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Fractures have an extraordinarily negative impact on an individual’s quality of life and
functional status, particularly delayed or non-union fractures. Osteogenesis and
angiogenesis are closely related to bone growth and regeneration, and bone modeling
and remodeling. Recently Chinese medicine has been extensively studied to promote
osteogenic differentiation in MSCs. Studies have found that Ginseng can be used as an
alternative for tissue regeneration and engineering. Ginseng is a commonly used herbal
medicine in clinical practice, and one of its components, Ginsenoside Compound K (CK),
has received much attention. Evidence indicates that CK has health-promoting effects in
inflammation, atherosclerosis, diabetics, aging, etc. But relatively little is known about its
effect on bone regeneration and the underlying cellular and molecular mechanisms. In this
study, CK was found to promote osteogenic differentiation of rat bone marrow
mesenchymal stem cells (rBMSCs) by RT-PCR and Alizarin Red S staining in vitro.
Mechanistically, we found CK could promote osteogenesis through activating Wnt/β-
catenin signaling pathway by immunofluorescence staining and luciferase reporter assay.
And we also showed that the tube formation capacity of human umbilical vein endothelial
cells (HUVECs) was increased by CK. Furthermore, using the rat open femoral fracture
model, we found that CK could improve fracture repair as demonstrated by Micro-CT,
biomechanical and histology staining analysis. The formation of H type vessel in the
fracture callus was also increased by CK. These findings provide a scientific basis for
treating fractures with CK, which may expand its application in clinical practice.
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INTRODUCTION

Fractures have an extraordinarily negative influence on an
individual’s quality of life and functional status. Bone is one of
the organs that have the capacity to regenerate. Fracture
disrupts bone circulation, leading to necrosis and hypoxia
of adjacent bones (Glowacki 1998). Type H vessels, with
high expression of Endomucin (Emcn) and CD31, have
recently been identified and have the ability to induce bone
formation (Peng et al., 2020). Fracture repair usually could
restore the damaged bone to its pre-injury cellular
composition, structure and biomechanical function, but
approximately 10% of fractures do not heal properly
(Einhorn and Gerstenfeld 2015). Some alternative therapies
can promote fracture healing to prevent delayed healing or
non-healing, such as herbal medicine.

Ginseng is a traditional Chinese herb that has been widely used
in Asia for thousands of years to keep the physical vigor, improve
immunity and resistance to aging, etc. Some ginsenosides have
been found to prevent osteoporosis (Liu et al., 2020) and
osteoarthritis (Chen et al., 2016), and also improve fracture
healing (Gu et al., 2016). Ginsenoside compound K is a
metabolite produced by ginsenosides Rb1, Rb2 and Rc through
the metabolism of intestinal bacteria in vivo (Yang et al., 2015).
The metabolic pathway of protopanaxadiol type ginsenosides by
human intestinal bacteria is Rb1, Rb2 or Rc→Rd→F2→CK(Zhou
et al., 2008), which has also been shown to be same in hydrolytic
pathway (Zhou et al., 2018). Rb2 can reduce oxidative damage
and bone resorption cytokines, reflecting the ability of anti-
osteoporosis (Huang et al., 2014). Treatment of 3T3-L1 cells
with CK inhibited adipocyte differentiation and expression of
adipocyte-specific genes (Park and Yoon 2012). Meanwhile, a
variety of studies have reported that ginsenosides could regulate
angiogenesis. For example, ginsenoside-Rg1 has been shown to
induce angiogenesis (Kwok et al., 2015). Ginsenoside Rg1
increased the expression of VEGF through PI3K/Akt/mTOR
signaling pathway and promoted cerebral angiogenesis after
ischemic stroke (Chen et al., 2019a). Ginsenoside F1-induced
activation of the IGF-1/IGF1R pathway to promote angiogenesis
is an effective approach to alleviate cerebral ischemia (Zhang
et al., 2019).

It has been reported that CK could significantly elevate the
mRNA expression of genes regulating Wnt/β-catenin signaling,
including Wnt10b, Wnt11, Lrp5 and β-catenin (Zhou et al.,
2018). Many studies have shown that the Wnt/β-catenin
signaling controls bone formation and osteoblast
differentiation (Kobayashi et al., 2016; Yuan et al., 2016; Shen
et al., 2020). Angiogenesis is an essentially biological process in
bone regeneration and is also closely linked to the Wnt/β-catenin
signaling pathway (Shi et al., 2020; Shen et al., 2021; Yu et al.,
2021). However, it is unknown whether CK is effective on fracture
repair, as well as the underlying mechanisms involved. In the
present study, we investigated the effects of CK on rat fracture
healing, including osteogenic differentiation and angiogenesis,
and elucidated its potential regulation ofWnt/β-catenin signaling
pathway.

MATERIALS AND METHODS

Reagents and Antibodies
CK was provided by Zhejiang Hongguan Bio-pharma Co., Ltd., and
dissolved inDMSO, and diluted in PBS.Modified Eagle’sMediumof
Alpha (α-MEM), Dulbecco’s Modified Eagle Medium/Nutrient
Mixture F-12 (DMEM/F-12), fetal bovine serum (FBS), and
penicillin/streptomycin were purchased from Gibco
(United States). Beta-glycerolphosphate, dexamethasone, ascorbic
acid phosphate, Safranine O, and Fast Green were purchased from
Sigma (United States). Alizarin Red S was purchased from Solarbio
(Beijing, China). Cell Counting Kit-8 (CCK-8) was purchased from
Beyotime (Beijing, China). NucleoZOL reagent, Reverse
Transcription Kit and SYBR-Green Master Mix were supplied by
Takara (Japan). Hematoxylin-eosin (H&E) was purchased from
biosharp (China). Primary antibodies against CD31, β-catenin,
and DAPI were supplied by Santa Cruz Biotechnology
(United States); Primary antibodies anti-CTSK, anti-ALP, anti-
OPG, anti-RANKL, anti-Runx2, and anti-OPN were purchased
from Bioss (China); Anti-GAPDH, and DAPI were obtained
from Abcam (United States). Secondary antibodies HRP-
conjugated Goat Anti-Rabbit IgG, Goat anti-Mouse IgG (H + L),
Rabbit Anti-Rabbit IgM/Cy3 and Rabbit Anti-Mouse IgM/FITC
were obtained from Bioss (China). Dual-Luciferase Reporter Assay
Systemwas supplied by PromegaCompany (United States).Matrigel
was purchased from Becton Dickinson (United States).

RNA Extraction and qRT-PCR
After inducing differentiation for 3 days in 12-well plates with
osteogenic induction medium, the total RNA was extracted using
NucleoZOL, and cDNA was obtained from total RNA using a
Reverse Transcription Kit. Next, qRT-PCR was performed using
SYBR Green qPCR Master Mix. The relative gene expression was
calculated by the 2–ΔCTmethod, andGAPDHwas used as a reference
for normalization. The primers were purchased from Invitrogen
(United States) and primer sequences are shown in Table 1.

Bone Marrow Mesenchymal Stem Cells
Isolation and Culture
The method of rat bone marrow mesenchymal stem cells
(BMSCs) isolation and cultivation has been described

TABLE 1 | Primers used for RT-PCR.

Traget gene Sequence (59-39)

GAPDH F,AGGTCGGTGTGAACGGATTTG
R,TGTAGACCATGTAGTTGAGGTCA

OPN F,AGCAAGAAACTCTTCCAAGCAA
R,GTGAGATTCGTCAGATTCATCCG

OCN F,GGTGGCTTCCGAAGGATTGTC
R,CCCCCTGATGGGTTGTCAC

OSX F,ATGGCGTCCTCTCTGCTTG
R,TGAAAGGTCAGCGTATGGCTT

ALP F,GCAAGGGTGAGGAGGGGTA
R,CCTCTGAAGGCATTTCATAAGCC
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previously (Shen et al., 2018). BMSCs were isolated from
Sprague-Dawley rats (male, 2 weeks old, 30–40 g) in a sterile
environment. Rats were euthanized and the bone marrow of the
bilateral femoral was flushed out with serum-free α-MEM to
obtain a single-cell suspension. Flushed bone marrow cells was
centrifuged at 1200 rpm for 6 min, the supernatant liquid was
removed, and the cell pellets were resuspended in α-MEM
supplemented with 10% fetal bovine serum, 1% penicillin and
streptomycin. The medium was discarded after 72 h of primary
culture and then changed once every 3 days. Upon 80—90%
confluence, the adherent cells were further expanded with
trypsin. The medium was changed several times to obtain
pure BMSCs. Cells from passages 3 to 5 were used in the study.

Cell Counting Kit-8 Assay
The cell viability of CK on BMSCs was assessed using a Cell
Counting Kit-8 (CCK-8) kit (C0037, Beyotime Biotechnology
Co., Ltd., Shanghai, China). BMSCs or HUVECs were seeded in a
96-well plate with 5000 cells in each well and cultured without or
with CK (0, 2.5,5, 10, 20, 30 and 40 μM) for 48 and 72 h.
Subsequently, CCK-8 reagent was added to each well and the
plates were incubated for 1 h at 37°C. The Optical density (OD) of
the samples was measured at 450 nm with a spectrophotometric
microplate reader (Xianke Instruments, Shanghai, China). The
experiment was independently repeated 3 times.

Animal Experiments
8 week-old male Sprague Dawley (SD) rats (220 ± 10 g, n = 18)
were purchased from the Guangzhou Medicine Laboratory
Animal Center. The animals were housed in the First
Affiliated Hospital of Guangzhou University of Chinese
medicine animal center. All experimental methods were
approved by the Animal Care and Use Committee of
Guangzhou University of Traditional Chinese Medicine. All
rats were fed with standard chow and free access to water
with a 12 h light-dark cycle (24 ± 1°C). An open femoral
fracture model with internal fixation was established. In brief,
the procedure was performed under general anesthesia
(pentobarbital sodium 100 mg/kg, intraperitoneally) and
aseptic conditions. The right femur was exposed, and
transverse osteotomy was performed with a hand saw to create
a gap size of 2 mm. A K-wire (diameter: 1.2 mm, Stryker Ltd.,
United States) was inserted into the right femoral bone marrow
cavity to fix the fracture. The rats were randomly assigned to the
following two groups: fracture + PBS (n = 9, 100 μl/day), fracture
+ CK (n = 9, CK = 500 μM, 100 μl every other day). 5 days after
the surgery, CK or PBS was locally injected at the fracture sites
every other day for 4 weeks. Then the animals were sacrificed and
the right femurs were collected for further analysis.

Histology
The femurs were harvested, fixed in 10% neutral formalin for
24 h, decalcified in 10% Ethylene Diamine Tetraacetic Acid
(EDTA) for 21 days, dehydrated and then embedded in
paraffin. After cutting into 5-μm-thick sections and dewaxing
in xylene and rehydration in a decreasing alcohol gradient and
distilled water, samples were processed for hematoxylin-eosin

(H&E), and Safranine O-Fast Green (SO-FG) staining. For
immunohistochemical staining, the sections were incubated in
0.3% hydrogen peroxide for 20 min and antigen retrieval in
0.01 M citrate buffer at 60°C for 30 min, and blocking with 5%
g BSA in PBS for 1 h and then incubated overnight at 4°C with a
primary antibody. The sections were then incubated with the
secondary antibodies for 1 h at 37°C, counterstained with
hematoxylin, and visualized using an HRP-streptavidin system.
The primary antibodies used in this study included anti-OPG,
anti-RANKL, anti-OPN and anti-ALP antibodies. For
immunofluorescence staining, the slides were incubated in
antigen retrieval in 0.01 M citrate buffer, and blocking with
5% g BSA in PBS for 1 h and then incubated overnight at 4°C
with a primary antibody. The sections were then incubated with
the fluorescent secondary antibodies for 1 h at 37°C. The primary
antibodies used in this study included anti-Runx2, anti-
Endomucin, anti-CD31 and anti-β-catenin antibodies. DAPI
staining was carried out to stain the nuclei. Images were
acquired with the fluorescence microscope (Olympus, IX73 L,
United States).

Microcomputer Tomography
Microcomputer tomography (micro-CT) examination was
applied for the fractured femurs. Samples were scanned by
Skyscan 1176 micro-CT scanner (Bruker micro-CT, Kontich,
Belgium), with a source voltage of 80 kV, current of 114 μA, Al
0.5 mm filter and 10.5 μm isotropic resolution. The fractured
callus sites were defined as the volume of interest. The bone
volume/tissue volume (BV/TV), mean volumetric bone mineral
density (BMD), and Callus Volume were measured. Three
dimensional images were generated using CTvol software
(Bruker micro-CT, Kontich, Belgium).

Tube Formation Assay
Tube formation assay was performed as previously reported
(Lin et al., 2019). The wells of the 12-well plate were coated
with Matrigel and incubated for 30 min hBMSCs (5000 cells/
well) were treated with or without CK (10 μM), and co-
cultured with HUVECs (105 cells/well). DMEM/F12 basal
medium containing 2% FBS (Thermo Fisher Scientific) was
used. Plates were incubated at 37°C, 5% CO2 for 8 h. Then
the tube formation was observed using a microscope. Tubes
were then assessed through an inverted fluorescent
microscope at 10×(Olympus). Image J with the
Angiogenesis Analyzer plugin were used to quantify the
tube length and branch points of tube networks. Images
taken at 5× magnification.

Luciferase Reporter Assays
Experiments were performed as described previously (Ren et al.,
2019). Briefly, 293FT cells were seeded on 24-well plates and
allowed to grow to 80% confluence. Cells were then transfected
with TOPflash (500 ng) and Renilla reporter plasmid pRL-CMV
(100 ng) using Lipofectamine 8000. 24 h after transfection, cells
were treated with CK (10 μM) for 24 h. The luciferase activity was
measured using a GloMax™ 20/20 single-tube luminometer
(Promega, Madison, WI, United States).
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Three-Point Bending Biomechanical
Testing
Three-point bending biomechanical testing was performed as
previously reported (Lin et al., 2019). Fractured femurs were

tested to failure with a constant displacement rate of 4 mm/min
by a 3-point bending device (H25KS; Tinius Olsen,
United Kingdom). The fractured femur was loaded in the front
and back directions, and the span of the two support points was set

FIGURE 1 |CK enhanced cell viability, osteogenesis and angiogenesis in vitro. (A) The chemical structure depiction of CK. (B)Optical density (OD) values indicating
the effects of CK treatment for 48 h and 72h on cell viability of BMSCs, *p < 0.05, n = 3, compared with 0 μM CK group. (C–F) Real-time PCR results of osteogenesis-
related genes at 3 days treated with different concentrations of CK in OIM, *p < 0.05, n = 3, compared with OIM group. (G) Representative staining images and (H)
Quantification of Alizarin Red S of BMSCs incubated with different concentrations of CK in OIM for 14 days, *p < 0.05, n = 3, compared with OIM group. (I) Optical
density (OD) values indicating the effects of CK treatment for 48 h and 72h on cell viability of HUVECs, *p < 0.05, n = 3, compared with 0 μMCK group. (J)Representative
images of tube formation assay and (K-L)Quantitative analysis of tube length and branch points in Matrigel MSCs and HUVEC co-culture system, Scale bars < 100 μm,
*p < 0.05, compared with the Control group, n = 3.
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as 10 mm. The force loading point was set at the fracture site. After
testing, ultimate load to failure and energy absorbed to failure were
recorded and analyzed by the QMAT software.

Statistical Analysis
We applied GraphPad Prism 5 for comparison. Quantitative data
were expressed as mean ± standard deviation (SD). Statistics were
analyzed by t-test for two-group comparison, and One-way or
two-way analysis of variance (ANOVA) for multi-comparison
between groups. We used Tukey’s post hoc multiple comparisons
test as the posttest method for ANOVA. P values <0.05 were
considered statistically significant.

RESULTS

CK Enhanced Osteogenic Differentiation
and Angiogenesis In Vitro
The chemical structure depiction of CK was shown in Figure 1A.
BMSCs were cultured without or with CK (0, 2.5,5, 10, 20, 30 and
40 μM) for 48 and 72 h. The CCK-8 assay results showed that CK
exhibited no obvious cytotoxicity to BMSCs even at the high
concentration of 40µM, and CK at 10–40 µM increased the cell
viability of BMSCs (Figure 1B). To investigate the effect of CK on
osteogenic differentiation of BMSCs, BMSCs were cultured in the
osteogenic induction medium (OIM) with or without CK at various
concentrations (0, 1, and 10 μM) for 3 and 14 days. At the third day of
osteogenic induction, the expression of osteogenesis-related genes was
detected and it was found that the RNA levels of osteopontin (OPN),
alkaline phosphatase (ALP), osteocalcin (OCN) and osterix (OSX)
were significantly up-regulated by CK (Figures 1C–F). Furthermore,
Alizarin Red S staining showed that CK significantly increased the
formation of calcium deposits after 14 days of induction (Figures
1G,H). As 10 μM CK showed the best effect, it was used for the
following in vitro experiments.

HUVECs were cultured without or with CK (0, 2.5,5, 10, 20, 30
and 40 μM) for 48 and 72 h. The CCK-8 assay showed that CK
exhibited no obvious cytotoxicity to HUVECs (Figure 1I). Some
studies have reported MSCs can stimulate migration and
angiogenesis of HUVECs (Chiang et al., 2018; Liu et al., 2019).
To investigate the effect of CK on angiogenesis in the presence of
MSCs, the HUVEC cells were co-cultured with BMSCs treated with
or without CK (10 µM), and the tube length and branch points were
evaluated (Figures 1J–L). We could observe that the tube formation
capacity of HUVEC was increased by CK. The result demonstrated
that CK enhanced angiogenesis in vitro compared with the
control group.

CK Activated Wnt/β-Catenin Signaling
Pathway in Bone Marrow Mesenchymal
Stem Cells
It is well known that the Wnt/β-catenin signaling has been shown as
an important regulatory pathway in the osteogenic differentiation of
mesenchymal stem cells (Kim et al., 2013). To verify whether theWnt/
β-catenin signaling pathway is activated upon CK treatment in
BMSCs, we performed immunofluorescence staining to detect the

level of β-catenin and its co-location with Runx2 in rBMSCs.
Immunofluorescence analysis revealed more nuclear translocation
of β-catenin and an increased expression of Runx2 in the CK
(10 μM) group, compared with the OIM group (Figures 2A,B).
Additionally, the TOP flash assay was used to evaluate the effect of
CK (10 μM)on the activation of theWnt/β-catenin signaling pathway.
After 24 h of stimulation, the luciferase activity was significantly
increased by CK (Figure 2C).

CK Improved Fracture Healing
We further conducted an open femoral fracture model to evaluate
whether CK could accelerate fracture healing in rats. The time points
of animal modeling and sample collection were shown in Figure 3A.
The 3-dimensional images of the femurs obtained by micro-CT
analysis showed that the fracture gap was almost filled by new
bone in the CK-treated rats at 4w post-fracture, compared with
that of the PBS group (Figure 3B). The BMD, BV/TV and callus
volume at femoral callus sites of CK-treated rats were significantly
higher than those in the PBS group (Figures 3C–E). In addition,
results of biomechanical testing confirmed a much stronger
biomechanical property in the femoral bones of CK- treated group
than those of the PBS group (Figures 3F,G).

Furthermore, H&E and SO-FG staining of the callus showed
varying amounts of newly formed trabecular bone, cartilage tissue
and fibrous-like tissue. Callus of CK-treated rats exhibited enhanced
bone regeneration after 4 weeks, in comparison with the PBS group,
which was evidenced by more neo-formed trabecular bone and less
cartilaginous and fibrous-like tissue in the CK group (Figures 4A,B).
Additionally, higher expression of OPG, OCN, ALP and lower
expression of RANKL within the callus areas of the CK group
was confirmed using immunohistochemical analysis
(Figures 4C–F).

CK Promoted H Type Vessel Formation In
Vivo
In addition, the H-type vessel was observed in vivo in sections of
femur. The CD31 and Emcn double immunofluorescent staining
revealed a greater population of CD31hiEmcnhi cells within the callus
of the CK group, compared with the PBS group (Figures 5A,B).

CK Up-Regulated the β-Catenin Expression
in the Fracture Callus
To detect the expression of β-catenin in fracture callus treated
with CK, we performed immunofluorescent staining to detect the
level of β-catenin and Runx2 in fracture callus.
Immunofluorescence analysis revealed a higher expression of
β-catenin and Runx2 within the callus of the CK group,
compared with PBS group (Figures 6A,B), which is consistent
with the in vitro experiment.

DISCUSSION

Osteogenic differentiation of MSCs is the principal mechanism of
bone regeneration and fracture repair. It has been reported that
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the expressions of alkaline phosphatase (ALP), type I collagen
(COL-I) and mineralization were significantly increased after CK
treatment in H2O2-stimulated MC3T3-E1 cells (Kang et al.,
2016). Studies have shown that CK improved the
biocompatibility and morphology of microsphere scaffolds
without affecting the biocompatibility, and CK impregnated
porous microsphere scaffold system may be applicable as a

promising microsphere scaffold for bone regeneration
(Thangavelu et al., 2020). In this study, we found that CK
promoted the osteogenic differentiation of BMSCs. Our results
demonstrated that CK enhanced the mineralization and mRNA
expression of osteogenic markers in rat BMSCs, including ALP,
Runx2, OPN and OCN. Fracture healing is closely related to the
number and activity of BMSCs near the fracture site (Gu et al.,

FIGURE 2 | CK increased β-catenin and Runx2 expression in BMSCs. (A) Representative images and (B) Quantification of immunofluorescence staining of β-
catenin and Runx2 treated with 10 μM CK for 24 h. Scale bars = 50 μm, *p < 0.05, compared with the OIM group, n = 3 (C) The TOPflash luciferase activity was
measured in BMSCs after treatment of CK (10 μM). *p < 0.05, compared with the Control group, n = 3.

FIGURE 3 | CK accelerated the progression of fracture healing. (A) Schematic illustration of time points of animal modeling and sample collection. (B)
Representative 3-dimensional micro-CT images of femurs in each group. (C–E) Quantitative analysis of parameters, including CV, BMD, and BV/TV, *p < 0.05,
compared with the PBS group, n = 3 (F–G) Biomechanical properties of the fractured bones by 3-point bending test, *p < 0.05, compared with the PBS group, n = 6.
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2016). What’s more, human umbilical vein endothelial cells
(HUVECs) play an important role as a model system for
studying the regulation of endothelial cell function and

angiogenesis. It is well known that both osteogenesis and
angiogenesis are integrated parts of bone regeneration (Huang
et al., 2015). Interestingly, our results showed CK increased tube

FIGURE 4 |H&E, Safranin O-Fast Green, and immunohistochemical examination of fracture callus. (A)Representative images of H&E staining of fracture calluses in
PBS and CK groups. Insets indicate the regions shown in the enlarged images (lower). Scale bar: 500 μm. (B)Representative images of Safranin O-Fast Green staining of
fracture calluses in PBS and CK groups. Insets indicate the regions shown in the enlarged images (lower). (C–F)Representative images of immunohistochemical analysis
of OPG, ALP, RANKL and OPN of fracture calluses in PBS and CK groups. Scale bar = 50 μm.

FIGURE 5 | CK regulated H-type vessel formation in fracture callus. (A) Representative immunofluorescence double staining and (B) Quantification of CD31
(green), EMCN (red) of fracture calluses in PBS and CK groups, Scale bars = 50 μm, *p < 0.05, compared with the PBS group, n = 3.
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formation when HUVEC and BMSCs were co-cultured.
Therefore, the in vitro experiments indicated that CK might
up-regulate osteogenesis coupled with angiogenesis in bone
regeneration.

CK is an initial bacterial metabolite of ginsenoside Rb1, which has
many advantages of pharmacological properties, such as anti-cancer,
anti-inflammatory, anti-aging, anti-allergenic, anti-diabetic, and
anti-diabetic (Yoon et al., 2007; Yang et al., 2015; Wang et al.,
2017; Chen et al., 2019b; Yin et al., 2021). In open femoral fracture
rats, micro-CT examination showed that callus growth in rats treated
with CK was substantially faster than that in control rats after
fracture, and BMD, BV/TV, and callus volume were significantly
increased in the CK-treated group. In addition, biomechanical
testing confirmed a much stronger biomechanical property in the
femoral bones of CK-treated rats than those of PBS-treated rats. The
results of H&E, Safranin-O/Fast Green and IHC staining revealed
that, compared with the PBS group, fracture callus in the CK
treatment group had a significantly higher proportion of
trabecular bone and better fracture healing but a much lower
proportion of fibers and cartilage components inside the callus.

Recent studies have revealed that ginsenoside CK regulates
multiple signaling pathways, such as PI3K/mTOR/p70S6K1, HIF-
1α/NF-κB,Nrf2/Keap1, RhoA/ROCKs/YAP, and PI3K-Akt signaling
pathway (Li et al., 2018; Yang et al., 2019; Chen et al., 2020; Tian et al.,
2021; Zhang et al., 2021). Wnt/β-catenin signaling pathway is
important not only in the growth and development of
mineralized tissues, but also in regulating the skeletal response to
load and unloading and the vitality and health of adult and aging
bones (Duan and Bonewald 2016). Wnt/β-catenin signaling pathway
has been widely reported in the regulation of osteogenesis and
angiogenesis (Jiang et al., 2015; Shen et al., 2020). Runx2 is a
master transcription factor governing osteogenesis (Vimalraj et al.,
2015). In the present study, we found that the expression of Runx2
and β-catenin was significantly elevated in vivo by
immunofluorescent staining, which is consistent with the in vitro
result. Additionally, the luciferase activity further verified that CK
activated β-catenin expression.

The vascular system is a major source of oxygen, nutrients,
hormones, neurotransmitters and growth factors to bone cells
and is essential for bone development, regeneration and
remodeling (Filipowska et al., 2017). Bone regeneration is
closely related to angiogenesis and impaired angiogenesis often
leads to failure of fracture healing. H-type vessels, highly positive
for CD31 and Endomucin, could mediate local growth of the
vascular system, combine angiogenesis with osteogenesis by
mediating the selective location of Osterix positive cells
around blood vessels and the differentiation of these bone
progenitor cells (Kusumbe et al., 2014; Ramasamy et al., 2014).
In this study, we proved that CK could stimulate type H vessel
formation, and promote bone formation in fracture rats.

CONCLUSION

Taken together, our study suggested that Wnt/β-catenin signaling
contributed to the enhancement in the coupling of osteogenesis and
angiogenesis induced by CK treatment during fracture healing. CK
may serve as an effective component of Ginseng in bone tissue
regeneration. However, many more potential mechanisms remain
undiscovered. Further experiments or clinical trials are needed to be
conducted to expand its clinical application.
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