
Yi et al. Exp Hematol Oncol            (2019) 8:29  
https://doi.org/10.1186/s40164-019-0154-9

REVIEW

Advances and perspectives of PARP 
inhibitors
Ming Yi1†, Bing Dong2†, Shuang Qin1, Qian Chu1, Kongming Wu1,3*   and Suxia Luo3*

Abstract 

DNA damage repair deficiency leads to the increased risk of genome instability and oncogenic transformation. In the 
meanwhile, this deficiency could be exploited for cancer treatment by inducing excessive genome instability and 
catastrophic DNA damage. Continuous DNA replication in cancer cells leads to higher demand of DNA repair com-
ponents. Due to the oncogenic loss of some DNA repair effectors (e.g. BRCA) and incomplete DNA repair repertoire, 
some cancer cells are addicted to certain DNA repair pathways such as Poly (ADP-ribose) polymerase (PARP)-related 
single-strand break repair pathway. The interaction between BRCA and PARP is a form of synthetic lethal effect which 
means the simultaneously functional loss of two genes lead to cell death, while defect in any single gene has a slight 
effect on cell viability. Based on synthetic lethal theory, Poly (ADP-ribose) polymerase inhibitor (PARPi) was devel-
oped aiming to selectively target cancer cells harboring BRCA1/2 mutations. Recently, a growing body of evidence 
indicated that a broader population of patients could benefit from PARPi therapy far beyond those with germline 
BRCA1/2 mutated tumors. Numerous biomarkers including homologous recombination deficiency and high level of 
replication pressure also herald high sensitivity to PARPi treatment. Besides, a series of studies indicated that PARPi-
involved combination therapy such as PARPi with additional chemotherapy therapy, immune checkpoint inhibitor, 
as well as targeted agent had a great advantage in overcoming PARPi resistance and enhancing PARPi efficacy. In 
this review, we summarized the advances of PARPi in clinical application. Besides, we highlighted multiple promising 
PARPi-based combination strategies in preclinical and clinical studies.
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Introduction
As the hallmark of cancers, genome instability par-
ticipates in the initiation and progression of cancers by 
inducing the generation of mutations and neoantigens 
[1–4]. Genome instability is closely related with inad-
equate repertoire of DNA repair pathways [5, 6]. For sus-
taining cell viability, cancer cells highly depend on some 
specific DNA damage repair pathways to control DNA 
damage events in a low level [7]. Thus, these essential 
repair pathways are ideal targets for cancer treatment [8, 
9].

In normal cells, DNA damages could be detected and 
repaired by DNA single-strand break (SSB) repair path-
ways or double-strand break (DSB) repair pathways 
[10, 11]. SSB repair pathways include mismatch repair 
(MMR), nucleotide excision repair (NER), and base exci-
sion repair (BER), while DSB repair pathways include 
homologous recombination (HR) and nonhomologous 
end joining (NHEJ) [12–14]. Compared with SSB, DSB is 
a more cytotoxic form of DNA damage [15]. When repli-
cated sister chromatid and key molecules in HR pathway 
such as BRCA1/2 are available, cell could faithfully repair 
DSB damages by HR [16]. In the absence of template 
DNA or intact HR pathway, NHEJ pathway is adopted 
to repair DSB damages [17]. However, NHEJ is a rapid as 
well as error-prone repair pathway by direct ligation [18]. 
Due to the low-fidelity, NHEJ often produces plenty of 
chromosomal rearrangements and these unsustainable 
DNA damages are harmful to cell viability [19]. For HR 
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deficient tumor cells, intact SSB repair pathways is the 
vital prerequisites for cell survival [20].

Based on synthetic lethality theory, simultaneously 
blocking SSB repair and HR repair pathways could 
severely inhibit cell survival [20]. Therefore, as the 
core component of SSB, Poly (ADP-ribose) polymer-
ase (PARP) is an ideal treatment target for HR deficient 
cancers [21]. Initially, it was found that PARP inhibi-
tor (PARPi) could effectively kill BRCA1/2 mutated 
tumor cells [22, 23]. Later, it was noticed that some non-
BRCA1/2 mutated HR deficient tumors were sensitive to 
PARPi treatment as well [24]. PARPi not only inhibits the 
catalytic activity of PARP, but also traps PARP on dam-
aged DNA site [25, 26]. The persistent PARP-DNA chain 
complex leads to the stalling of DNA replication fork 
[27]. Then, DNA replication fork collapses and gener-
ates DSB [27]. Due to the difference of HR status between 
normal cells and cancer cells, PARPi-induced DSB could 
be repaired by HR pathway in normal cells while the DSB 
is repaired by NHEJ pathway in cancer cells [27]. As a 
result, tumor cells harboring HR deficiency are more sen-
sitive to PARPi therapy than normal cells (e.g. over 1000 
times in BRCA1/2 mutated tumor cells) [27]. In theory, a 
wider group of patients could benefit from PARPi treat-
ment beyond germline BRCA1/2 mutated (gBRCAm) 
patients.

The structure and function of PARP
Poly (ADP-ribose) polymerase (PARP) family of enzymes 
participate in various cellular processes via covalently 
adding poly (ADP-ribose) chains onto target molecules 
(also termed as PARylation) [28]. Among all proteins 
belonging to PARP family, PARP1 is mostly correlated 
with DNA damage repair which generates nearly 90% of 
poly (ADP-ribose) chains after DNA damage event [29]. 
There are six main domains of PARP1 which include three 
zinc finger-related domains (DNA binding domains), one 
BRCA1 C-terminus domain (auto-modification domain), 
one tryptophan-/glycine-/arginine-rich domain (WGR 

domain), and one catalytic domain (Fig. 1) [30]. The cata-
lytic domain of PARP1 consists of two subdomains: one 
helical domain (HD) and one ADP-ribosyltransferase 
catalytic domain (ART) [30]. In the non-DNA binding 
status, HD inhibits the binding between PARP1 and its 
cofactor β-nicotinamide adenine dinucleotide (β-NAD) 
in ART [30, 31]. Once DNA SSB emerges, PARP1 could 
recognize and interact with SSB by its zinc finger-related 
domains [32]. After PARP1 binding to damaged DNA 
chains, the auto-inhibitory function of HD is abrogated 
and the catalytic function of ART is activated [32]. This 
catalytic activity leads to the generation of PAR chains 
on a series of target proteins which promotes the recruit-
ment of DNA repair effectors and chromatin remodeling 
[33]. Then the auto-PARylation on PARP1 protein causes 
the dissociation of PARP1 from DNA chains and restores 
the auto-inhibitory status of PARP1 [32].

Clinical development of PARP inhibitors
Some nicotinamide analogs could competitively inhibit 
the binding of β-NAD to ART and enhance the cytotox-
icity of DNA damaging agents [34]. Based on the struc-
ture of nicotinamide analogs, at least four PARPis are 
developed into clinical application including Olaparib, 
Rucaparib, Niraparib, and Talazoparib (Table 1) [35–38]. 
All PARPis have the capability to suppress the catalytic 
activity of ART [39]. However, PARPi-mediated inhibi-
tion of catalytic activity could not completely explain 
the phenomenon that the PARPi-mediated tumor-killing 
effect is greater than PARP depletion [26]. Recent stud-
ies indicated that the cytotoxicity of PARPis are more 
relevant to their ability of trapping PARP1 on damaged 
DNA chains [26]. This hypothesis is supported by the evi-
dence that PARPis (e.g. Talazoparib) with stronger ability 
to trap PARP1 exhibit more potent cytotoxicity [40]. The 
pharmacodynamics mechanism of PARP1 is similar to 
topoisomerase II inhibitor which could also trap damag-
ing repair proteins on DNA chains and induce cell death 
[40].

Fig. 1  PARP and PARPis. a The structure schematic of PARP molecule. There are six main domains of PARP1 which include three zinc finger-related 
domains (DNA binding domains), one BRCA1 C-terminus domain (auto-modification domain), one tryptophan-/glycine-/arginine-rich domain 
(WGR domain), and one catalytic domain. The catalytic domain of PARP1 consists of two subdomains: one helical domain (HD) and one 
ADP-ribosyltransferase catalytic domain (ART). b Three-dimensional structure of PARP1 molecule. The above structures were presented by PyMOL 
Molecular Graphics System (PDB ID: 5XST [104]). c The chemistry structural formula of PARPis. d The function of PARP and synthetic lethal interaction 
between PARP and HR. Once DNA SSB emerges, PARP1 could recognizes and interacts with SSB by its zinc finger-related domains. After PARP1 
binding to damaged DNA chains, the auto-inhibitory function of HD is abrogated and the catalytic function of ART is activated. This catalytic 
activity leads to the generation of PAR chains on a series of target proteins which promotes the recruitment of DNA repair effectors and chromatin 
remodeling. Then the auto-PARylation on PARP1 protein causes the dissociation of PARP1 from DNA chains and restores the auto-inhibitory status 
of PARP1. For HR deficient tumor cells, active SSB repair pathways is the vital prerequisites for cell survival. After PARPi treatment, NHEJ is used to 
repair PARPi-introduced DSB. However, NHEJ is a rapid as well as error-prone repair pathway by direct ligation. Due to the low-fidelity, NHEJ often 
produces plenty of chromosomal rearrangements and these unsustainable DNA damages are harmful to cell viability

(See figure on next page.)
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FDA‑approved PARP inhibitors
Olaparib
Olaparib capsule (Lynparza, AstraZeneca) is the first 
PARPi entering clinical practice. Olaparib was origi-
nally approved for deleterious or suspected deleterious 
gBRCAm ovarian cancer patients who had undergone 
three or more prior lines chemotherapy [41]. Later 
in 2017, based on two randomized controlled trials 
(NCT01874353 and NCT00753545), Food and Drug 
Administration (FDA) approved Olaparib tablet for the 
maintenance treatment of recurrent epithelial ovarian, 
fallopian tube, or primary peritoneal cancer patients 
who were sensitive to platinum-based chemotherapy 
[42, 43]. Besides, the data of NCT01874353 supported 
the approval of Olaparib tablet for the maintenance 
treatment of gBRCAm or somatic BRCA-mutated (sBR-
CAm) recurrent epithelial ovarian, fallopian tube, or 
primary peritoneal cancer patients [42]. Then in 2018, 
propelled by the encouraging results of the clinical trial 
NCT02000622, Olaparib tablet was approved by FDA 
for the treatment of human epidermal growth factor 
receptor-2 (Her-2) negative, metastatic breast cancer 
patients who had been treated with chemotherapy [44]. 
Then in 2019, the results of a phase 3 trial (POLO study) 
showed that maintenance Olaparib treatment effectively 
prolonged the survival time of gBRCAm metastatic 
prostate cancer patients [45]. In this study, totally 154 
patients were enrolled and the primary end-point was 
progression-free survival (PFS) [45]. Olaparib-treated 
patients had better outcomes than placebo-treated 
patients (the median PFS of Olaparib group vs. placebo 
group = 7.4 months vs. 3.8 months; Hazard Ration = 0.53; 
95%CI 0.35 to 0.82; p = 0.004) [45].

Rucaparib
The efficacy of Rucaparib (Rubraca, Clovis Oncology 
Inc.) was investigated in a randomized and double-blind 
phase 3 clinical trial NCT01968213. This trial enrolled 
564 recurrent epithelial ovarian, fallopian tube, or pri-
mary peritoneal cancer patients who had received two 
or more prior lines of platinum-based chemotherapy 
and were sensitive to the platinum-based chemotherapy 
[46]. The treatment effect was evaluated by PFS [46]. The 
results indicated that Rucaparib could effectively improve 
the prognosis of BRCA1/2 mutated patients (Rucaparib 
group vs. placebo group: Hazard Ratio = 0.23, 95% CI 
0.16–0.34, p < 0.0001) [46]. Besides, analysis in all popula-
tion showed that patients received Rucaparib therapy had 
a great advantage in PFS over placebo-treated patients: 
Hazard Ratio = 0.36, 95% CI = 0.30–0.45; p < 0.0001) [46]. 
Based on the outcome of NCT01968213, FDA approved 
the maintenance treatment of Rucaparib for recurrent 
ovarian, fallopian tube, or primary peritoneal cancer 

patients who were sensitive to platinum-based chemo-
therapy in 2018 [47].

Niraparib
Niraparib is developed by Tesaro which is also known 
as ZEJULA. In a randomized and double-blind phase 3 
trial (NCT01847274), 553 platinum sensitive, recurrent 
ovarian cancer patients were involved [48]. In gBRCAm 
cohort, patients receiving Niraparib had prolonged PFS 
than patients treated by placebo (median PFS of Nira-
parib group vs. placebo group = 21.0 vs. 5.5  months, 
Hazard Ratio = 0.27; 95% CI 0.17–0.41, p < 0.001) [48]. 
In non-gBRCAm cohort, Niraparib group also exhib-
ited better prognosis than placebo group (median PFS of 
Niraparib group vs. placebo group = 9.3 vs. 3.9  months, 
Hazard Ratio = 0.45, 95% CI 0.34–0.61, p < 0.001) [48]. 
This promising results of NCT01847274 directly pro-
pelled the approval of Niraparib for the maintenance 
treatment of platinum sensitive, recurrent epithelial ovar-
ian, fallopian tube, or primary peritoneal cancer patients 
[49].

Talazoparib
Among all available PARPis up to now, Talazoparib 
(TALZENNA, Pfizer Inc.) possesses the most PARP1 
trapping and cytotoxic potency. The anti-tumor effect 
of Talazoparib has been verified in gBRCAm advanced 
breast cancer patients [50]. This randomized and open-
label phase 3 clinical trial (NCT01945775) recruited 431 
patients [50]. Compared with standard therapy group, 
Talazoparib group had significantly improved outcomes 
(median PFS of Talazoparib group vs. standard therapy 
group = 8.6 vs. 5.6 months, Hazard Ratio = 0.54, 95% CI 
0.41–0.71, p < 0.001) and better response rate (objective 
response rate of Talazoparib group vs. standard therapy 
group = 62.6% vs. 27.2%; Odds Ratio = 5.0; 95% CI 2.9–
8.8, p < 0.001) [50]. Based on the data of NCT01945775, 
FDA approved Talazoparib for deleterious or suspected 
deleterious gBRCAm Her2‑negative, advanced breast 
cancer patients [51].

PARP inhibitors in clinical trials
Until now, Veliparib has not been approved by FDA for 
cancer treatment. Multiple clinical studies indicated 
Veliparib-based combination therapy might be a promis-
ing strategy for triple negative breast cancer, ovarian can-
cer, pancreas ductal adenocarcinoma, myeloid leukemia, 
as well as hepatocellular carcinoma patients [52–56]. In 
a randomized, multicenter, phase 2 trial NCT01042379, 
total 116 stage II or III triple negative breast can-
cer patients received Veliparib combined Carboplatin 
therapy or Carboplatin monotherapy [57]. The results 
of NCT01042379 showed Veliparib plus Carboplatin 
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group had a higher response rate than Carboplatin group 
(pathological complete response rate of Veliparib plus 
Carboplatin group vs. Carboplatin group: 51% vs. 26%) 
[57]. However, in a recent phase 3 trial NCT02032277 
recruiting 634 stage II or III triple negative breast can-
cer patients, Veliparib plus Paclitaxel plus Carboplatin 
treated patients did not exhibit higher response rate than 
patients receiving Paclitaxel plus Carboplatin therapy 
(pathological complete response rate of Veliparib plus 
Paclitaxel plus Carboplatin group vs. Paclitaxel plus Car-
boplatin group: 53% vs. 58%, p = 0.36) [58]. Therefore, 
further investigation is needed to confirm the optimal 
scheme and the population which might benefit from 
Veliparib-based combination therapy.

Application of PARPi beyond BRCA1/2 mutated 
cancer
HR deficient cancer
BRCAness tumors are not driven by gBRCAm but share 
certain phenotypes. In general, BRCAness tumors har-
bor non-gBRCAm HR deficiency including gBRCAm 
and hypermethylation of BRCA1/2 promotor [59, 60]. 
Besides, some other core components of HR such as 
RAD51 recombinase (RAD51), ATM serine/threonine 
kinase (ATM), ATR serine/threonine kinase (ATR), part-
ner and localizer of BRCA2 (PALB2), and Fanconi ane-
mia gene family are determinants of intact HR as well 
[40, 61]. Just like gBRCAm cancer cells, cancer cells with 
non-gBRCAm HR deficiency exhibited the sensitivity to 
platinum-based drugs and PARPis [23, 62]. However, the 
identification of HR deficiency in cancer cells is a com-
plex work. Thus, it is necessary to find a measurable sur-
rogate to evaluate HR status. It has been verified that 
gBRCAm patients often have a specific pattern of muta-
tions including large scale chromosomal rearrangements 
which might reflect impaired HR potency and hyperac-
tive NHEJ pathway [59]. Some biomarkers such as loss 
of heterozygosity (LOH) closely relate with chromo-
somal rearrangements and predict favorable therapeutic 
response after PARPi treatment [63].

Cancer with high replication stress
Even though the synergistic effect caused by PARPi and 
HR deficiency has been confirmed in previous stud-
ies, some HR proficient cancers such as small cell lung 
cancer (SCLC) showed relatively high vulnerability to 
PARPi [15]. This sensitivity is attributed to high replica-
tion stress driven by the loss of some tumor suppressor 
genes and the amplification of oncogenes [15]. SCLC 
possesses a unique gene expression profile which is char-
acterized as the ubiquitous loss of TP53 and RB1 [64]. 
As well-studied tumor suppressor genes, TP53 and RB1 
play a vital role in cell cycle checkpoint and DNA damage 

response [64]. Besides, the loss of RB1 abrogates the 
E2F1-mediated transcription inhibition of multiple DNA 
damage response genes including PARP1 [65]. Apart 
from the loss of TP53 and RB1, SCLC often harbors 
MYC amplification which further increases high repli-
cation stress [15]. Compared with non-small cell lung 
cancer (NSCLC), SCLC is more dependent on hyperac-
tive DNA damage response and more sensitive to PARPi 
treatment [15].

PARPi‑involved combination therapy
In multiple PARPi-involved combination strategies, 
PARPi acts as sensitizers for chemotherapies, immuno-
therapies, and targeted therapies by limiting DNA dam-
age repair. In addition, some targeted treatments such as 
MEK inhibitors could enhance the sensitivity of tumor 
cells and relieve the resistance to PARPi [66].

PARPi plus genotoxic chemotherapy
Hyperactive PARP related DNA damage repair tends 
to result in the resistance to genotoxic chemotherapy 
such as Temozolomide (TMZ) and platinum compound 
(Table 2) [67]. Previous studies indicated that additional 
PARP inhibitor significantly decreased the risk of TMZ 
resistance and enhanced TMZ efficacy in mouse model 
[68–71]. These phenomena could be explained by mecha-
nism that PARP-related DNA damage repair pathway 
especially BER could remove adducts from DNA chains 
and eliminate genotoxic chemotherapy-introduced DNA 
lesions [67].

PARPi plus TMZ
As a widely adopted DNA-alkylating agent, TMZ could 
spontaneously hydrolyze and release reactive methyldi-
azonium ion which eventually leads to the production of 
DNA adducts [72]. PARPi is regard as an effective sensi-
tizer for TMZ by counteracting the PARP-BER-mediated 
detoxification [73]. Hussain et al. conducted a single-arm 
phase 1 trial (NCT01085422) to evaluate the safety and 
efficacy of low dose Veliparib plus TMZ combination 
therapy in metastatic castration-resistant prostate cancer 
patients [74]. The results showed this combination ther-
apy was well-tolerant while its anti-cancer effect was rel-
ative modest (Just 3 out of 25 patients showed confirmed 
PSA response) [74]. Nevertheless, more clinical trials 
exploring the effect of PARPi and TMZ are ongoing [75].

PARPi plus platinum
Similar to TMZ, platinum compounds could also gener-
ate adducts to DNA chains which leads to the formation 
of stable intra-strand cross-links [76]. As a result, the rep-
lication and transcription processes in treated cells are 
severely interfered. Platinum resistance is closely related 
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Table 2  Clinical trials about PARP inhibitor plus chemotherapy

Combination therapy Trial Cancer Phase Status

Rucaparib and Cisplatin NCT01074970 Breast cancer 2 Active, not recruiting

Olaparib, Paclitaxel, and Carboplatin NCT03150576 Breast cancer 2/3 Recruiting

PF-01367338 and Carboplatin NCT01009190 Advanced solid tumors 1 Completed

BSI-201 and Irinotecan NCT01173497 Breast cancer 2 Completed

BSI-201, Carboplatin, and Gemcitabine NCT00813956 Breast cancer 2 Completed

Veliparib and Topotecan Hydrochloride NCT01012817 Multiple solid tumors 1/2 Active, not recruiting

Olaparib, Cediranib, and Platinum-based Chemotherapy NCT02855697 Ovarian cancer 1 Recruiting

Olaparib and Platinum agents NCT02489006 Ovarian cancer 2 Recruiting

Iniparib, Carboplatin, and Gemcitabine NCT00540358 Breast cancer 2 Completed

AZD2281 and Liposomal Doxorubicin NCT00628251 Ovarian cancer 2 Completed

Olaparib, Temozolomide, and Irinotecan NCT01858168 Ewing’s sarcoma 1 Recruiting

BMN-673, Temozolomide, and Irinotecan Hydrochloride NCT02049593 Advanced solid tumors 1 Active, not recruiting

AZD2281 and Topotecan NCT00516438 Advanced solid tumors 1 Completed

AZD2281 and Gemcitabine NCT00515866 Pancreatic cancer 1 Completed

AZD2281 and Dacarbazine NCT00516802 Melanoma 1 Completed

Veliparib, VX-970, and Cisplatin NCT02723864 Advanced solid tumors 1 Recruiting

Niraparib and Temozolomide NCT03830918 Small cell lung cancer 1/2 Recruiting

Rucaparib and Platinum-based Chemotherapy NCT02855944 Ovarian cancer 3 Recruiting

BGB-290 and Temozolomide NCT03914742 Gliomas 1/2 Not yet recruiting

AZD2281, Carboplatin, and Paclitaxel NCT00516724 Multiple solid tumors 1 Active, not recruiting

Talazoparib, Irinotecan, and Temozolomide NCT02392793 Childhood solid tumors 1 Active, not recruiting

AZD2281, Cisplatin, and Gemcitabine NCT00678132 Solid tumor cancers 1 Completed

Talazoparib and Temozolomide NCT03672773 Small cell lung cancer 2 Recruiting

Veliparib and Temozolomide NCT01139970 Acute leukemia 1 Active, not recruiting

Veliparib and Doxorubicin NCT01145430 Ovarian cancer 1 Completed

Talazoparib and Decitabine NCT02878785 Acute leukemia 1/2 Recruiting

Olaparib and Temozolomide NCT03880019 Uterine leiomyosarcoma 2 Not yet recruiting

BGB-290 and Temozolomide NCT03749187 Gliomas 1 Recruiting

Veliparib, Fluorouracil, and Irinotecan Hydrochloride NCT02890355 Pancreatic cancer 2 Active, not recruiting

Olaparib and Temozolomide NCT03212742 Gliomas 1/2 Recruiting

ABT-888 and Topotecan Hydrochloride NCT00553189 Solid tumors and lymphomas 1 Completed

Olaparib and Temozolomide NCT01390571 Glioblastoma 1 Completed

Iniparib, Gemcitabine, and Cisplatin NCT01086254 Non-small cell lung cancer 2 Completed

Rucaparib, Docetaxel, and Carboplatin NCT03442556 Prostate cancer 2 Recruiting

Veliparib, Carboplatin, and Paclitaxel NCT00535119 Advanced solid cancer 1 Completed

Veliparib, Carboplatin, Paclitaxel, and Pemetrexed NCT02944396 Non-small cell lung cancer 1/2 Active, not recruiting

Veliparib and Cyclophosphamide NCT01351909 Breast cancer 1 Active, not recruiting

ABT-888 and Temozolomide NCT01009788 Breast cancer 2 Active, not recruiting

BSI-201, Gemcitabine, and Carboplatin NCT01045304 Breast cancer 2 Completed

Veliparib and Temozolomide NCT03581292 Glioma 2 Recruiting

BSI-201, Gemcitabine, and Carboplatin NCT01213381 Advanced solid tumors 1 Completed

Olaparib, Paclitaxel, Topotecan Hydrochloride, and 
Doxorubicin

NCT02502266 Ovarian cancer 2/3 Recruiting

Olaparib and Paclitaxel NCT02789332 Breast Cancer 2 Recruiting

Veliparib, Carboplatin, Paclitaxel, and FOLFIRI NCT02033551 Solid Tumors 1 Completed

Veliparib, Carboplatin, Cisplatin, Fluorouracil, Hydroxyu-
rea, and Paclitaxel

NCT01711541 Head and neck cancer 1/2 Active, not recruiting

Veliparib, Gemcitabine, and Carboplatin NCT02860819 Testicular germ cell cancer 2 Recruiting

Veliparib, Carboplatin, and Paclitaxel NCT02264990 Non-small cell lung cancer 3 Active, not recruiting

Veliparib and Carboplatin NCT01149083 Breast cancer 2 Active, not recruiting
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with DNA damage repair and could be overcome by 
PARPi [77]. In preclinical experiment, Olaparib and Veli-
parib remarkably potentiated cisplatin-induced cytotox-
icity [78]. Later, a phase 2 study (NCT01081951) assessed 
the efficacy of the combination therapy of Olaparib plus 
platinum-based chemotherapy in platinum-sensitive, 
recurrent ovarian cancer patients [79, 80]. The results 
demonstrated that patients receiving Olaparib plus plati-
num-based chemotherapy had markedly better outcomes 
than chemotherapy treated patients (median overall 
survival of Olaparib plus platinum-based chemotherapy 
group vs. chemotherapy group: 12.2 vs 9.6 months, Haz-
ard Ratio = 0.51, 95% CI 0.34–0.77, p = 0.0012) [79]. 
In 2018, Loibl et al. reported the results of phase 3 trial 
(NCT02032277) which evaluated the efficacy of Veliparib 
plus carboplatin plus paclitaxel combination therapy 
in triple-negative breast cancer patients [58]. Patients 
undergoing concurrent Veliparib plus carboplatin plus 
paclitaxel had a significantly increased response rate than 
paclitaxel-treated patients (53% vs. 31%, p < 0.0001) [58].

PARPi plus immune checkpoint inhibitor
As the crucial co-inhibitory molecules regulating 
immune activation and tolerance, programmed cell 
death-1 (PD-1) and cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4) induce dephosphorylation via 
intracellular immunoreceptor tyrosine-based inhibi-
tory motif (ITIM) [81–83]. T cell receptor (TCR) medi-
ated tyrosine phosphorylation and T cell activation 
are undermined [84]. In tumor microenvironment, 
the expression of PD-L1 is usually upregulated which 
increases the ratio of exhausted T cells and interferes 
robust immune surveillance [85]. Immune checkpoint 
inhibitors (ICI) restore T cell from exhausted status and 

stimulate anti-cancer immune response [86]. However, 
the clinical application of ICI is limited by low response 
rate which is related with tumor mutation burden and 
the status of tumor infiltrating lymphocytes (TILs) [87, 
88].

PARPi therapy has a substantial influence on systemic 
immune response [89]. On the one hand, PARPi intro-
duces large scale chromosome recombination which 
might generate quantities of neoantigen and increase 
the immunogenicity of cancers [40]. On the other 
hand, PARPi-induced DSB could be detected by cyto-
solic DNA sensor and activates the downstream cyclic 
GMP-AMP synthase (cGAS)-stimulator of interferon 
genes (STING)-type-I interferon (IFN) pathway [90]. 
Type I IFN is a versatile molecule which promotes the 
cross-presentation of dendritic cell (DC), enhances the 
trafficking and migration of T cells, as well as induces 
the secretion of Th1-skewing cytokines [91, 92]. Com-
pared with low level inflammation in baseline, PARPi 
treatment leads to catastrophic DNA damage and 
acute inflammation [89]. This PARPi-introduced trans-
formation of microenvironment facilitates immune 
priming and activation [89]. In mouse model bearing 
SCLC, combination therapy of Olaparib and anti-PD-
L1 showed more potent anti-cancer effect than mono-
therapy and induced complete tumor regression in all 
treated mice [90]. Immune profiling of resected tumors 
indicated that the combination therapy significantly 
elevated the abundance of tumor infiltrating CD3+ T 
cells and CD8+ cytotoxic T cells [90]. Moreover, the 
synergistic effect between PARPi and ICI was con-
firmed in multiple mice cancer models including breast 
cancer, ovarian carcinoma, and skin tumor [93, 94]. 
Accumulating evidence demonstrated that PARPi could 

The details of the table are obtained from https​://www.clini​caltr​ials.gov/

Table 2  (continued)

Combination therapy Trial Cancer Phase Status

Veliparib and Mitomycin C NCT01017640 Solid tumors 1 Completed

Veliparib, Paclitaxel, and Cisplatin NCT01281852 Cervical cancer 1 Completed

Veliparib, Paclitaxel, Carboplatin, and Bevacizumab, NCT00989651 Ovarian cancer 1 Active, not recruiting

ABT-888 and Temozolomide NCT00994071 Nervous system tumor 1 Completed

Veliparib and Cisplatin NCT02595905 Breast cancer 2 Recruiting

Veliparib, Paclitaxel, and Carboplatin NCT01366144 Solid tumors 1 Suspended

Veliparib, Gemcitabine Hydrochloride, and Cisplatin NCT01585805 Pancreatic cancer 2 Active, not recruiting

Veliparib, Cyclophosphamide, and Doxorubicin Hydro-
chloride

NCT00740805 Solid tumors or non-hodgkin lymphoma 1 Active, not recruiting

Veliparib, Topotecan Hydrochloride, and Carboplatin NCT00588991 Acute leukemia, high-risk myelodysplasia, 
and myeloproliferative disorders

1 Active, not recruiting

Veliparib, Bendamustine Hydrochloride, and Rituximab NCT01326702 Lymphoma, multiple myeloma, solid tumors 1/2 Completed

Veliparib, Cisplatin, and Vinorelbine Ditartrate NCT01104259 Breast cancer 1 Completed

https://www.clinicaltrials.gov/
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promote anti-cancer immune response while anti-
PD-1/PD-L1 could neutralize PARPi-induced PD-L1 
upregulation [89].

In 2018, Karzai et al. reported the results of phase 2 
clinical trial NCT02484404. 17 metastatic castration-
resistant prostate cancer patients were enrolled into 
this study and received Olaparib plus Durvalumab 
treatment [95]. The results showed that the toxic-
ity of combination therapy was acceptable (grade 3/4 
adverse event occurred in 2/17 patients) and the effi-
cacy of combination therapy was satisfactory especially 
in DNA damage repair deficient patients (median PFS: 
16.1 months, 95% CI 7.8–18.1 months) [95]. The efficacy 
of combination scheme of Olaparib plus Durvalumab 
was also evaluated in relapsed SCLC patients [96]. The 
results of SCLC cohort of NCT02484404 showed that 
the response rate of overall SCLC patients was relative 
low (Ration of patients with confirmed responses or 
prolonged stable disease: 21.1%; 95% CI 6.1–45.6%), but 
all patients with tumors classified as inflamed pheno-
type exhibited positive therapeutic response [96].

PARPi plus targeted therapy
Acquired resistance to PARPi is an important obstacle 
which has not been well resolved. Factors such as sec-
ondary reversion BRCA1/2 mutation, loss of PAPR1, 
as well as restoration of HR are related to PARPi resist-
ance. Oncogene-related signaling pathways such as 
androgen receptor (AR), mitogen-activated protein 
kinase (MEK), BET bromodomain (BRD4) pathways 
could directly drive the expression of HR related pro-
teins and induce PARPi resistance [15].

PARPi plus AR inhibitor
Asim et  al. found that intact AR signaling was indis-
pensable to maintain the expression and activity of 
HR related genes in prostate cancer cells [97]. After 
androgen-deprivation therapy, the activity of HR was 
impaired and prostate cancer cell was highly dependent 
on PARP-BER pathway to repair DNA damages [97]. 
This artificially induced BRCAness phenotype endows 
the sensitivity to PARPi treatment in prostate can-
cer cells [98]. In 2018, a phase 2 trial (NCT01972217) 
confirmed the efficacy of double blockade of AR and 
PARP in metastatic, castration resistant prostate can-
cer patients [99]. Patients receiving Olaparib plus Abi-
raterone therapy had better survival data than patients 
treated with Abiraterone therapy (median radiographic 
PFS of Olaparib plus Abiraterone group vs. Abiraterone 
group: 3.8 vs. 8.2 months, Hazard ratio = 0.65, 95% CI 
0.44–0.97, p = 0.034) [99].

PARPi plus MEK inhibitor
Sun et  al. found that MEK inhibitor could increase the 
sensitivity to PARPi treatment in RAS mutated ovar-
ian cancer patients by inhibiting HR repair activity and 
elevating PARP expression [100]. Besides, PARPi plus 
MEK inhibitor therapy induced cell apoptosis by acti-
vating BIM signaling [100]. This MEK inhibitor-based 
combination therapy showed potent anti-cancer effect in 
multiple cancer cell lines and mice models not limited to 
BRCA1/2 mutated cells [100]. The results of in vivo and 
in vitro experiments showed that the combination strat-
egy is a promising manner to overcome PARPi resistance 
and increase the response intensity, duration, and spec-
trum of PARPi.

PARPi plus BRD4 inhibitor
BRD4 promotes cancer cell proliferation and survival 
by maintaining and facilitating oncogenic transcription 
[101]. The expression of BRD4 is often upregulated and 
predicts poor prognosis in high-grade serous ovarian car-
cinoma patients [102]. Sun et al. found that BRD4 bound 
to the promoter and enhancer of C-terminal binding pro-
tein interacting protein (CtIP) which was the core com-
ponent of HR pathway [103]. BRD4 inhibitor suppressed 
the expression of CtIP and interfered the recruitment 
of DNA damage repair proteins to DNA lesions [103]. 
In vitro experiments, BRD4 inhibitor treatment restored 
the sensitivity of to PARPi therapy in PARPi-resistant 
cells [103]. In vivo experiment, the combination therapy 
of PARPi and BRD4 inhibitor effectively prolonged tumor 
control in multiple patient-derived tumor xenograft 
models including HR proficient ovarian and breast can-
cers [103].

Conclusion
Synthetic lethal interaction is context-dependent where the 
alteration in first gene leads to the essential role of second 
gene for the viability of cancer cells. Targeting the product 
of second gene could selectively kill malignant cells with 
minor effect on nonmalignant cells. Since synthetic lethal 
effect was proposed nearly 100 years ago, this hypothesis 
has been intensively studied. PARPi is the first agent based 
on synthetic lethal concept. The great success of PARPi in 
preclinical and clinical studies propels the approval of four 
PARPis for BRCA1/2 mutated ovarian and breast can-
cer patients. However, data of some clinical trials showed 
that a broader range of populations might benefit from 
PARPi. Establishing a comprehensive evaluation frame-
work to select candidates for PARPi treatment is necessary. 
Besides, combination therapy with additional ICI, HR tar-
geting agents, as well as chemotherapy have shown syner-
gistic effect even in PARPi resistant models. Accumulating 
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evidence in preclinical studies indicates PARPi is a prom-
ising therapy cross multiple cancer types. We believe the 
future clinical studies would provide more novel perspec-
tives for optimal PARPi-based combination scheme.
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