresses several classes of intracellular Ca2�-releas-
ing channels, including the inositol trisphosphate recep-
tors (IP3Rs) and the ryanodine receptors (RyRs) (15–19).
In the diabetic state, the expression of these receptors is
known to be modulated in several cell types, including
�-cells (15,20–22). We have previously shown that long-
term inhibition of RyR2 in low glucose leads to pro-
grammed �-cell death involving calpain-10, but not
caspase-3; conversely, RyR inhibition protected islets un-
der conditions of chronic hyperglycemia (17). We have
also shown that RyR inhibition significantly reduces the
ratio of ATP to ADP in MIN6 �-cells (23), an event that
could conceivably activate ER stress (24,25). Furthermore,
studies of other cells types have suggested that ER stress–
associated damage can be affected by inhibitors of RyRs
(26) or IP3Rs (27). Despite these important questions and
links, studies on the roles of RyRs and IP3Rs in �-cell ER
stress have not been published to date.

In the present study, we investigated whether disrupting
�-cell ER Ca2� homeostasis by blocking Ca2� release
through IP3Rs and RyRs is sufficient to induce ER stress.
We also tested the hypothesis that stimulating or inhibiting
these channels would alter ER stress or apoptosis trig-
gered by ER Ca2� depletion following SERCA inhibition.
Our results demonstrate that while blocking ER Ca2�

release channels does not induce a major ER stress
response, Ca2� flux from both RyRs and IP3Rs can mod-
ulate �-cell apoptosis and ER stress resulting from im-
paired SERCA function.
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RESEARCH DESIGN AND METHODS

Cell culture and transfection. MIN6 cells were cultured and transfected as
described previously (23). Cells were imaged 48–72 h after transfection.
Pancreatic islets were obtained from 8- to 16-week-old male C57BL6/J mice by
collagenase digestion and filtration and cultured as described (28,29). For
high-throughput imaging–based cell death assays, islets were hand-picked the
next day and dispersed into single cells and plated on 96-well plates (see
below).
Reagents. Thapsigargin (Tg) was purchased from Calbiochem (La Jolla, CA)
or Sigma (St. Louis, MO) and was kept as a 1,000� DMSO stock. Tetrameth-
ylrhodamine ethyl ester perchlorate (TMRE) (Sigma), xestospongin C (AG
Scientific, San Diego, CA; Calbiochem), ryanodine (Molecular Probes, Eugene,
OR; Tocris, Ellisville, MO; Calbiochem), dantrolene, CGP-37157, and carbonyl
cyanide m-chlorophenyl-hydrazone (CCCP) (Calbiochem) were dissolved in
DMSO. Carbachol from Calbiochem was dissolved in water.
Single-cell imaging. Single-cell imaging was performed in Ringer’s solution
containing (in mmol/l): 5.5 KCl, 2 CaCl2, 1 MgCl2, 20 HEPES, 141 NaCl, and 3
glucose. Cytosolic Ca2� was imaged in fura-2-AM–loaded cells as described
previously (4,30). Preheated solutions were applied by stable perifusion at 1
ml/min, and complete solution changes were achieved in �30 s.

ER luminal and mitochondrial Ca2� was imaged using the fluorescence
resonance energy transfer (FRET)-based D1ER and mt4D3cpv cameleons,
respectively (31,32). The cyan fluorescent protein (CFP) component of the
probes was excited using a S430/25x filter (Chroma). CFP and FRET (i.e.,
yellow fluorescent protein) emission were alternately collected using S470/
30m and S535/30m filters mounted in a Sutter Lambda 10-2 filter wheel.
Changes in ER and mitochondrial Ca2� were expressed as the FRET-to-CFP
emission ratio. There was no correlation between the apparent Ca2� levels
and the intensity of the FRET probe in the cells used for this study.

Single-cell, FRET-based imaging of caspase-3 activity was performed using
the MiCy-DEVD-mKO probe (33). Activation of caspase-3 cleaves this probe
and results in a loss of FRET between a CFP (MiCy) and an orange fluorescent
protein (mKO). MiCy excitation and emission was controlled by 436/20x and
490/40m filters, respectively. FRET with mKO was measured using a 585/60m
filter and normalized to MiCy emission intensity.
High-throughput imaging of cell death kinetics. For kinetic analysis of
cell death, MIN6 cells or dispersed mouse islet cells were plated onto
glass-bottom 96-well microplates (ViewPlate-96; Perkin Elmer) in culture
media (see above) and treated as indicated. Cell death was monitored by the
incorporation of propidium iodide (PI) (250–500 ng/ml in each well). PI
fluoresces brightly only once it passes through the compromised plasma
membrane and binds to DNA. It labels cells in the last stages of apoptosis that
follow caspase activation, as well as cells undergoing necrosis (34). Approx-
imately 30 min after treatment, 96-well plates were imaged at 37°C and 5% CO2

using a Cellomics KineticScan (Pittsburgh, PA). Two to four nonoverlapping

images were taken from each well at 30- or 60-min intervals. PI-positive cells
were automatically identified and counted using the Target Activation Bio-
application (Cellomics, Pittsburgh, PA). Cell death is presented as an absolute
count of PI-positive cells and quantified by calculating the incremental area
under the curve. Plots of representative cell death profiles show the means �
SE of three independent cultures imaged simultaneously. For statistical
comparisons, we used a conservative approach in which the average response
of three similarly treated, independent cell cultures on a microplate was
treated as a separate “n”. At least three of these replicate sets were performed
on separate days for each study.
Flow cytometry analysis of mitochondrial membrane potential. Changes
in mitochondrial membrane potential were estimated by flow cytometry of
MIN6 cells stained with TMRE (35). After the indicated treatments, all floating
and adherent cells were collected, spun down at 500g for 10 min, and loaded
with 50 nmol/l TMRE in PBS with 2% fetal bovine serum (FBS) for 30 min at
37°C. The cells were washed again and kept in PBS for �30 min before a total
of 105 events were collected using the FL2 channel of a Becton Dickinson
FACScan. Cellular debris was identified by forward- and side-scatter criteria
and excluded from analysis. Every set of measurements included a depolar-
ized control sample pretreated for 30 min with 10 �mol/l of the mitochondrial
uncoupler CCCP.
Immunoblotting. Western blots were carried out as described (23). Rabbit
monoclonal antibody to cleaved caspase-3 was from Cell Signaling (Danvers,
MA). Rabbit polyclonal anti–C/EBP homologous protein (CHOP) antibody
was from Santa Cruz (Santa Cruz, CA). Rabbit monoclonal antibody to
phospho–PKR-like ER kinase (PERK) and rabbit polyclonal antibody to
phospho–eukaryotic initiation factor-2� (eIF2�) were from Cell Signaling.
The antibody to total eIF2� was a mouse monoclonal from Abcam (Cam-
bridge, MA). After three washes, membranes were incubated with secondary
antibodies diluted in I-block (caspase-3, CHOP) or 5% BSA (PERK, eIF2�) for
1 h. In the case of phospho-PERK and phospho-eIF2� (detection), phospha-
tase inhibitor (Calbiochem) was added to the lysis buffer. After three washes
with 0.1% Tween-PBS, immunoreactivity was visualized using chemilumines-
cence. Densitometric analysis was performed using Photoshop (Adobe Sys-
tems, San Jose, CA).
Data analysis. Unless otherwise indicated, data are presented as means �
SE. Differences between means were evaluated using Student’s t test and were
considered significant if P � 0.05.

RESULTS

Cytosolic and ER Ca2� signals evoked by SERCA
inhibition and IP3R activation. The ER is involved in
the regulation of multiple cell death pathways (7–9).
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FIG. 1. ER Ca2� dynamics during acute SERCA inhibition and IP3R activation in MIN6 �-cells. A: Subcellular colocalization of mRFP targeted to
the ER using the KDEL protein sequence and DIER cameleon in transfected MIN6 cells. B: A total of 1 �mol/l thapsigargin evoked a gradual
depletion of luminal ER Ca2�. An average trace is shown in black (n � 14 cells), and profiles from individual cells are shown to illustrate the
response heterogeneity. C: Repeatable and reversible lowering of ER luminal Ca2� due to IP3R activation by successive carbachol (Cch)
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http://dx.doi.org/10.2337/db07-1762 for a high-quality digital representation of this figure.)
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Although luminal ER Ca2� levels are thought to play
critical roles in many apoptotic cascades, measurements
of Ca2� dynamics within the ER under pro- and antiapop-
totic conditions have remained technically challenging.
Using fura-2 and FRET-based imaging, respectively, we
measured the changes in cytosolic and ER luminal Ca2�

caused by inhibition of SERCA pumps and activation of
IP3Rs. Thapsigargin is a specific SERCA inhibitor known
to induce apoptosis in many cell types including �-cells
(12). In agreement with other studies (36), blocking ER
Ca2� uptake with thapsigargin evoked transient cytosolic
Ca2� rises in MIN6 �-cells, although not in every cell (data
not shown). This suggests that there is a substantial
steady-state leak from the ER or that SERCA pumps are a
component of a critical Ca2� buffering system in MIN6
cells. In agreement with other reports (12,37), we also
confirmed that carbachol, a cholinergic agonist that
causes IP3 formation, rapidly mobilized intracellular Ca2�

to evoke a cytosolic Ca2� peak in MIN6 and primary
�-cells (data not shown). The initial Ca2� spike was often
followed by a lower, but sustained, Ca2� elevation that
depended on extracellular Ca2� influx, suggesting a possi-
ble role for a Ca2� release–activated Ca2� current (i.e.,
CRAC channel) (38,39).

To extend these findings, we analyzed the dynamics of
luminal ER Ca2� directly by using the D1ER cameleon.
This probe has an optimal sensitivity range, excellent
signal-to-noise characteristics (31,32), and was designed to
mitigate interference with endogenous Ca2� signaling and
reduce pH-based artifacts (31). D1ER was localized to the
ER by virtue of both KDEL and calreticulin sequences and
was observed in a reticular pattern that matches ER-
targeted monomeric red fluorescent protein (Fig. 1A).
Direct measurements of luminal Ca2� demonstrated that
treatment with 1 �mol/l thapsigargin resulted in a robust
decrease in ER Ca2� (Fig. 1B) and that carbachol stimu-
lated Ca2� release from the ER in a reversible and repeat-
able manner (Fig. 1C). Notably, the thapsigargin-induced
lowering of ER Ca2� was more gradual and characterized
by larger cellular heterogeneity than that evoked by car-
bachol (Fig. 1B and C). In some cells, ER Ca2� levels fell
immediately upon SERCA inhibition, whereas a significant
delay was seen in others, suggesting cell-to-cell differences
in basal ER Ca2� release rates (i.e., leak). Similar results
were seen with 20 �mol/l 2,5-Di-(t-butyl)-1,4-hydroqui-
none, a structurally distinct SERCA inhibitor (data not
shown). Together, these experiments validate the use of
the D1ER cameleon in �-cells and demonstrate the dynam-
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ics of ER Ca2� emptying when ER Ca2� release channels
are activated and ER Ca2� uptake blocked, respectively.
Differential effects of blocking ER influx versus
efflux on ER stress and apoptosis. ER Ca2� homeosta-
sis is regulated by both pumps and channels (19). To
analyze the time course of cell death in response to
blockers of �-cell Ca2� pumps and channels, we utilized a
high-throughput imaging platform to monitor propidium
iodide incorporation for 24–48 h under normal incubated
culture conditions. Both the time course and the degree of
cell death were dose dependent in thapsigargin-treated
cells (Fig. 2A–C). Cell death was associated with induction
of ER stress, as demonstrated by increased expression of
the transcription factor CHOP/GADD153 (Fig. 2D), an

essential component of ER stress–mediated apoptosis in
�-cells (40). Western blotting also demonstrated that
blocking ER Ca2� pumps with thapsigargin activated
caspase-3 (Fig. 2D) and increased cleaved caspase-7 by
sixfold at 24 h (P � 0.05, n 	 4; data not shown). We then
used real-time single-cell FRET-based imaging to examine
the dynamics of this process. Caspase-3–dependent loss of
FRET was observed 2–4 h following the addition of
thapsigargin (Fig. 2E). Hence, apoptosis of MIN6 cells is
triggered relatively quickly following SERCA inhibition.
Cyclopiazonic acid and 2-aminoethoxydiphenyl borate,
two structurally distinct SERCA blockers (19,41), similarly
induced �-cell ER stress and apoptosis (data not shown).
These observations strongly suggest that thapsigargin trig-
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gered the ER stress response by specific inhibition of
SERCA and provide a detailed kinetic analysis of �-cell
apoptosis caused by ER stress.

We next investigated whether ER stress and apoptosis
might be induced when ER-resident Ca2� release channels
(i.e., IP3Rs and RyRs) are blocked under conditions of
normal ER Ca2� uptake. Inhibition of RyRs for 24 h with
100 �mol/l ryanodine did not induce death in MIN6 cells
cultured in high glucose (Fig. 3A), in agreement with our
previous findings (17). When compared with thapsigargin,
ryanodine did not evoke a similarly robust increase in
CHOP expression or caspase-3 cleavage (Fig. 3), although
preliminary analysis indicated that calpain-10 protein lev-
els were upregulated (not shown), consistent with our
previous results (17,23). We also utilized the IP3R inhibi-
tor, xestospongin C, previously demonstrated to block
IP3-dependent Ca2� release in pancreatic �-cells (42,43).
As was the case with ryanodine, the effects of 1 �mol/l
xestospongin C on CHOP, caspase-3, and cell death were
modest. Simultaneous inhibition of RyRs and IP3Rs also
did not cause cell death, ruling out the possibility of
compensatory Ca2� flux through one class of channel
when the other type was blocked (Fig. 3). CGP-37157, a

drug that has been reported to indirectly interfere with ER
Ca2� uptake by blocking mitochondrial Na�/Ca2� ex-
change (30,44), had little effect on ER stress or caspase-3
activation. It should be noted, however, that we have
previously demonstrated that CGP-37157 also inhibits volt-
age-gated Ca2� entry in �-cells (30). There was a tendency
for caspase-3 cleavage to be reduced by changing the
glucose concentration from 5 to 25 mmol/l (Fig. 3B and C).
Together, these experiments demonstrated that marked
ER stress and caspase-3–dependent apoptosis were in-
duced specifically by inhibition of ER Ca2� uptake but not
by inhibition of ER Ca2� release via RyR and IP3R channels.
IP3Rs and RyRs participate in ER stress and apopto-
sis caused by SERCA inhibition. The level of Ca2� in
the ER lumen reflects the balance between influx and
efflux. We sought to establish the role of channel-
mediated efflux in �-cell ER stress and apoptosis. First,
we tested the hypothesis that reducing ER Ca2� release
might ameliorate the effects of thapsigargin. Indeed, the
RyR blocker dantrolene protected MIN6 cells from
thapsigargin-induced death (Fig. 4A and B). Ryanodine
(100 �mol/l), alone or in combination with xestospongin
C (1 �mol/l), also suppressed thapsigargin-induced pro-
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pidium iodide incorporation, although this trend did not
reach statistical significance (Fig. 4B). The protective
effect of dantrolene was also associated with a reduc-
tion in the amount of cleaved caspase-3 observed after
8 h of treatment with thapsigargin (Fig. 4C and D).
Similarly, the combination of ryanodine and xestospon-
gin C protected cells from thapsigargin-induced
caspase-3 cleavage (Fig. 4E–G). The observation that
thapsigargin-induced caspase-3 activation, but not total
PI incorporation, was significantly reduced by the xes-
tospongin C and ryanodine combination may reflect the
fact that PI labeling is not strictly specific for apoptotic
death. Thapsigargin-induced CHOP expression at 8 h
was also reduced by inhibition of RyRs and IP3Rs (Fig.
4G). Together, these experiments suggest that ER
Ca2� release through RyRs and IP3Rs contribute to
short-term ER stress and caspase-3–mediated cell death
following SERCA inhibition.

In light of these findings, we hypothesized that
chronic activation of ER Ca2� release channels might
exacerbate the effects of SERCA inhibition. Indeed,
thapsigargin-induced cell death was significantly in-
creased when IP3 receptors were concurrently activated

by either 1 �mol/l (not shown) or 100 �mol/l carbachol
(Fig. 5A and C). The additional cell death was associ-
ated with a dramatic increase in CHOP expression at 8 h
(Fig. 5D and E). We further tested this hypothesis using
a stimulatory concentration of ryanodine (18,42) and
found that 1 nmol/l ryanodine also augmented thapsi-
gargin-induced MIN6 cell death (Fig. 5B and C). Taken
together, these data demonstrate that ER Ca2� release
channels can both negatively and positively modulate
ER stress.
ER Ca2� depletion kinetics and PERK activation in
ER stress. Next, we looked for changes in ER luminal
Ca2� flux that correlated with the augmentation of
�-cell death and ER stress by IP3R activation. Imaging
ER Ca2� levels revealed that a combination of thapsi-
gargin and carbachol resulted in a more rapid and
homogeneous depletion of ER Ca2� stores, compared
with thapsigargin alone (Fig. 6A and B). Following a
response to carbachol, the addition of thapsigargin
further depleted ER stores (Fig. 6C). When thapsigargin
was added first there was a complete depletion and no
additional response to carbachol in the majority of cells
(Fig. 6D). However, in thapsigargin-treated cells that
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had not yet fully depleted, carbachol accelerated the ER
Ca2� loss (Fig. 6D, arrow).

What rapid events might link ER Ca2� depletion kinetics
to the transcriptional induction of CHOP? Recent work
has implicated the eIF2� kinase PERK in the induction of

Ca2�-dependent ER stress (24). In our experiments, thap-
sigargin caused sustained PERK and eIF2� phosphoryla-
tion that was detectable as early as 5 min (Fig. 6E and F).
There was a tendency for carbachol to augment the
thapsigargin-induced phosphorylation of PERK at the
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5-min time point, potentially linking rapid ER Ca2� deple-
tion to the subsequent amplification of CHOP expression
(45). Taken together, these findings suggest that rapid
events in the ER lumen can have profound and immediate
effects on the unfolded protein response, ER stress, and
apoptosis in �-cells.
ER Ca2� depletion evokes multistage perturbations
of mitochondrial membrane potential. Evidence indi-
cates that the intrinsic mitochondrial pathway of apopto-
sis may be triggered during ER stress–associated cell
death (46,47). To evaluate the effects on mitochondria, we
first analyzed the time-dependent changes in mitochon-
drial membrane potential by flow cytometry. Interestingly,
SERCA inhibition initially caused marked mitochondrial
hyperpolarization, suggestive of increased metabolic flux
(Fig. 7A and B). However, mitochondrial polarization
ultimately collapsed in the majority of cells, and this
depolarization was augmented when IP3Rs were simulta-
neously stimulated by carbachol. The activation of mito-
chondrial apoptosis was further suggested by a significant

increase in cleaved caspase-9 after 24 and 48 h thapsigar-
gin treatment (Fig. 7C). Functional cross-talk between ER
and mitochondria was evidenced by acute increases in
mitochondrial Ca2� following ER Ca2� mobilization by
carbachol or thapsigargin (Fig. 7D). Together these results
provide compelling evidence for the involvement of mito-
chondria in the regulation and execution of �-cell apopto-
sis induced by ER Ca2� depletion.
Modulation of ER stress–induced primary mouse islet
cell death. We also examined the effects of SERCA and
Ca2� channel blockers on dispersed mouse islet cells.
Thapsigargin caused progressive dose- and time-depen-
dent death, though it was quantitatively less than what we
observed with MIN6 �-cells (Fig. 8A and B). Nevertheless,
carbachol significantly augmented the death of primary
cells following SERCA block, in agreement with our MIN6
cell findings. There was also a small degree of cell death in
response to carbachol alone (Fig. 8C). Combined applica-
tion of 100 �mol/l ryanodine and 1 �mol/l xestospongin C
protected primary �-cells from the potentiating effect of
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carbachol, verifying that it was due to release of intracel-
lular stores. These results suggest that similar, but not
identical, mechanisms are involved in MIN6 cell apoptosis
and primary �-cell apoptosis in the context of SERCA
inhibition.

DISCUSSION

The goal of this study was to determine the specific roles
of luminal ER Ca2� influx and efflux mechanisms in the
control of �-cell ER stress and apoptosis. To this end, we
used a combination of “online” cell death measurements
and real-time imaging of ER Ca2� dynamics. First, we
determined that blocking ER-resident Ca2� release chan-
nels alone was not sufficient to induce substantial ER
stress–related cell death. Among the perturbations of
�-cell ER Ca2� handling tested, only direct inhibition of
SERCA pumps was associated with robust induction of ER
stress and activation of caspase-3. Second, we found that
thapsigargin-induced apoptosis was attenuated by drugs
that reduce channel-mediated Ca2� release from the ER.
Third, we established that the effects of thapsigargin on
ER Ca2� depletion, ER stress activation, and cell death
were accelerated by stimulation of IP3Rs or RyRs. To-
gether, these data provide the first evidence that �-cell ER
stress is regulated by the activity of ER-resident Ca2�

release channels.
The pathophysiological importance of ER stress and

apoptosis in the pancreatic �-cell is becoming increasingly
clear (2,5,10). Our identification of conditions that slow
and speed up ER stress and cell death elucidates the
underlying mechanisms of and may promote strategies for
counteracting ER stress associated with cytokines in type
1 diabetes (13), obesity-related type 2 diabetes (10), and
rare disorders such as Wolcott-Rallison syndrome and
Wolfram’s syndrome (5). Indeed, ion channels such as the
IP3Rs and RyRs are useful drug targets. The finding that
�-cell ER stress might be exacerbated by increased IP3R
activity is important because pancreatic �-cells are inner-
vated by cholinergic neurons that likely mobilize ER Ca2�

via these channels (48). It is therefore possible that
increased nervous tone in the pancreas could aggravate
ER stress during the development of diabetes. The expres-

sion of type 2 IP3 receptors in �-cells has been shown to be
upregulated by chronic hyperglycemia (15), suggesting
that �-cell ER stress could also be an indirect complication
of diabetes. Given the potential importance of this delete-
rious positive feedback loop, additional in vivo studies of
the role of IP3Rs in ER stress would be valuable.

Little is known about the role of intracellular Ca2�

channels in �-cell survival. Recently, we have shown that
long-term (
2 days) inhibition of �-cell RyRs activates a
programmed cell death pathway that is distinct from the
one triggered by SERCA inhibition and instead shares
traits with hypoglycemia-induced cell death (17,23). In-
stead of requiring caspase-3, ryanodine-induced apoptosis
requires calpain-10, a human diabetes susceptibility gene
(17). In contrast to thapsigargin-induced apoptosis, cell
death resulting from RyR inhibition is associated with a
decrease in the ATP-to-ADP ratio (23), and increasing the
�-cell metabolic rate with high glucose completely abro-
gates ryanodine-induced programmed cell death (17). For
this reason, studies designed to look at the effects of
ryanodine on thapsigargin-induced cell death were typi-
cally performed in high glucose and on a time scale that
precedes the deleterious effects of RyR block (17). Thus, it
appears that disruption of �-cell ER Ca2� handling can
trigger multiple apoptosis pathways, but only SERCA
inhibition leads to robust CHOP induction and caspase-3
activation. The same ER Ca2� pool can thus control
several types of cell death, depending in part on whether
the filling or release of this pool is disrupted. Our results
do not preclude the possibility that intracellular Ca2�

channels localized to non-ER compartments, such as insu-
lin granules or endosomes (18,49), might also affect �-cell
survival.

The present study provides insight into the complex
sequence of events initiated by reduced SERCA activity in
�-cells. We demonstrate clear roles for both ER Ca2�

levels and mitochondrial membrane potential in ER
stress–induced �-cell apoptosis. Our results support that
SERCA dysfunction can induce ER stress by rapidly
depleting the luminal Ca2� required for proper ER chap-
erone function and protein folding (11). No difference was
observed in the absolute depletion of the ER between cells
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treated with thapsigargin alone and thapsigargin plus
carbachol. Combined SERCA inhibition and cholinergic
activation, however, did result in increased cell death and
more rapid and homogeneous depletion kinetics. This
suggests that absolute Ca2� levels and the kinetics of
luminal Ca2� depletion together dictate the degree of ER
stress, perhaps by rapidly modulating PERK phosphoryla-
tion. Subsequent to the initial ER-mediated events, there
was an early mitochondrial hyperpolarization, in agree-
ment with our previous observation that thapsigargin
increased ATP production (23). In agreement with previ-
ous work, we found that ER-derived cytosolic Ca2� signals
could be sensed by nearby mitochondria (43,50). This
might underlie the increased ATP synthesis, as Ca2� in the
mitochondrial matrix stimulates respiration via calcium-
dependent dehydrogenases (43). On the other hand, ex-
cessive mitochondrial Ca2� can trigger the loss of
mitochondrial integrity and cell death (9,46,50). We found
that �-cell mitochondria eventually fell into a depolarized,
“dead” state, but the seemingly transient nature of the
thapsigargin-induced Ca2� rise (Fig. 7D) suggests this
involves factors other than mitochondrial Ca2� overload
or direct ER-mitochondria signaling, per se. However,
augmentation of this mitochondrial demise by carbachol
indicates some role for Ca2� in this late component of ER
stress and CHOP-dependent apoptosis.

In conclusion, we have performed measurements of
Ca2� dynamics in the lumens of �-cell organelles, com-
bined with real-time measurements of caspase-3 activation
and dynamic assays of �-cell death, to provide a detailed
picture of the events mediating �-cell apoptosis associated
with disrupted ER Ca2� homeostasis. Our study revealed
the involvement of mitochondria in the execution of �-cell
ER stress and cell death that results from reduced SERCA
activity. Most importantly, we demonstrated a role for the
ER Ca2� release channels in the regulation of this impor-
tant �-cell ER stress and apoptosis pathway. Together,
these observations provide new insight into the mecha-
nisms by which �-cells die in diabetes, knowledge that is
essential for therapeutic efforts to reduce �-cell death.
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