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Abstract
Within clinical, biomedical, and translational science, an increasing number of 
projects are adopting graphs for knowledge representation. Graph-based data 
models elucidate the interconnectedness among core biomedical concepts, en-
able data structures to be easily updated, and support intuitive queries, visuali-
zations, and inference algorithms. However, knowledge discovery across these 
“knowledge graphs” (KGs) has remained difficult. Data set heterogeneity and 
complexity; the proliferation of ad hoc data formats; poor compliance with guide-
lines on findability, accessibility, interoperability, and reusability; and, in par-
ticular, the lack of a universally accepted, open-access model for standardization 
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INTRODUCTION

The use of graphs to formalize the representation of 
human knowledge dates back to the origins of artificial 
intelligence and the use of semantic networks for knowl-
edge representation.1,2 The term “knowledge graph” (KG) 
is gaining popularity and is generally used to encompass 
a range of graph-oriented representation frameworks, 
including Resource Description Framework (RDF) tri-
ple stores and labeled property-graph databases, such 
as Neo4j. Examples of general-domain KGs include the 
Google Knowledge Graph and Wikidata.3 Within the 
biomedical sciences, examples include SemMedDB,4 
Hetionet,5 Implicitome,6 Monarch Initiative,7 the biolog-
ical subset of Wikidata,8 SPOKE,9 and KG-COVID-19.10

Although KGs have been defined in various ways, per-
haps the most intuitive definition is a graph in which the 
nodes represent real-world entities and the edges represent 
known relationships between those entities.11 In a KG, the 
knowledge or “facts” are represented as statements, with 
each statement modeled as two nodes linked together by 
an edge representing the relationship between them. The 
statements can have additional properties, metadata, and 
qualifying attributes that further capture the meaning of 
the statement and characterize the properties of nodes 
and edges.

Because the basic structure of a KG is generic, the 
knowledge contained within a KG can be heterogeneous 
and mutable and still be representable in the graph. The 
representation of knowledge as simple connections be-
tween core entities makes iterative, rapid development 
of KGs possible. In addition, by leveraging the graph 

data structure and using various inference strategies, one 
can infer new edges or connections between nodes in a 
graph. Ontology-oriented KGs allow deductive inference 
through logical rules, from basic rules such as the Gene 
Ontology “true path” rule12 to more sophisticated meth-
ods like Description Logic inference.13 Ontology-oriented 
KGs are also amenable to machine learning approaches, 
such as embedding in vector space,14 which supports the 
application of deep neural networks for tasks such as link 
prediction and node classification. Within the biomedical 
sciences, ontology-oriented KGs have been used for tasks, 
such as drug repurposing,5 target prioritization,15 and 
phenotype profile matching.7

Several ontologies and schemas for representing bio-
medical knowledge are available. A constellation of 
domain-specific ontologies from the Open Biological and 
biomedical Ontology Foundry16 can be used for modeling 
knowledge. For example, the Semantic Science Integrated 
Ontology17 is used for representing scientific data and 
knowledge. The Wikidata Ontology18 is used by Wikidata 
for representing knowledge. In terms of schemas, schema.
org is used for representing metadata about entities and 
relationships to other entities. BioSchemas is an extension 
of schema.org for representing metadata about biological 
entities.

Whereas existing efforts in modeling knowledge have 
been valuable, a unified data model that bridges across 
multiple ontologies, schemas, and data models does not 
exist. Here, we present Biolink Model as an open-source, 
universal data model that defines entities and the rela-
tionships between these entities within translational 
science.

OT2TR003433, OT2TR003450, 
OT2TR003437, OT2TR003443, 
OT2TR003441, OT2TR003449, 
OT2TR003445, OT2TR003422, 
OT2TR003435, OT3TR002026, 
OT3TR002020, OT3TR002025, 
OT3TR002019, OT3TR002027, 
OT2TR002517, OT2TR002514, 
OT2TR002515, OT2TR002584, and 
OT2TR002520; Contract number 
75N95021P00636). Additional 
funding was provided by the Office 
of the Director, National Institutes 
of Health (grant award R24-
OD011883), the National Human 
Genome Research Institute (grant 
award 7RM1HG010860-02), and the 
Director, Office of Science, Office of 
Basic Energy Sciences, of the U.S. 
Department of Energy under Contract 
No. DE-AC0205CH11231.

across biomedical KGs has left the task of reconciling data sources to downstream 
consumers. Biolink Model is an open-source data model that can be used to for-
malize the relationships between data structures in translational science. It in-
corporates object-oriented classification and graph-oriented features. The core 
of the model is a set of hierarchical, interconnected classes (or categories) and 
relationships between them (or predicates) representing biomedical entities such 
as gene, disease, chemical, anatomic structure, and phenotype. The model pro-
vides class and edge attributes and associations that guide how entities should 
relate to one another. Here, we highlight the need for a standardized data model 
for KGs, describe Biolink Model, and compare it with other models. We demon-
strate the utility of Biolink Model in various initiatives, including the Biomedical 
Data Translator Consortium and the Monarch Initiative, and show how it has 
supported easier integration and interoperability of biomedical KGs, bringing to-
gether knowledge from multiple sources and helping to realize the goals of trans-
lational science.
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OVERVIEW OF BIOLINK MODEL

Biolink Model is a data model for organizing data in bio-
medical KGs. The model serves both as a map for bring-
ing together data from different sources under one unified 
model, and as a bridge between ontological domains.

Biolink Model is composed of several modeling ele-
ments, including a hierarchy of defined classes, properties 
(with defined types), predicates, mixins, and associations 
(Table  1). Domain knowledge in a KG that conforms to 
Biolink Model is represented using associations. An as-
sociation minimally includes a subject and an object 
(Biolink Model classes) related by a Biolink Model predi-
cate, together comprising its core triple (statement or pri-
mary assertion). The subject and object of an association 
are foundational domain concepts (e.g., genes, diseases, 
chemicals, and phenotypes), whose Internationalized 
Resource Identifiers (IRIs) come from community stan-
dard ontologies (e.g., HGNC, MONDO, ChEBI, and 

HPO). The predicate is a Biolink Model element that rep-
resents the relationship between the subject and object. 
Associations may also include slots to hold additional 
metadata about the core triple, primarily information 
about the provenance, and evidence supporting the asser-
tion (Figure 1).

Biolink Model aims to address several challenges that 
obstruct the interoperability between KGs, including: (1) 
the need for expertise to transform data between tabular, 
RDF, and graphical models; (2) sparse and/or inconsistent 
application of ontologies or other controlled vocabularies, 
as well as differences in the identifiers that are used for 
storing instances of nodes within a graph; and (3) the lack 
of a standard approach to model the intersection of onto-
logical domains (e.g., the relationships between genes and 
diseases).

Using the framework provided by the Linked data 
Modeling Language (LinkML), Biolink Model is distributed 
in a variety of formats, including YAML, JSON-Schema, 

T A B L E  1   Biolink Model elements and their definitions

Biolink Model element Definition Examples

Class High-level types (or categories) representing core 
biological concepts of interest such as genes, diseases, 
chemical substances, anatomic structures, and 
phenotypic features, arranged in a class hierarchy

biolink:Disease, 
biolink:PhenotypicFeature, 
biolink:Gene, biolink:SequenceVariant

Predicate Objects that define the action being carried out by the 
subject (or named entity) of a core triple and help 
define how two entities (or classes) can be related 
to one another. In graph formalism, predicates are 
relationships that link two instances. Predicates in the 
Biolink Model all descend from the “biolink:related_
to” predicate

biolink:has_phenotype, biolink:positively_
regulates, biolink:affects, 
biolink:associated_with, 
biolink:related_to

Node property A set of attributes that can be regarded as a 
characteristic or inherent part of an instance of 
“biolink:NamedThing”

biolink:symbol, biolink:name, biolink:id

Edge property A set of attributes that can be regarded as a characteristic 
or inherent part of a statement, association, or edge

biolink:publications, biolink:has_evidence

Core triple The domain knowledge of an association expressed by the 
subject and object nodes plus the predicate connecting 
them

biolink:Disease biolink:has_phenotype 
biolink:PhenotypicFeature

Association Associations are classes that define a relationship 
between two domain concepts, constrained and 
qualified by edge attributes

biolink:DiseaseToPhenotypicFeatureAss
ociation, biolink:GeneToDiseaseAsso
ciation

Type A kind of value that tells what operations can be 
performed on a particular data set. Biolink Model 
implements common types, such as integer and string, 
but it also defines custom types like quotient and unit

URI or CURIE, string, integer, 
biolink:Quotient, biolink:Unit

Mixin Modeling elements used to extend the properties (or 
slots) of a class, without changing its position in 
the class hierarchy. Please see the Biolink Model 
documentation for more information on mixin 
elements

biolink:GeneOrGeneProduct, biolink:Dise
aseOrPhenotypicFeature

Abbreviations: CURIE, compact URI; URI, unique resource identifier.
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SQL-DDL, Python/Java classes, and RDF. Additionally, 
Unified Modeling Language diagrams provide a visual 
representation of the model. Biolink Model is accessible in 
frameworks familiar to a wide variety of developers and da-
tabase engineers. Because the model can be distributed in 
different formats, the model elements can also be validated 
using existing toolchains (e.g., JSONSchema validation 
and SQL constraints), thus speeding up the reconciliation 
of tabular data, ontologies, and graphs.

The biomedical field has been a leader and champion 
of ontology development. However, this has sometimes 
led to the development of multiple ontologies or con-
trolled vocabularies for the same domain concept. When 
this happens, KG creators must identify which vocabulary 
best suits their needs, as well as understand how to apply 
concepts from the chosen ontology to their class instances. 
Biolink Model helps solve this challenge by indicating to 
users which ontologies should be used for instances of its 
classes via identifier prefixes (id_prefixes), mappings, and 
associations.

Biolink Model describes its classes in a description 
field. Part of the definition of a class is an id_prefixes 
construct. Recognizing that biomedical resources often 
implement new identifiers for their resource, instead of 
reusing existing identifiers from other resources,19 Biolink 
Model encourages reuse of existing ontologies by provid-
ing a list of possible ontologies (via id_prefixes) in prefer-
ence order for engineers to use when instantiating model 
classes. For example, for a disease class, Biolink Model 
suggests that instances of the class use Mondo (the Mondo 
Disease Ontology)20 as the preferred disease vocabulary. 
The id_prefixes modeling construct allows the develop-
ment of software that can normalize identifiers across 
data sources. Tools such as the Biomedical Data Translator 
Node Normalization Service and the Knowledge Graph 
Exchange Framework use the identifier mappings in 
Biolink Model to return the preferred equivalent identifier 
when presented with several identifiers that represent the 
same domain concept but with different namespaces (e.g., 
NCBIGene vs. HGNC gene identifiers).

Each element in Biolink Model is mapped, when possible, 
to equivalent elements in other ontologies or models. Biolink 
Model uses mapping terms from the Simple Knowledge 
Organization System (SKOS) namespace to record classes 
and objects outside the model that can be considered sim-
ilar in an exact, broad, narrow, close, or related manner to 
the Biolink Model class (e.g., the broad_mapping relation 
implements the skos:broadMatch). These mappings render 
the model and data more computable, allowing software 
programs to automatically harmonize and connect disparate 
data sources, thus facilitating interoperability.

Finally, a key feature of Biolink Model is its associa-
tion elements. Taking inspiration from successful efforts 
like Semanticscience Integrated Ontology,17 Biolink Model 
Association elements establish rules for transforming bio-
medical knowledge into computable statements and help 
define how to represent knowledge statements across on-
tological domains. “Computable,” in this context, means 
that each Biolink Model association defines the kinds of 
objects that can participate as a subject or object of a bio-
medical statement (via domain and range constraints); de-
fines sets of attributes (edge properties described in Table 1 
and detailed in the Biolink Model documentation) that are 
required to properly instantiate a relationship between two 
domain concepts; and provides a blueprint for registering 
and maintaining the provenance of each statement. In Web 
Ontology Language (OWL),21 Biolink Model association 
elements are equivalent to axioms, and in RDF, they are 
equivalent to statements (rdf:Statement). Because prove-
nance and evidence are critical components of any data set 
(and the knowledge represented therein), Biolink Model 
provides properties capable of tracking evidence and prov-
enance both at the class and association levels.

APPLICATIONS OF BIOLINK 
MODEL

Translational science, by its nature, involves the applica-
tion of diverse information derived from different subject 

F I G U R E  1   An example of an Association represented in Biolink Model. In (a), the green ovals represent the subject and object 
classes, connected by a predicate. Together, the classes and the predicate constitute a statement or “core triple” in the model. Edge 
properties provide further context and qualification to the core triple. The entire diagram, including the core triple and its provenance, 
represents a Biolink Model “association.” In (b), we see a specific example of a “biolink:DiseaseToPhenotypicFeatureAssociation,” where 
the subject is “biolink:Disease,” the object is “biolink:PhenotypicFeature,” and the predicate is “biolink:has_phenotype.” In addition, the 
“biolink:publications” property (lavender oval) records the provenance of the core triple.
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matter experts and curated data sources to answer ques-
tions through integrated analyses of clinical and bio-
medical knowledge. Biolink Model supports translation, 
integration, and harmonization across knowledge sources 
by capturing subject matter expertise in a machine-
readable format that allows software to interoperate with 
disparate data sources using a common dialect, facilitated 
by a harmonized data model.

We highlight several examples here.

Biomedical Data Translator (“Translator”)  
Consortium

The Translator Consortium22 has adopted Biolink Model 
as an open-source upper-level data model that supports 
semantic harmonization and reasoning across diverse 
Translator “knowledge sources.”15 The model serves a cen-
tral role in the Translator program and forms the architec-
tural basis of the Translator system, as described below.

The Translator program aims to develop a comprehen-
sive, relational, N-dimensional infrastructure designed 
to integrate disparate data sources—including objective 
signs and symptoms of disease, drug effects, chemical and 
genetic interactions, cell and organ pathology, and other 
relevant biological entities and relations—and reason over 
the integrated data to rapidly derive biomedical insights.23 
The ultimate goal of Translator is to augment human rea-
soning and thereby accelerate translational science and 
knowledge discovery.

To achieve its ambitious goal, the Translator project 
assembled a diverse interdisciplinary team and a variety 
of biomedical data sources, including electronic health 
record data, clinical trial data, genomic and other -omics 
data, chemical reaction data, and drug data. There are 
hundreds of data sources in the Translator ecosystem, 
each of which had its own data representation and were 
in formats that were not compatible or interoperable. 
Moreover, groups within the Translator Consortium had 
integrated the data sources as knowledge sources within 
independent KGs, but these KGs were developed using 
different technologies and formalisms, such as property 
graphs in Neo4j and semantically linked data via RDF and 
OWL.

In order to interoperate between knowledge sources 
and reason across KGs, Biolink Model was adopted as 
the common dialect, thus enabling queries over the en-
tire Translator KG ecosystem. The result was a federated, 
harmonized ecosystem that supports advanced reasoning 
and inference to derive biomedical insights based on user 
queries.

An example Translator use case involved a collab-
oration with investigators at the Hugh Kaul Precision 
Medicine Institute (PMI) at the University of Alabama 
at Birmingham. PMI investigators posed the following 
natural-language question to the Translator Consortium: 
what chemicals or drugs might be used to treat neurologi-
cal disorders, such as epilepsy that are associated with ge-
nomic variants of RHOBTB2? The investigators noted that 
RHOBTB2 variants cause an accumulation of RHOBTB2 

F I G U R E  2   An overview of the Translator architecture that supports biomedical KG-based question-answering, including the role of 
Biolink Model, in the context of an example question. In this example, a user has posed the natural-language question: what chemicals 
or drugs might be used to treat neurological disorders, such as epilepsy, that are associated with genomic variants of RHOBTB2? The 
question is translated into a graph query, as shown in the top left panel, which is then translated into a Translator standard machine query 
(not shown). The KG shown in the second panel from the left is derived from a variety of diverse “knowledge sources,” a subset of which 
are displayed in the figure, that are exposed by Translator “knowledge providers.” Biolink Model provides standardization and semantic 
harmonization across the disparate knowledge sources, thereby allowing them to be integrated into a KG capable of supporting question-
answering. In this example, Translator provided two answers or results of interest to the investigative team who posed the question, namely, 
fostamatinib disodium and ruxolitinib, as shown in the bottom left panel. KG, knowledge graph.

https://paperpile.com/c/Fqkfsl/HnGR9
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protein and that this accumulation is believed to be the 
cause of the neurological disorder.

To answer the PMI investigator’s question, Translator 
team members structured the following query: 
NCBIGene:23221 (CURIE for RHOBTB2) -> [biolink:en-
tity_regulates_entity, biolink:genetically_interacts_with] -> 
biolink:Protein, biolink:Gene -> [biolink:related_to] -> bio-
link:SmallMolecule (Figure 2). Because of the hierarchical 
structure of the Biolink model, the use of biolink:related_
to also will return more specific predicates such as bio-
link:negatively_regulates and biolink:positively_regulates. 
The objective was to identify drugs or chemicals that 
might regulate RHOBTB2 in some manner and thereby 
reduce the variant-induced accumulation of RHOBTB2 
and associated neurological symptoms. As all nodes and 
edges within the Translator KG ecosystem are annotated 
to Biolink Model classes and attributes, a Translator query 
can be constructed from a natural-language user question 
and return results across a multitude of independent data 
sources. In addition, because the model uses hierarchical 
classes, with inheritance and polymorphism, natural-
language queries translated to graph queries using Biolink 
Model syntax can be constructed at varying levels of gran-
ularity and return results from all levels of the hierarchy. 
Finally, because Biolink Model provides attributes on both 
edges and nodes that record provenance and evidence for 
these knowledge statements, each result is annotated with 
the trail of evidence that supports it.

When Translator team members sent the query to the 
Translator system, it returned several candidates of inter-
est to PMI investigators, including fostamatinib disodium 
(CHEMBL.COMPOUND:CHEMBL3989516) and ruxoli-
tinib (CHEMBL.COMPOUND:CHEMBL1789941). A re-
view of the supporting evidence provided by Translator 
indicates that these are approved drugs that either directly 
or indirectly reduce or otherwise regulate the expression 
of RHOBTB2. Thus, Biolink Model helped Translator 
teams bring data together into a single system, thereby 
reducing the burden on the user to find and manually as-
semble data from these independent resources.

Monarch initiative

Similar to Translator, the Monarch Initiative is a large-
scale bioinformatics web resource focused on leverag-
ing existing biomedical knowledge to connect genotypes 
with phenotypes in an effort to aid research on genetic 
diseases. Monarch pulls together data from a wide vari-
ety of sources. However, because each source uses its own 
model to describe entities and their relationships, subject 
matter expertise is required to manually translate between 
knowledge representations. Monarch is adopting the 

Biolink Model to capture these mappings and make them 
available for other groups to use.

For example, one of the main driving use cases for 
Monarch is to address the need to establish links between 
phenotypes identified in model organisms (e.g., mice, 
fruit flies, rats, yeast, worms, and zebrafish) and pheno-
types identified in humans. Unsurprisingly, the vocab-
ularies used to describe clinical observations and those 
used to describe model organisms are quite different. 
Clinical data often refer to “side effects” and “symptoms,” 
whereas model organism data typically refer to “traits” or 
“phenotypes.” In designing Biolink Model, subject matter 
experts from a variety of disciplines have reconciled these 
concepts in the “biolink:PhenotypicFeature” class. This 
makes it possible to query across multiple resources that 
use multiple terminologies and identifiers and find rele-
vant results.

Illuminating the druggable genome

Illuminating the druggable genome (IDG) aims to iden-
tify protein drug targets by developing tools to search, 
display, and distribute information on these proteins 
to the biomedical community, whereas supporting re-
search that helps scientists understand how these pro-
teins function. The Illuminating the Druggable Genome 
Knowledge Graph (KG-IDG) was created to use graph-
based machine learning to predict links between drugs 
and potential targets, in order to identify proteins that 
are promising drug targets and drugs that are promis-
ing repurposing candidates. The generation of this KG 
relies on Biolink Model to provide a “biolink:Protein” 
class with mappings to equivalent classes in UniProt, 
Ensembl, and the Protein Ontology Community. This 
step ensures that tooling used to identify links among 
these different protein sources can interrogate them 
using the same language and same hierarchical data 
representation. Similarly, KG-IDG uses the “biolink:In
formationContentEntity” grouping class to reason over 
many diverse sources of biomedical attribution, includ-
ing clinical trials, books, and journal articles. KG-IDG 
is able to reuse the “biolink:InformationContentEntity” 
hierarchy in Biolink Model to be specific about the at-
tribution stored in the KG and also reason over the attri-
bution using the higher-level grouping classes, without 
creating another KG-IDG-specific schema.

Additional applications

Translator, Monarch, and KG-IDG incorporate a broad 
spectrum of data from a variety of sources, with each 
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source modeling their data using different approaches, 
independent identifier systems, and heterogeneous data 
representations. Biolink Model provides the semantic 
harmonization required to integrate these disparate data 
sources.

A growing number of other projects also consult 
and reuse components of the Biolink Model in design-
ing their models. For example, the Alliance of Genome 
Resources24 imports some Biolink Model components, 
even though they do not use the entirety of Biolink Model. 
Other initiatives that rely on Biolink Model for data and 
knowledge harmonization include KG-COVID-1910 and 
KG-Microbe.25

DISCUSSION

The success of Biolink Model can be attributed to its 
community—biologists, clinicians, data curators, de-
velopers, subject matter experts, and ontologists—all of 
whom have contributed their requirements, perspectives, 
and expertise to help build a flexible semantic data model. 
Biolink Model is under continual development, with fre-
quent releases and a publicly accessible issue tracker on 
GitHub. To ensure sustained development of the model, 
we invite the biomedical community to contribute via 
GitHub pull requests and use the issue tracker to sug-
gest new features, report problems, or ask questions (see 
Supplemental Resources within Supplementary Materials 
for links to the GitHub repository for Biolink Model, docu-
mentation, and other relevant resources).

Biolink Model provides a blueprint to harmonize ex-
isting data sources and accelerate the development of 
new knowledge by leveraging a multitude of domain and 
technical expertise, captured in a variety of ontologies and 
existing models (via semantic mappings), within a single 
modeling framework that is easy to read, write, reuse, 
and distribute. Moreover, Biolink Model is grounded in 
semantic web technologies (characterized by classes and 
slots with their own IRIs, SKOS mappings to existing on-
tologies, descriptions, identifier prefixes, and domain and 
range constraints) and captures biomedical expertise as a 
computable knowledge artifact that can be read and inter-
preted by both machines and humans. Importantly, KGs 
that implement Biolink Model immediately gain access to 
the frameworks and tools developed by a variety of proj-
ects that use the model, as well as a platform to connect 
any Biolink Model–compliant KG to other Translator bio-
medical KGs.

Because Biolink Model is platform-agnostic, open-
source, and publicly accessible, and because it can be 
translated into a variety of data modeling formats, it en-
courages people from different backgrounds and with 

different expertise to work together to evolve the model. 
Most importantly, Biolink Model supports the harmoniza-
tion of KGs and underlying data sources in a manner that 
adheres to FAIR principles26 and facilitates applications 
across a broad spectrum of biomedical use cases, thereby 
democratizing and accelerating translational science.
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