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Abstract. Fibronectin contains at least two domains 
that support cell adhesion. One is the central cell- 
binding domain that is recognized by a variety of cell 
types, including fibroblasts. The second, originally 
identified by its ability to support melanoma cell adhe- 
sion, is located in the alternatively spliced type III 
connecting segment (IIICS). Using specific adhesive 
ligands and inhibitory probes, we have examined the 
role of each of these domains in fibronectin-mediated 
neurite extension of neurons from chick embryo dorsal 
root and sympathetic ganglia. In studies using ex- 
planted ganglia, both f13, a 75-kD tryptic fragment of 
human plasma fibronectin containing the central cell- 
binding domain, and CSI-IgG, a synthetic peptide-IgG 
conjugate containing the principal cell adhesion site 
from the IIICS, supported neurite outgrowth after ad- 
sorption onto the substrate. The maximal activities of 
f13 and CSI-IgG were 45-55% and 25-30% that of in- 
tact fibronectin, respectively. Co-coating of the sub- 
strate with f13 and CSI-IgG produced an additive stim- 
ulation of neurite outgrowth, the extent of which 

approached that obtained with fibronectin. Similar 
results were obtained with purified neuronal cell prep- 
arations isolated by tryptic dissociation of dorsal root 
ganglia. In complementary studies, blockage of the 
adhesive function of either the central cell-binding do- 
main (with mAb 333, an antiadhesive monoclonal an- 
tibody) or the IIICS (with CS1 peptide), resulted in 
~60 or 30% reduction in fibronectin-mediated neurite 
outgrowth, respectively. When tested in combination, 
the inhibitory activities of mAb 333 and CS1 were ad- 
ditive. From these results, we conclude that neurons 
from the peripheral nervous system can extend neu- 
rites on both the central cell-binding domain and the 
IIICS region of fibronectin, and that these cells are 
therefore the first normal, embryonic cell type shown 
to adhere to the IIICS. These results suggest that 
spatiotemporal fluctuations in the alternative mRNA 
splicing of the IIICS region of fibronectin may be im- 
portant in regulation of cell adhesive events during de- 
velopment of the peripheral nervous system. 

URING development of the embryonic nervous system 
and regeneration of damaged adult nerve fibers, in- 
nervation patterns are established via specific path- 

ways (19, 65). The interaction of neuronal growth cones with 
their environment is considered to be of central importance 
for directing axons to their target sites. Thus, one of the prin- 
cipal goals in neuroscience is elucidation of the mechanisms 
that regulate axonal guidance. 

The substrates encountered by elongating axons are a com- 
plex mixture of neuronal and nonneuronal cell surfaces, ax- 
onal processes, and fibronectin- and laminin-containing ex- 
tracellular matrices, each of which has been implicated in the 
directed elongation of neuronal cells in vivo (7, 12, 32, 55, 

56, 63, 66, 75). During development of the peripheral ner- 
vous system (PNS) ~, neuronal precursor cells originating 
from the neural crest travel long distances through inter- 
somitic spaces that are rich in extracellular matrix (34, 62, 
71, 77). Fibronectin is present along the pathways of neural 
crest cell migration (42, 48, 70) and in dermal and hypoder- 
mal tissues traversed by peripheral neurons (58), and both 
laminin and fibronectin have been found in association with 

1. Abbreviations usedin thispaper: IIICS, type III connecting segment; CS- 
IgG, connecting segment peptide-lgG conjugate; DRG, dorsal root gan- 
glion; PNS, peripheral nervous system; SPDP, succinimidyl 3-(2-pyridyldi- 
thio)-propionate. 
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perineurial basement membranes of peripheral nerves (15, 
50, 51). Neuronal interactions with each of these adhesion 
proteins may therefore be an integral part of the development 
of the PNS. 

In contrast, for development of the central nervous system, 
the interaction of neurons with nonneuronal cell surfaces ap- 
pears to be of particular importance (9, 10, 27, 56). Fibronec- 
tin and laminin are present during development of the cere- 
bral cortex (25, 37, 68), but they appear to be absent from 
the developing forebrain (37, 40, 47). Furthermore, the adult 
brain contains little organized extracellular matrix, and both 
fibronectin and laminin are restricted to meningial cells and 
capillary basement membranes (37, 39, 40, 47, 50, 63). 
Laminin, however, has been reported to be expressed by as- 
trocytes after brain injury and hence may play an active role 
in nerve regeneration (39). 

In vitro assays examining neurite extension of explanted 
neuronal cells or ganglia have been shown to accurately re- 
produce many of the properties of elongating axons in vivo; 
for example, the degree of neurite extension correlates with 
substratum adhesiveness (22, 23, 35, 36), and the patterning 
obtained on substrates of varying adhesiveness mirrors the 
events that are thought to occur when neurons encounter de- 
velopmental cues (22, 23). The spatiotemporal distribution 
of adhesion proteins may therefore be critical for controlling 
the directed migration of neuronal cells and their precursors. 
The ability of fibronectin and laminin to support neurite out- 
growth of various types of explanted ganglia or individual 
neurons in vitro appears, in general, to parallel their tissue 
distribution; both central nervous system- and PNS-derived 
neurons extend neurites on laminin (1, 8, 18, 38, 41, 59, 67, 
74), while fibronectin appears to be primarily a substrate for 
PNS neurons (1, 8, 13, 59, 61; but see reference 2). 

There is currently great interest in identifying the sites on 
fibronectin and laminin that mediate neurite extension in or- 
der to obtain specific probes for evaluating the functional 
role of these molecules in neuronal development. For fibro- 
nectin, the central cell-binding domain containing the adhe- 
sive recognition tetrapeptide Arg-Gly-Asp-Ser (53, 79) has 
been shown to mediate neurite outgrowth of Chick PNS neu- 
rons (60, 61) and human and rat neuroblastoma cells (73, 76); 
while synthetic Arg-Gly-Asp-Ser autoinhibited the fibronec- 
tin-mediated neurite extension of rat pheochromocytoma 
cells (3). In addition, neurite outgrowth-promoting activity 
for chick PNS neurons (60, 61), but not for human and rat 
neuroblastoma cells (73, 76), has been reported to reside in 
proteolytic fragments containing the COOH-terminal hepa- 
rin-binding domain of fibronectin. The precise sequences re- 
quired for the latter activity have not been described, and the 
relative importance of each of these domains of fibronectin 
for neuronal adhesion is currently unclear. Thus, it is also 
possible that further sites in the molecule await identifica- 
tion. For laminin, one major neurite outgrowth-promoting 
domain appears to be located at the end of the long arm of 
the molecule (16, 49, 57, 72). 

In recent studies, we have identified an adhesion site that 
displays cell type specificity for melanoma cells in the alter- 
natively spliced type III connecting segment (IIICS) of hu- 
man plasma fibronectin (29, 30). This region is located close 
to the COOH terminus of fibronectin and lies between the 
COOH-terminal heparin- and fibrin-binding domains. Two 
active sites within this domain were localized to 20-25-mer 

synthetic peptides termed CS1 and CS5 (29, 30). Since mela- 
noma cells are of the same developmental lineage as PNS 
neurons (34), it was conceivable that neuronal cells might 
exhibit the same cell type-specific usage of this site. We have 
therefore examined whether the IIICS region is used by neu- 
rons from chick dorsal root and sympathetic ganglia for neu- 
rite extension, and have assessed quantitatively its contribu- 
tion to the activity of the intact fibronectin molecule. 

Materials and Methods 

Materials 

Fibronectin was purified from freshly frozen, citrated human plasma (Na- 
tional Institutes of Health Blood Bank, Betbesda, MD) by gelatin-affinity 
chromatography using etution with citric acid by a combination of published 
procedures (4, 46, 78). f13, a 75-kD tryptic fragment containing the central 
cell-binding domain of fibronectin, was generated and purified as described 
(26). Fibronectin and f13 were labeled with [3H]sodium borohydride as de- 
scribed previously (4, 69). Murine laminin and rabbit anti-mouse laminin 
IgG were purchased from Collaborative Research, Inc. (Waltham, MA) and 
Bethesda Research Laboratories (Gaithersburg, MD), respectively. The 
derivation, isolation, and characterization of mAb 333 (5) and mAb 304 
(45) have been described previously, mAb 333 binds close to the Arg-Gly- 
Asp-Ser adhesive recognition signal in the central cell-binding domain of 
fibronectin, and is a potent inhibitor of both the direct binding of fibronectin 
to fibroblastic cells and of fibroblastic cell adhesion (5, 29), while mAb 304 
binds specifically to the NH~-terminal heparin/fibrin-binding domain of 
fibronectin (45). The synthesis, purification, and analysis of synthetic pep- 
tides spanning the IIICS region of human fibronectin (connecting segment 
[CS] peptides) were performed as described previously (29). CS peptides 
were synthesized with or without an NH:-terminal cysteine residue for use 
either as inhibitory probes (no cysteine) or as adhesive ligands after conjuga- 
tion to an inert protein carrier (cysteine-containing peptides). For conjuga- 
tion, cysteine-containing CS peptides were covalently coupled to rabbit IgG 
to form CS-IgG conjugates, using the heterobifunctional cross-linker suc- 
cinimidyl 3-(2-pyridyldithio)propionate (SPDP) (30). 

Neurite Outgrowth 

Preparation of Substrata. All neurite outgrowth assays were performed in 
96-well tissue culture plates (Costal Cambridge, MA). For preparation of 
substrates, ligands were diluted into Dulbecco's PBS, and then 100-ktl ali- 
quots were incubated in the wells for 60 min at room temperature. Sites for 
nonspecific cell adhesion were then blocked by incubation with 100 ~t of 
10 mg/ml heat-denatured BSA for 30 min at room temperature (29). For as- 
says examining the effects of co-coating of f13 and CS-IgG conjugates, sub- 
strates were first coated with f13 for 60 min, and then recoated with CS-IgG 
for a further 60 min. The order of addition of f13 and CSI-IgG was necessary 
because of the large difference in protein concentration between the two re- 
agents; simultaneous coating of f13 and CS-IgG or precoating with CS-IgG 
was not possible, presumably because the high IgG concentration prevented 
the binding of f13 to the plastic~ 

Isolation of Ganglia. Chains of sympathetic ganglia and individual dor- 
sal root ganglia (DRG) were dissected from the lumbosacral region of 10-12-d 
chick embryos and transferred to calcium- and magnesium-free HBSS. For 
explant cultures, ganglia were freed from loosely attached connective tis- 
sue, and then in the case of sympathetic chains, the individual ganglia were 
dissected apart. Ganglia were then transferred to tissue culture plates con- 
raining preformed adhesive substrates and were incubated in Ham's FI2 
medium containing 2 mM glutamine, 25 U/ml penicillin, 25 0.g/ml strep- 
tomycin (all from Gibco, Grand Island, NY), and 20 ng/ml 7S-nerve growth 
factor (Collaborative Research, Inc., Waltham, MA; "supplemented Ham's 
F12 medium"). Nerve growth factor was included solely to augment neu- 
ronal survival, and in a control experiment was found to have no detectable 
effect on fibronectin-mediated neurite extension. To test the effects of pep- 
tides or antibodies on neurite outgrowth, these agents were added to the 
wells in a volume of 100 Ixl, and then ganglia were added. All assays were 
performed in a final volume of 200 Ixl. After overnight incubation at 37~ 
ganglia were fixed by addition of 20 txl 25 % glutaraldehyde, and the radius 
of neurite outgrowth measured at four positions per ganglion (each at 90 ~ 
to the others) using a phase-contrast microscope with a calibrated eyepiece. 
The radii of 6-10 ganglia were measured for each experimental point. 
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Preparation of Dissociated Neurons. For experiments involving dis- 
sociated neuronal cells, ganglia were disrupted with forceps, then digested 
at 100 ganglia/ml for 5 rain at 37~ with 0.2-0.25 % trypsin in calcium- and 
magnesium-free HBSS (Gibco). The reaction was stopped by addition of 
supplemented Ham's FI2 medium containing 10% FCS (Gibco), and ganglia 
were then triturated by 10 passages through a fire-polished Pasteur pipette. 
Dissociated cells were collected gently by centrifugation at 100 g for 2 min, 
and were then washed and resuspended in supplemented Ham's F12 medium 
containing 1% FCS. Cell suspensions were first enriched for neuronal cells 
by preptating in 35 mm tissue culture dishes (Costar) for 30 min, and then 
unattached cells were added to tissue culture plates containing precoated 
adhesive substrates. Approximately 5 • 103 neurons were added to each 
well. After incubation for 24 h at 37~ the number of neuronal cells extend- 
ing neurites >1 cell diam was determined for 500 cells per experimental 
point, 

Results 

To obtain quantitative estimates of the contribution of each 
cell-binding domain of fibronectin to the neurite outgrowth- 
promoting activity of the intact molecule, a complementary 
approach was adopted based on promotion of neurite exten- 
sion by defined proteolytic fragments and synthetic peptides, 
and inhibition of fibronectin-mediated neurite outgrowth by 
probes specific for abrogation of each adhesion site. 

Role of the Central Cell-binding Domain in 
Promotion of Neurite Outgrowth by I'~bronectin 
Previous studies examining adhesion of fibroblastic cells 
have demonstrated that large proteolytic fragments of fibro- 
nectin containing the central cell-binding domain generally 
possess similar specific activity to the intact parent molecule 
in in vitro assays (17, 20, 26, 44). This retention of biological 
activity after proteolysis has been quite useful for structure- 
function analyses of fibronectin, since the properties of sin- 
gle functional domains can theoretically be studied in isola- 
tion. A 75-kD tryptic polypeptide, termed f13 according to 
the nomenclature of Hayashi and Yamada (26), is currently 
the smallest fragment reported to contain all of the adhesive 
activity of the central cell-binding domain. Therefore, the 
ability of explanted PNS ganglia to extend stable neurites on 
substrate-adsorbed f13 or fibronectin was compared to assess 
the contribution of the central cell-binding domain to the ac- 
tivity of the intact molecule. 

As previously reported (13, 59-61), both dorsal root and 
sympathetic ganglia extended neurites on fibronectin in a 
time-dependent manner (throughout these studies, both 
types of ganglion yielded essentially the same results, and 
therefore for brevity only experimental data for DRG are 
presented). The rate of outgrowth on fibronection was linear 
for at least 48 h (data not shown). The radius of neurite out- 
growth 24 h after plating was dependent on the amount of 
fibronectin adsorbed onto the substrate; optimal outgrowth 
was obtained at a coating concentration of l0 ~tg/ml, and any 
further increase in adsorbed fibronectin had no further 
stimulatory effect (Fig. 1). The addition of 100 pg/ml an- 
tilaminin IgG to the assay medium had no effect on 
fibronectin-mediated outgrowth, whereas it completely 
blocked neurite extension on a laminin-coated substrate, sug- 
gesting that the activity of fibronectin may not be explained 
by endogenous synthesis of laminin by the neuronal cells 
(data not shown). 

When the neurite outgrowth-promoting activity of f13 was 
compared to that of fibronectin, the intact molecule was ap- 
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Figure 1. Dose dependence of  neurite outgrowth on fibronectin 
(e) and fragment f13 from the central cell-binding domain (o). 
Tissue culture wells were coated with the indicated concentrations 
of adhesion protein, and were then tested for their ability to pro- 
mote neurite outgrowth from DRG. 0.12 ~tM is equivalent to 30 
pg/ml fibronectin or 8.3 pg/ml f13. Bars, SEM. 

proximately twice as active on a molar basis; the dose-re- 
sponse curve for f13 reached a plateau at a level 45-55 % of 
that obtained with fibronectin (Fig. 1). To establish convinc- 
ingly the difference in the response of DRG to fibronectin 
and f13, a further experiment was performed in which tissue 
culture dishes were coated either with 100 pg/ml fibronectin, 
or its molar equivalent of f13. These coating concentrations 
were 10-fold higher than the levels of either fibronectin or f13 
supporting a maximal response in Fig. 1. Even at such high 
levels of adhesion protein, the outgrowth-promoting activity 
of f13 was still only 45 % that of fibronectin (data not shown), 
confirming the existence of a plateau in Fig. 1. As for 
fibronectin, the rate of outgrowth on f13 was also linear with 
time, demonstrating that the results in Fig. 1 were not due 
to a lag in neurite extension on this fragment (data not 
shown). 

To rule out the possibility that the difference in activity be- 
tween fibronectin and f13 might be due to preferential ad- 
sorption of fibronectin onto the substrate, the binding of each 
molecule to the tissue culture plate was examined. Using 
tritiated ligands, 39% of a 3.3-pg/ml solution of f13 bound 
to the substrate after 1 h at room temperature compared to 
35 % for an equimolar 12-pg/ml solution of fibronectin, indi- 
cating that the decreased activity of f13 in the neurite out- 
growth assay was not due to its inability to bind to the sub- 
strate. 

Role of the IIICS in Promotion of Neurite Outgrowth 
by Fibronectin 
Recently, the alternatively spliced IIICS region of human 
fibronectin has been identified as a cell type-specific adhe- 
sion site for melanoma cells (29, 30). By comparing the 
adhesion-promoting activity of overlapping synthetic pep- 
tides that together spanned the entire 120-amino acid IIICS, 
activity was narrowed down to two sequences represented by 
the synthetic peptides CS1 and CS5 (29, 30). Since PNS neu- 
rons are ultimately from the same original developmental 
lineage as melanocytes/melanoma cells (34), we examined 
the role of the IIICS in neurite extension of DRG. 
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Table L Neurite Outgrowth-promoting Activity 
of CS-IgG Conjugates 

Substrate Neurite outgrowth Relative activity 

t~m +_ SEM % 

BSA 12 + 12 - 
IgG 26 + 12 - 
CSI-IgG 169 + 24* 21 
CS2-IgG 38 + 22 1.8 
CS3-IgG 33 + 28 1.0 
CS4-IgG 10 + 6 0 
CS5-1gG 64 + 36 5.7 
CS6-IgG 43 + 27 2.5 
Fibronectin 696 + 54* 100 

Cysteine-containing CS peptides were covalently coupled to rabbit lgG and 
then used to coat tissue culture wells at IgG concentrations of 180- 1,200 p,g/ml 
(coating concentrations were corrected for the number of peptide molecules 
coupled to each molecule of IgG in each conjugate, so that equal numbers of 
peptide molecules were added to each well). Wells were also coated with 1,200 
l.tg/ml unconjugated IgG or 30 I.tg/ml fibronectin as controls. All wells were 
then incubated with heat-denatured BSA to reduce the background level of neu- 
rite extension. BSA indicates uncoated plastic blocked with BSA. The activity 
of each CS-IgG conjugate is also expressed relative to the activity of fibronectin 
after subtraction of the background due to IgG. The sequences of the CS peptides 
are as follows: CSI, DELPQLVTLPHPNLHGPEILDVPST; CS2, PSTVQK- 
TPFVTHPGYDTGNGIQLPG; CS3, LPGTSGQQPSVGQQMIFEEHGFRR; 
CS4, FRRTTPPTTATPIRHRPRPYPPNVGEE; CS5, GEEIQIGHIPREDVD- 
YHLYP; CS6, LYPHGPGLNPNAST. 
* Significantly different from IgG control at P < 0.001 using the Mann- 
Whitney U-test. The activity of CS5-IgG was not significantly different from 
IgG (P = 0.4). 

Each CS peptide was covalently coupled to IgG via an 
NH2-terminal cysteine residue using the heterobifunctional 
cross-linker, SPDP, and the resulting conjugates were tested 
for their ability to promote neurite outgrowth after adsorp- 
tion onto the substrate. As presented in Table I, only CSI-IgG 
(residues 1-25 of the IIICS) was active; CS2-CS6 supported 
only a minimal degree of outgrowth similar to underivatized 
IgG, which was itself similar to BSA-blocked, uncoated plas- 
tic. CS2-CS6 therefore serve as negative controls for the ac- 
tivity of CS1. The inactivity of CS5 contrasts with its ability 
to promote melanoma cell adhesion, but as discussed in de- 
tail below, this probably reflects sequence differences be- 
tween the IIICS in human and chicken fibronectins. The 
outgrowth-promoting activity of the CS1 peptide conjugate 
was dose dependent (Fig. 2) and plateaued at a level 25-30% 
that of intact fibronectin; i.e., approximately half the level 
obtained with f13 (similar results were obtained in six inde- 
pendent experiments). This high level of retention of activity 
in such a short synthetic peptide is perhaps surprising, but 
agrees well with the data obtained in the melanoma cell sys- 
tem, where CS1 was only 2.5-fold less active than fibronectin 
on a molar basis (30). 

Phase-contrast micrographs showing the relative activities 
of fibronectin, f13, and CSI-IgG in the neurite outgrowth as- 
say are shown in Fig. 3. It is notable that, in addition to the 
neurite outgrowth induced by substratum-bound fibronectin, 
f13, and CSI-IgG, migration of nonneuronal cells out from 
the ganglia was also observed on all three substrates. This 
finding suggests that these glial cells are also able to use the 
IIICS region of fibronectin for adhesion and migration. 

Dissociated Neurons 

To test whether single cell preparations of neurons exhibited 
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Figure 2. Dose dependence 
of neurite outgrowth on the 
synthetic peptide conjugate 
CSI-IgG. Wells were coated 
with the indicated concentra- 
tions of CSI-IgG and were 
then tested for their ability to 
promote neurite outgrowth 
from DRG. In this experi- 
ment, the radius of neurite out- 
growth on a substrate coated 
with 20 I.tg/ml fibronectin was 

013 0~.6 019 0.692 + 0.076 mm. Bars, 
CSI-lgG (mg/ml) SEM. 

the same substrate specificity for neurite extension as intact 
ganglia, DRG were dissociated with trypsin, and then the 
ability of purified neuronal cells to extend on various sub- 
strates was tested. As shown in Table II, ~30% of the neu- 
ronal cells extended neurites on intact fibronectin, a result 
in quantitative agreement with previous studies (59, 61). As 
for intact ganglia, both f13 and CSI-IgG supported neurite 
outgrowth, but at a level lower than that of fibronectin (Table 
II). None of the other CS-IgG conjugates were able to sup- 
port neurite extension, demonstrating the specificity of the 
CSI-IgG effect (data not shown). 

In a control experiment, chick embryo fibroblasts were 
found to adhere equally well to f13 and fibronectin, but were 
completely unable to spread on CSI-IgG. As found originally 
in melanoma cells, the recognition of the IIICS region is 
therefore cell type specific, rather than species specific. 

Site-directed Inhibition of Fibronectin-raediated 
Neurite Outgrowth 

Specific inhibitors of the adhesive function of the central 
cell-binding domain and the IIICS region of human fibronec- 
tin were tested for their effects on fibronectin-mediated neu- 
rite extension of DRG. mAb 333, which binds close to the 
Arg-Gly-Asp-Ser sequence in the central cell-binding do- 
main, has been shown previously to completely inhibit the 
adhesion of cell types that use this region of fibronectin, but 
to have no detectable effect on cell types that use the IIICS 
(29). Conversely, the CSI peptide autoinhibits the function 
of the IIICS region without affecting adhesion to the central 
cell-binding domain (30). 

mAb 333 caused a dose-dependent inhibition of the 
fibronectin-mediated neurite outgrowth of DRG that plateaued 
at '~60% (Fig. 4 A). In a parallel experiment, 20 Ixg/ml of 
mAb 333 was found to be sufficient to completely block the 
spreading of baby hamster kidney (BHK) fibroblasts on 
fibronectin, whereas a 25-fold higher concentration of mAb 
333 still produced only 60% inhibition of DRG neurite out- 
growth. As expected, however, the neurite outgrowth of 
DRG on substrate-bound f13 was almost completely sensitive 
to inhibition by mAb 333, while extension on CSI-IgG was 
not significantly affected (Table III). These results indicate 
that "~60% of the outgrowth-promoting activity of fibronec- 
tin is contributed by the central cell-binding domain. 

To specifically abrogate the function of the IIICS region, 
CS1 and the other five CS peptides were tested for their abil- 
ity to inhibit fibronectin-mediated neurite outgrowth. 25- 
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Figure 3. Phase-contrast microscopy of the neurite outgrowth of DRG on substrates coated with either 20 Ixg/ml fibronectin (A), 5.5 
~tg/ml f13 (B), or 500 Ilg/ml CSI-IgG (C), or on BSA-blocked, uncoated plastic (D). Note the presence of migrating glial cells in A-C. 
Bar, 100 ~tm. 

30% inhibition of neurite extension was observed in five in- 
dependent experiments with CS1, whereas the degree of out- 
growth observed in the presence of CS2-CS6 was generally 
+ 10% of the fibronectin control (Table IV). Inhibition by 
CS1 was dose dependent and plateaued at •30% (Fig. 4 B). 
Further inhibition was observed at high concentrations of 
CS1, but this was apparently due to nonspecific toxicity since 
other CS peptides were also inhibitory and the inhibition was 
not reversible (dab not shown). Based on the data in Fig. 4, 
the relative contribution of the central cell-binding domain 
and the IIICS to the activity of intact fibronectin appears to 
be ~2:1. 

Complemen tation Analyses 

In an attempt to reconstitute the activity of intact fibronectin, 
both the additivity of neurite outgrowth-promoting activity 
of f13 and CSI-IgG and, in a complementary assay, the in- 
hibitory activity of mAb 333 in combination with CS1 on 
fibronectin-mediated neurite outgrowth were examined. 

The stimulatory activities of CSI-IgG and f13 were additive 
when both were co-coated onto the substrate; an activity 
~75 % that of intact fibronectin was obtained (Fig. 5). As de- 
scribed below, the difference in activity between fibronectin 
and co-coated fI3/CSI-IgG may be explained either by the in- 
complete retention of biological activity in the CS1 peptide, 
or alternatively by the existence of a third contributory site 
to the activity of fibronectin. Similar results to those in Fig. 
5 were obtained with dissociated neuronal cells; when co- 
coated onto the substratum, the neurite outgrowth-promot- 
ing activity of f13 and CSI-IgG was additive, and in this ex- 
periment their combined activity approached the level ob- 
t ined  with intact fibronectin (Table II). 

Consistent with the results in Fig. 1, the specific inhibition 
of the function of the central cell-binding domain and the 
IIICS with either mAb 333 or CS1 peptide was also additive 
(Fig. 6, see shaded bars). Coincubation ofmAb 333 and CS1 
resulted in 80% inhibition of fibronectin-mediated neurite 
outgrowth. Controls in which mAb 333 was coincubated 
with an inactive peptide (CS4) or CS1 was coincubated with 
a control mAb directed against the NH2-terminal domain of 
fibronectin (mAb 304) showed no further inhibitory activity 
above that obtained with mAb 333 or CS1 alone (Fig. 6). 
These results are consistent with the hypothesis that the cen- 
tral cell-binding domain and the IIICS function indepen- 
dently within fibronectin and that both domains are impor- 
tant for full activity of the parent molecule. 

Table 1I. Additivity of the Neurite Outgrowth-promoting 
Activity off13 and CSl-lgG for Purified Neuronal Cells 

Substrate Neurons with neurites 

% J: SEM 

BSA 2.3 + 0.3 
f13 12.7 + 0.9 

CSI- IgG 15.3 __+ 1.6 

f13 + CSI- IgG 31.0 ___ 2.8 

Fibronectin 32.7 + 2.7 

Neuronal cells were isolated from DRG by trypsinization and preplating, and 
then incubated on substrates coated with either 5 Ixg/ml fibronectin, 1.4 Ixg/ml 
f13, 500 v,g/ml CSI-IgG, or co-coated with f13 and CSI-IgG as described in 
Materials and Methods. After 24 h, the percentage of neuronal cells extending 
neurites >1 cell diam was determined by counting 500 cells/well. BSA indi- 
cates an uncoated plastic substrate blocked with heat-denatured BSA. 
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Figure 4. Effect of mAb 333 and CS1 peptide on fibronectin- 
mediated neurite outgrowth. Tissue culture wells were coated with 
20 ~tg/ml fibronectin and blocked with heat-denatured BSA, and 
then the effects of coincubation with the indicated concentrations 
of mAb 333 (A) or CSI (B) on the neurite extension of DRG were 
examined. The dashed line denotes the background level of neu- 
rite outgrowth on uncoated plastic blocked with heat-denatured 
BSA. Bars, SE. 

Discussion 

Our major conclusions from these studies are as follows: (a) 
neurons from the PNS can extend neurites on both the central 
cell-binding domain and the IIICS region of fibronectin; (b) 
the relative contribution of the central cell-binding domain 
to the activity of whole fibronectin is approximately twice 
that of the IIICS; (c) the active site within the IIICS has been 
narrowed down to a defined amino acid sequence represented 
by the CS1 peptide; and (d) PNS neurons are the first normal 
cell type shown to recognize the IIICS. 

The 75-kD tryptic fragment, f13, and the synthetic peptide- 
protein conjugate, CSI-IgG, have been characterized previ- 
ously as adhesive ligands that contain the principal active 
sites from the central cell-binding domain and the IIICS re- 
gion of human fibronectin, respectively (26, 30). Dose-re- 
sponse analyses of the neurite outgrowth-promoting activity 

Table III. Substrate Specificity of the Inhibitory Activity 
of mAb 333 on Neurite Outgrowth 

Substrate Inhibitor Neurite outgrowth Inhibition 

# m  +_ SEM % 

BSA - 26 + 12 - 

F ib ronec t in  - 722 + 191 - 

Fibronectin mAb 333 240 + 70 69 

f13 - 405 + 47 - 
f13 mAb 333 16 + 13 100 

CSI-IgG - 236 + 32 - 
CSI-IgG mAb 333 212 + 46 11 

Wells were coated with either 20 p.g/ml fibronectin, 5.5 I.tg/ml f13, or 500 
~tg/ml CSI-IgG, and then the effect of 300 Ixg/ml mAb 333 on the neurite out- 
growth of DRG was examined for each ligand. BSA indicates an uncoated plas- 
tic substrate blocked with heat-denatured BSA. The percent inhibition by mAb 
333 was calculated after subtraction of the background level of neurite exten- 
sion on BSA from each experimental value. 

Table IV. Inhibition of Neurite Outgrowth on 
Fibronectin by CS Peptides 

Inhibitor Neurite outgrowth Inhibition 

~m +_ SEM % 

None  411 + 75 - 

CSI  281 + 67* 32 

CS2 398 + 72 3.2 

CS3 364 ___ 84 11 

CS4 463 + 111 (13) 

CS5 373 + 59 9 
CS6 418 + 87 (2) 

Tissue culture wells were coated with 20 lig/ml fibronectin and blocked with 
heat-denatured BSA, and then the effects of 1 mg/ml oLeach CS peptide on the 
neurite outgrowth of DRG was examined. The radius of neurite outgrowth on 
uncoated plastic blocked with heat-denatured BSA was 2 + 2 p.m. This value 
was subtracted from all experimental points before calculation of percent inhi- 
bition. 
* Significant at P = 0.1 using the Mann-Whitney U-test. 

of both f13 and CSI-IgG were carried out to evaluate the rela- 
tive contribution of each region to the activity of whole 
fibronectin. These studies indicated that the maximal extent 
of outgrowth on f13 was 45-55 % that of fibronectin, while 
CSI-IgG was 25-30% as active as the parent molecule. For 
f13, the difference in activity could not be attributed either 
to a lag in the extension of neurites or to defective binding 
of the polypeptide to plastic. For CSI-IgG, neurite out- 
growth-promoting activity was highly specific, since five 
other control peptides taken from the IIICS were inactive. 

In complementary studies, the inhibitory effects of probes 
specific for inhibition of the function of each adhesive do- 
main were examined. Abrogation of the function of the cen- 
tral cell-binding domain with mAb 333 resulted in a 60% de- 
crease in neurite outgrowth on fibronectin, while blockage 
of the function of the IIICS with CS1 inhibited the activity 
of fibronectin by 30%. In each case, a plateau of  inhibitory 
activity was obtained, suggesting that the observed levels of 
inhibition reflected the contribution of each domain to the ac- 
tivity of whole fibronectin. Taken together, these results indi- 
cate that both cell-binding regions of fibronectin are recog- 
nized by neurons from the PNS, and that each can function 
independently to stimulate neurite extension. 
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As reported previously for BI6-F10 murine melanoma 
cells (30), the CS1 peptide was the principal active site in the 
IIICS region for neurite extension. In contrast to melanoma 
cells, however, neither dorsal root nor sympathetic ganglia 
were able to extend neurites onto the CS5-IgG conjugate. Al- 
though less active than CS1, the CS5 peptide possessed 
significant adhesive activity for melanoma cells (30). The 
active site within the CS5 peptide appeared to be the tetra- 
peptide Arg-Glu-Asp-Val (29). The apparent discrepancy in 
the activity of CS5 for these two cell types may be explained 
by differences in the amino acid sequence of the IIICS region 
between chicken and human fibronectins. Recent sequencing 
of genomic DNA clones for chicken fibronectin has shown 
that the Arg-Glu-Asp-Val motif is completely absent from the 
chicken fibronectin gene (48a), suggesting that in the chicken 
there may be only one active site in the IIICS (equivalent 
to CS1). 

A second difference between the adhesive activity of neu- 
rons and melanoma cells is their relative usage of the central 
cell-binding domain and the IIICS. For B16-F10 melanoma 
cells, ~90-95 % of the activity of whole fibronectin is con- 
tained within the IIICS, while for DRG this figure is 
~25-30%. This difference may reflect the relative numbers 
of cell surface receptors for each site on the two cell types 
and suggests that the use of the different adhesion sites in 
fibronectin may be regulated at the receptor level. At present, 
the identity of the receptor for the IIICS is unknown, but a 
recently characterized 140-kD complex appears to function 
as the receptor for the central cell-binding domain (6, 28, 
54). It is notable that antiadhesive mAbs (CSAT and JG22) 
directed against the chicken 140-kD complex have been 
reported to inhibit the neurite extension of neural retina cells, 
DRG, and ciliary ganglia on a fibronectin-coated substrate 
(11, 21, 74). Moreover, in preliminary studies, we have found 
that the neurite outgrowth of DRG on fibronectin is com- 
pletely sensitive to the effects of JG22E, a subclone of the 
original JG22 antibody (24), permitting the tentative conclu- 
sion that the receptors for the central ceil-binding domain 

I 

L 

I 

,I --I 
333 CSl 304 CS4 333 333 304 

+ W + 

CS1 CS4 CSl 

Figure 6. Additivity of the inhibitory activities of mAb 333 and 
CS1 peptide on fibronectin-mediated neurite outgrowth. Sub- 
strates were coated with 20 lag/ml fibronectin and blocked with 
heat-denatured BSA. The effects of coincubation of DRG with 
various combinations of mAb 333 (300 lag/ml), mAb 304 (300 lag/ 
ml), CS1 peptide (1 rag/ml), and CS4 peptide (1 mg/ml) on neu- 
rite extension was examined. Dashed lines are used to compare 
the levels of neurite outgrowth obtained under various experimen- 
tal conditions with the appropriate control. Shaded bars are used 
to highlight the additive effects of coincubated mAb 333 and CS 1. 
Bars, SEM. 

and the IIICS may be related (e.g., by sharing a common beta 
subunit). 

To examine whether the combined activities of the central 
cell-binding domain and the IIICS might be sufficient to ac- 
count for all of the activity of intact fibronectin, we tested 
the effects of co-coating of t 3  and CSI-IgG on neurite exten- 
sion, and of coincubation ofmAb 333 and CSI on inhit;~don 
of fibronectin-mediated outgrowth. A co-coated substrate of 
t 3  and CSI-IgG possessed ~75 % of the activity of fibronec- 
tin, while coincubation ofmAb 333 and CS1 blocked ~80% 
of the activity of the parent molecule. There may be several 
explanations for the inability of the central cell-binding do- 
main and the IIICS to account for the entire activity of fibro- 
nectin. For example, the CS1 peptide may not represent 
100% of the activity of the IIICS. For B16-F10 melanoma 
cells, which recognize the IIICS region almost exclusively, 
CSI-IgG was found to be only 40% as active as fibronectin 
on a molar basis (30). Thus, although this degree of retention 
of biological activity is surprisingly high for a synthetic pep- 
tide, the activity of CS1 may not be optimal. It is conceivable 
that other regions of the IIICS or neighboring domains in 
fibronectin may determine the fully active conformation of 
the CSI sequence and that the inclusion of CS1 within the 
polypeptide framework of the fibronectin molecule may sig- 
nificantly affect its activity. Alternatively, the IIICS may 
require positioning at a specific distance from the central 
cell-binding domain for a full combined activity. In the fu- 
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ture, cDNA cloning and expression studies should be able 
to answer some of these questions. Nonetheless, from these 
studies, it is now apparent that the central cell-binding do- 
main and the IIICS are the two most active cell interaction 
sites within fibronectin for neuronal cells. This result sug- 
gests therefore that both the neurite outgrowth- and mela- 
noma cell adhesion-promoting activities which have been 
localized previously to the COOH-terminal heparin-binding 
domain of fibronectin (43, 60, 6I) may in fact be explained 
by the presence of the CSI sequence in the heparin-binding 
fragments used for these studies. 

Two very interesting aspects of the cell adhesive activity 
of the IIICS are the potential for regulation of its activity 
through alternative splicing of precursor mRNA molecules 
and the cell type specificity of its usage. Since it can be 
specifically excised from the parent molecule, the IIICS is 
ideally suited to function as a modulatory adhesion site that 
could augment the activity of other nonregulatable sites such 
as the central cell-binding domain. The CS1 sequence 
represents one entire spliced segment of the IIICS that is 
completely conserved between rat and human fibronectins 
(31, 33, 64). Splicing of the IIICS is complex, with either 
three (rat), five (human), or two (chicken) potential variants 
in different species (31, 33, 48a, 64). Either one (rat and 
chicken) or two (human) of these products contains the CSI 
peptide or a sequence homologous to it. It is conceivable, 
therefore, that programmed fluctuations in the splicing of the 
IIICS may regulate the adhesive activity of neuronal cells. 
A precedent for the regulated splicing of the IIICS already 
exists for hepatocytes, platelets (52), and certain transformed 
cells (14). Since melanoma cells and peripheral neurons both 
arise from the neural crest during development (34), it may 
also be speculated that neural crest derivatives in general 
may be specialized for recognition of the IIICS. It will there- 
fore be instructive to examine whether other neural crest-de- 
rived cell populations are able to adhere to the IIICS, or to 
determine whether it is recognized by a wider range of cell 
types. Furthermore, in the future, it will be valuable to exam- 
ine the oncodevelopmental usage of the IIICS in vivo, to test 
the effects of superimposition of the activity of the IIICS on 
the baseline activity of the central cell-binding domain, and 
to ~ termine whether the presence or absence of the CS1 se- 
quence has any effect on substrate guidance during migration 
of embryonic cell populations in vivo. 
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