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Background: Neurofilament light chain (NfL) is an axonal cytoskeletal protein that is

released into the extracellular space following neuronal or axonal injury associated with

neurological conditions such as multiple sclerosis (MS), amyotrophic lateral sclerosis

(ALS), and other diseases. NfL is detectable in the cerebrospinal fluid (CSF) and blood.

Numerous studies on MS have demonstrated that NfL is correlated with disease activity,

predicts disease progression, and is reduced by treatment with MS disease-modifying

drugs, making NfL an attractive candidate to supplement existing clinical and imaging

measures in MS. However, for NfL to achieve its potential as a clinically useful biomarker

for clinical decision-making or drug development, a standardized, practical, and widely

accessible assay is needed. Our objective was to develop a novel NfL assay on an

automated, globally available immunoassay platform and validate its performance.

Methods: A prototype NfL assay was first developed and evaluated on the ADVIA

Centaur® XP immunoassay system from Siemens Healthineers. The lower limit of

quantitation (LLoQ), within-lab precision, assay range, cross-reactivity with neurofilament

medium and heavy chains, and effect of interfering substances were determined. NfL

assay values in serum and CSF were compared with radiological and clinical disease

activity measures in patients with MS and ALS, respectively. This assay was further

optimized to utilize serum, plasma, and CSF sample types on the Atellica® IM system

and transferred to Siemens’ CLIA laboratory where it was analytically validated as a

laboratory-developed test (LDT).

Results: In this study, an LLoQ of 1.85 pg/mL, within-lab precision <6%, and an assay

range of up to 646 pg/mL were demonstrated with the serum prototype assay. Cross-

reactivity of <0.7% with the neurofilament medium and heavy chains was observed.

Serum and CSF NfL assay values were associated with radiological and clinical disease

activity measures in patients with MS and ALS, respectively. The optimized version of the

NfL assay demonstrated specimen equivalence with additional plasma tube types and

was analytically validated as an LDT.
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Conclusion: The analytical performance of the NfL assay fulfilled all acceptance criteria;

therefore, we suggest that the assay is acceptable for use in both research and clinical

practice settings to determine elevated NfL levels in patients.

Keywords: assay, neurofilament, biomarker, neurodegenerative article type: original research manuscript section,

multiple sclerosis, amyotrophic lateral sclerosis

INTRODUCTION

One challenge for clinicians in managing neurodegenerative
diseases is a lack of biomarkers that provide quantitative
measures of underlying disease severity and activity for
monitoring the effectiveness of disease-modifying therapies
(DMT) (1–4). Molecular biomarkers that originate in the central
nervous system (CNS), which is shielded by the blood-brain
barrier, have been previously thought to be inaccessible to blood-
based testing. With recent advances in diagnostic technology,
measuring very low levels of such biomarkers is now possible
using routine clinical laboratory platforms.

Neurofilament light chain (NfL) is a scaffolding protein found
specifically in the neuronal cytoskeleton and is released into
the extracellular space following axonal degeneration (5–7). As
such, it is a promising biomarker that may have applications for
stratifying disease severity, monitoring activity or progression
of neurodegenerative disorders, and determining efficacy of
treatments (8).

NfL levels are known to be correlated with the extent of axonal
damage in a variety of neurological disorders (9). For multiple
sclerosis (MS), it has been reported that baseline serum NfL
(sNfL) is a predictor of long-term brain atrophy, development of
new T2 lesions, T2 lesion volume, gadolinium (Gd+) lesions, and
increased likelihood of progression from radiologically isolated
syndromes or clinically isolated syndromes to clinically definite
MS (10, 11). In addition, sNfL levels are higher and more variable
in patients with evidence of active MS and decrease with a DMT
(11). Multiple reports have shown that sNfL levels are responsive
to treatment with MS DMTs (12–15). Similarly, NfL levels from
the cerebrospinal fluid (CSF) of patients with amyotrophic lateral
sclerosis (ALS) predict disease severity before it is clinically
manifested (16).

It is thought that incorporation of NfL measurements into
clinical decision-making may improve patient outcomes by
allowing for earlier detection of neurodegenerative disease
and by providing more effective monitoring to inform choice
of appropriate therapeutic regimen and other care measures.
Incorporation of NfL measurements into drug development
may allow for informative enrollment into clinical trials and
a sensitive measurement of treatment effect, thereby reducing
required sample sizes for early-stage trials.

To incorporate NfL testing in clinical practice, measurement
of NfL levels will need to be standardized and accessible. Most
other assays used to generate evidence for the utility of NfL have
run on research-use-only platforms (17). This report describes
the development and validation of a novel NfL assay on a globally
available clinical immunoassay platform.We present preliminary
performance data from the prototype assay on the Centaur XP

as well as validation data generated on the Atellica Solution
platform after further optimization for use with universal sample
types. This assay has been implemented in our CLIA laboratory
as a laboratory developed test (LDT) and is being used inmultiple
clinical trials.

MATERIALS AND METHODS

NfL Assay Development Overview
A summary of key development and optimization studies for the
NfL assay is as follows: (1) screening and selection of capture and
detection antibodies, (2) prototyping with capture and detection
antibodies in reagents on an instrument, (3) preliminary
feasibility studies, (4) optimization of assay parameters, (5)
control system development, and (6) further development of
additional sample types and technology transfer to the CLIA
laboratory. In short, multiple antibody candidates were screened,
and one antibody pair was selected for assay development.
Antibodies were conjugated to biotin and an acridinium
ester (tracer) for compatibility with Siemens immunoassay
analyzers. Optimal assay formulations, critical assay parameters,
and control systems were established prior to assessing the
analytical performance. Using materials with HAMA, we were
able to titrate our current heterophilic blocker to reduce
heterophilic interference.

The design of the NfL assay is immunometric. It uses solid-
phase magnetic bead capture with one antibody and direct
detection utilizing acridinium ester (AE) chemiluminometric
detection with another antibody. The antibodies selected after
screening were originally developed by Uman Diagnostics AB
(Umea, Sweden), now a division of Quanterix Corporation
(Billerica, MA). Accumulated light signal is related to NfL
concentration in the sample. An initial serum NfL assay
prototype was implemented and evaluated as a research assay
on the ADVIA Centaur XP immunoassay system (Figure 1).
Using the same materials formulated differently as reagents, a
further universal sample-type (plasma/serum/CSF) NfL assay
was optimized for and analytically validated on the Atellica
Solution immunoassay system. Calibrators and control materials
were also developed to enable reliable, highly sensitive, and
quantitative reporting. Key differences between the assays are
summarized in Table 1. The LDT NfL assay is only available as
a testing service provided by Siemens Healthcare Laboratory.

Analytical Samples and Other Materials
Off-the-clot human serum pools (Access Biologicals, Vista, CA),
K2 EDTA human plasma pools (Access Biologicals, Vista, CA),
individual and matched sera (Access Biologicals, Vista, CA and
BioIVT, Shirley, NY), K2 EDTA plasma (BioIVT, Shirley, NY),
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FIGURE 1 | Acridinium ester-based automated immunoassay workflow, as implemented on the Siemens Centaur® and Atellica® testing platforms. AE, acridinium

ester; PMP, paramagnetic particle; RLUs, relative light units.

TABLE 1 | Summary of the neurofilament light chain (NfL) prototype and

laboratory-developed test (LDT) assays’ key differences.

Prototype LDT*

Instrument ADVIA Centaur XP Atellica Solution IM 1300

Assay throughput Up to 75 tests per hour Up to 171 tests per hour

Specimen types tested Serum Serum, plasma (K2 EDTA

and lithium heparin), CSF

*Available only as a test service through the Siemens Healthcare Laboratory.

and lithium heparin plasma (BioIVT, Shirley, NY) were sourced.
CSF samples were acquired from commercial sources (BioIVT,
Shirley, NY). To establish the detection capabilities of the NfL
assay at the low end of the assay range, contrived samples were
utilized and prepared using NfL-depleted serum, plasma, or CSF.
NfL-depletedmatrixes were prepared by immuno-absorption. To
prepare samples with higher NfL concentrations, recombinant
human NfL and endogenous NfL from CSF were used as spikers.

Two tri-level serum-based quality control (QC) sets known
herein as Siemens NfL QCs were prepared using off-the-clot
human serum. One set known as endogenous QCs (EQC 1-3)
consisted of one neat (or unspiked) serum pool and two other
serum pools spiked with CSF to target NfL concentrations of
16 and 50 pg/mL. A second set known as recombinant QCs
(RQC1-3) was prepared by spiking serum with recombinant
human NfL to target NfL concentrations of 16, 50, and 450
pg/mL. The CSF sample used to spike endogenous QC materials
originated from a donor with ALS. A tri-level plasma set
known herein as Plasma Levels 1-3 consisted of one neat (or
unspiked) K2 EDTA plasma pool and two other K2 EDTA
plasma pools spiked to target NfL concentrations of 50 and
400 pg/mL with recombinant human NfL. Serum, plasma, and
CSF samples sourced from individual donors were used for
parallelism experiments. Parallelism samples were diluted serially
with assay diluent, noted herein as NfL sample Diluent.

Assay Precision
Repeatability and within-laboratory precision were assessed
according to Clinical and Laboratory Standards Institute (CLSI)

Document EP05-A3 (19) using a 20-day × 2 run × 2 replicate
design with one reagent lot tested on one instrument. Aliquots
of the six Siemens NfL QCs were prepared and frozen at −70◦C
prior to the start of the study. On the morning of each testing
day, an aliquot was thawed to room temperature, mixed by
inversion, and then transferred to a sample rack for duplicate
testing. This process was repeated in a second run (at least 2 h
after the first run) on the same testing day using a fresh aliquot.
In total, each serum sample generated 80 measurements over 40
independent runs.

Interfering Substances
Potential interferents such as intralipid (Sigma-Aldrich, St. Louis,
MO), cholesterol (Lee Biosolutions, Maryland Heights, MO),
human serum albumin (Lee Biosolutions, Maryland Heights,
MO), human hemoglobin (Lee Biosolutions, Maryland Heights,
MO), indirect Bilirubin (Conjugate; Lee Biosolutions, Maryland
Heights, MO), direct Bilirubin (Lee Biosolutions, Maryland
Heights, MO), rheumatoid factor serum (Lee Biosolutions,
Maryland Heights, MO), and biotin (Sigma-Aldrich, St. Louis,
MO) were spiked to minimum concentrations recommended by
CLSI EP37 in three of the Siemens NfL QCs that spanned low,
medium, and high levels of NfL (18). Control samples that did
not contain an interferent were prepared by spiking the same
samples with the storage buffer of each interferent. Interference
was expressed as absolute percent bias between the mean test and
control sample results.

Specificity
Specificity was determined by spiking two other neurofilaments,
neurofilament heavy chain (NfH) and neurofilament medium
chain (NfM), into three Siemens NfL QCs and NfL-depleted
serum. Purified bovine NfM and NfH (Origene, Rockville, MD)
were each spiked into four samples spanning NfL assay range
(0–500 pg/mL) at target concentrations of 1,000 pg/mL from
10 ng/mL stocks. Control samples were prepared by spiking
the same four NfL samples with the storage buffer used to
reconstitute the NfM and NfH. Cross-reactivity was calculated as
the percent difference between the mean test and control sample
results with respect to test analyte concentration.
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Sensitivity
Detection capability for limit of blank (LoB), limit of detection
(LoD), and limit of quantitation was estimated in accordance
with CLSI Document EP17-A2 and CLSI Document EP05-A3
(19, 20). Four different NfL-depleted human serum pools served
as LoB samples and four NfL-depleted serum pools each spiked
with neat pooled human serum at target concentrations of 1–
4 times the LoB served as LoD samples. A human serum pool
was diluted with NfL-depleted serum down to the LoB to yield 6
additional LLoQ panel samples. A human serum pool spiked with
endogenous NfL from CSF to a target concentration of 16 pg/mL
served as the highest LoQ sample. All LoB and LoD samples
were assayed in replicates of five per run daily over 3 days with
two reagent lots (60 total blank and 60 total low-level sample
measurements per lot) in one instrument. LoB was calculated as
the non-parametric 95th percentile of the rank-ordered results.
LoD was determined parametrically from the low-level samples
only using the equation LoD = LoB + CpSDL, where Cp is a
multiplier to give 95th percentile of a normal distribution. LLoQ
samples (target concentrations from assay LoB to 15-fold above
the LoB) were tested two runs a day, four replicates per run for
5 days with two different reagent lots (40 total measurements
per sample per lot) in one instrument. LLoQ was determined
using the precision profile, where the LLoQ is calculated at the
concentration corresponding to within-laboratory coefficient of
variation of 20%.

Linearity
Assay linearity was tested according to CLSI Document EP06-
A (21) with three replicates of nine samples across the 0–500
pg/mL range. The nine serum samples of evenly spaced NfL
concentration were prepared by mixing two contrived serum
pools at opposite ends of the NfL assay range (Figure 3A).
The highest contrived serum pool was spiked with recombinant
NfL to slightly above the assay measurement range. The
low concentration pool was an NfL-depleted serum pool.
Linear regression analysis was performed between measured
concentration and coded pool number.

Serum Parallelism
Parallelism was defined as a condition in which dilution of
test samples does not result in biased measurements of analyte
concentration (with limits of 80–120% recovery). Parallelism
was assessed using 10 serum samples from healthy individuals
with relatively high NfL concentrations (range from 16 to 35
pg/mL). Each sample was diluted 1:2, 1:4, and 1:8. Measured
concentrations of the diluted samples were multiplied by their
dilution factor and compared to their neat concentration by
percentage of recovery.

Spike Recovery
The spike recovery of recombinant NfL in serum was performed
with two serum cohorts. The first cohort consisted of five
individual samples where one outlier was found. Therefore, a
larger cohort of 50 individual donors was tested to determine
interference frequency. To assess percent recovery, each sample

was spiked with recombinant NfL, and individual and mean
percentages of recovery were calculated and reported.

Hook Effect
Hook (or prozone) effect was evaluated using a series of dilutions
of a high NfL sample with two reagent lots. Recombinant NfL was
spiked in serum to a target concentration of 500 ng/mL (1,000
times the upper limit of quantification [ULoQ]) as a high sample.
The high sample and a series of dilutions of the high sample were
tested with a control sample targeted at the ULoQ in replicates
of three.

Sample Stability
The stability of the serum samples was assessed at both ambient
temperature and after freeze-thaws. Four individual donor
serum samples were tested after storage on the bench at room
temperature (20–25◦C) for 4, 8, 24, and 48 h. Additionally,
separate aliquots from the same four individual donors were also
assessed for stability up to five freeze/thaw cycles.

Method Comparison
Correlation of NfL results with Simoa R© NfL-light R© Advantage
Kit (Quanterix, Billerica, MA) was examined using 458 clinical
serum samples from the MSPATHS biorepository (n = 241)
(22) and the ADVANCE clinical trial (n = 217) (11). Each
sample was diluted 3-fold with Siemens NfL Sample Diluent
and assayed in singlicate with one instrument. NfL values below
LLoQ were excluded from the method comparison analysis. NfL
results were back-calculated by dilution factor before method
comparison analyses.

Clinical Application
Serum samples and MRI images were collected from patients
with MS enrolled in the ADVANCE study, a randomized,
multicenter, double-blind, placebo-controlled study assessing the
efficacy and safety of peginterferon beta-1a for patients with
relapsing-remitting MS (11). NfL levels were measured using
the assay described herein, and the number of new T2 lesions
was derived from MRI images. CSF samples from healthy
controls and patients with a diagnosis of clinically definite ALS
were obtained from a research agreement between Biogen, Inc.
(Cambridge, MA) and Iron Horse Diagnostics (Phoenix, AZ).

Additional Studies (Only Performed With
the LDT Version)
Specimen Equivalence
Specimen equivalence was assessed for three types of
collection tubes: serum, K2 EDTA plasma, and lithium heparin
plasma. Matched tube types from 40 individuals were tested
without dilution.

Precision (K2 EDTA Plasma)
Repeatability and within-laboratory precision were assessed
using a 5-day× two run× two replicate design with two reagent
lots tested on one instrument. In short, aliquots of Plasma Levels
1–3 were prepared and frozen at −70◦C prior to the start of the
study. On the morning of each testing day, an aliquot was thawed
to room temperature, mixed by inversion, and then transferred
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TABLE 2 | Precision with NfL prototype assay (serum).

Repeatability Within-Lab precision

Sample Mean (pg/mL) SD (pg/mL) CV % SD (pg/mL) CV %

Endogenous level 1 (EQC1) 7.65 0.26 3.4 0.39 5.1

Endogenous level 2 (EQC2) 17.23 0.57 3.3 0.76 4.4

Endogenous level 3 (EQC3) 54.18 0.96 1.8 1.66 3.1

Recombinant level 1 (RQC1) 17.89 0.39 2.2 0.58 3.2

Recombinant level 2 (RQC2) 54.95 0.84 1.5 1.37 2.5

Recombinant level 3 (RQC3) 438.03 7.49 1.7 12.17 2.8

CV, coefficient of variation; NfL, neurofilament light chain; SD, standard deviation.

TABLE 3 | Interference testing.

Interferent Substance test concentration

convention Units (SI units)

% Bias in Level 1 % Bias in Level 2 % Bias in Level 3

Intralipid 2,000 mg/dL(intentionally blank*) 9% 1% 2%

Cholesterol 500 mg/dL (12.95 mmol/L) 5% 3% 3%

Human serum albumin 6 g/dL (60 g/L) 9% 6% 8%

Human hemoglobin 500 mg/dL (5 g/L) 15% 16% 22%

200 mg/dL (2 g/L) 1% 2% 2%

Direct bilirubin (conjugated) 60 mg/dL (712 µmol/L) 0% 5% 6%

Indirect bilirubin (unconjugated) 40 mg/dL (684 µmol/L) 4% 3% 2%

Rheumatoid factor serum (193 U/mL) 0% 0% 8%

Biotin 3,500 ng/mL (14.3 µmol/L) 4% 2% 0%

NfL, neurofilament light chain.

*Family of compounds that includes a wide variety of molecular weight substances, therefore marked intentionally blank.

TABLE 4 | Cross-reactivity assessment.

Test

substance

Concentration

(pg/mL)

% Cross-reactivity

Target 0 pg/mL

NfL-depleted

serum

Target 7.65 pg/mL

(Endogenous level 1)

Target 17.23 pg/mL

(Endogenous level 2)

Target 438.03 pg/mL

(Recombinant level 3)

NfM 1,000 ND 0.0146% 0.0380% 0.3705%

NfH 1,000 ND 0.0233% 0.0011% 0.6780%

ND was reported when the concentration difference between test and control samples is below the LoD. LoD, limit of detection; ND, not detectable; NfH, neurofilament heavy chain;

NfM, neurofilament medium chain.

to a sample rack for duplicate testing. This process was repeated
in a second run (at least 2 h after the first run) of the same testing
day using a fresh aliquot. In total, each plasma sample had 20
measurements over 10 independent runs.

Plasma Parallelism
Parallelism was assessed for plasma tube types using 10 samples:
five K2 EDTA and five lithium heparin samples from healthy
individuals with relatively high normal NfL concentrations.
Each sample was diluted 1:2, 1:4, 1:8, and 1:10. Measured
concentrations of the diluted samples were multiplied by their
dilution factor and compared to their neat concentration by
percent recovery. Parallelism was demonstrated if recovery was
within 80–120%.

CSF Parallelism
Seven individual CSF samples were serially diluted 10-, 20-,
40-, 80-, 160-, and 400-fold using NfL sample diluent. CSF was
diluted with serum at least 10-fold to ensure that the test-matrix
was primarily serum-based and compatible with the NfL assay.
Relative recovery was calculated in comparison to a dilution-
corrected concentration tested at 10-fold.

Onboard Sample Stability
Samples in the Atellica Solution are processed consecutively
at a top speed of up to 440 samples per hour with
continuous unattended loading for an entire workday. The
sample management module scans and schedules processing of
the samples, which are stored onboard at ambient temperature
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FIGURE 2 | Lower limit of quantitation. Analytical samples at eight concentrations spanning the assay LoB (0.89 pg/mL) to 15-fold above the LoB. Samples

generated from donor serum with endogenous NfL diluted in pooled donor serum first depleted of NfL by antibody immunoabsorption. Inter-run, inter-day, and

inter-lot variations were tested (four replicates per sample; two runs per day over 5 days; two reagent lots). The lower limit of quantitation for lots 1 and 2 were 1.84

and 1.85 pg/mL, respectively, at a precision cut-off of 20% CV. The blue and red regression lines correspond to lots 1 and 2, respectively. CV, coefficient of variation;

LoB, limit of blank; NfL, neurofilament light chain.

until each test order is processed. The samples are pipetted into
individual reaction tubes that proceed independently through an
incubator and pipetting stations with well-defined timings.

A sample stability study was performed to determine how
long freshly thawed samples may remain in sample containers
onboard the instrument and still provide reproducible results.
Stability was assessed using the LDT with 3 test samples:
one endogenous sample with low NfL concentration and two
additional samples spiked with recombinant NfL to achieve
medium and high NfL concentrations. Test samples were
assayed at time 0 (baseline) and the 4-, 5-, 8-, and 9-h time
points. The acceptance criterion was defined as ±20% of the
baseline concentration.

RESULTS

Analytical Performance (Serum Prototype
Assay)
Precision
Repeatability and within-lab precision for Siemens Healthineers
NfL QCs are summarized in Table 2. The within-laboratory

percent coefficient of variation was <6% during the 20-
day period.

Interference
Interferent concentration tested and absolute percent bias for the
three Siemens NfL QCs are summarized in Table 3. Significant
interference was considered absolute bias≥10% for all NfL levels.
Significant interference was observed with hemoglobin at a test
concentration of 500 mg/dl (SI units 5 g/L). Bias for levels 1, 2,
and 3 were 15, 16, and 22%, respectively. Lower concentrations
of hemoglobin at 200 mg/dl showed no significant interference.

Specificity
Cross-reactivity of the Siemens NfL assay with purified NfM and
NfH was below 0.7% for four different serum samples with NfL
concentrations spanning the assay range (Table 4).

Sensitivity
The highest LoB, LoD, and LLoQ results among the two reagent
lots are reported for the assay. Three out of four LoD samples (45
of 60 measurements) were used to determine the LoD. One LoD
sample after completion of the study was excluded, because the
analyte concentration was too close to the LoB and could not be
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FIGURE 3 | Serum linearity. (A) Sample stock pools with high (serum spiked with recombinant NfL to above ULoQ) and low (NfL-depleted serum below LLoQ) levels

of NfL were used to prepare nine concentration levels evenly spaced across the assay range. (B) Regression between measured concentration and coded pool

number was performed. LLoQ, lower limit of quantitation; NfL, neurofilament light chain; ULoQ, upper limit of quantitation.

FIGURE 4 | Serum parallelism. Ten individual serum samples with endogenous NfL levels >16 pg/mL (up to 35 pg/mL) were tested neat and serially diluted 2, 4, and

8× using NfL sample diluent. DF, dilution factor; NfL, neurofilament light chain.
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FIGURE 5 | Method comparison between Siemens assay and Quanterix SIMOA assay. (Left) Deming regression and (right) Bland-Altman plots of agreement

between methods. Data are from the MS PATHS and ADVANCE studies, selected over the range of Quanterix sNfL results and sample availability. sNfL, serum

neurofilament light chain.

used for SD calculation. LoB was determined to be 0.89 pg/mL,
and LoD was calculated as 1.49 pg/mL. LLoQ was determined
using the precision profile method and equation of the power
trendline fit and determined to be 1.85 pg/mL (Figure 2).

Linearity
Linearity of the NfL assay was observed across the range of 1–646
pg/mL. Linear regression results were R2 = 0.996 with P < 0.001
(Figure 3B).

Serum Parallelism
Parallelism was demonstrated with the prototype assay first in 10
individual sera with endogenous NfL levels ranging from 16 to 35
pg/mL. All the dilutions recovered within 80–120% of the neat
measurement of each sample after adjusting for dilution factor
(Figure 4).

Spike Recovery
Spike recovery was within our acceptance criteria of 80–120%
for more than 95% of the samples (53 out of 55 of the samples,
not shown).

Hook Effect
The hook or prozone effect is a phenomenon where formation
of antibody-antigen immune complexes can be impaired when
concentrations of the measurand (antigen or antibody depending
on the type of assay) are very high. When there is a hook effect,
there is a concentration point when the immunoassay measures
less measurand when the measurand concentration is increasing,
producing a hook shape on a graph of measurements. No hook
effect was observed below 481 ng/mL for the two reagent lots
tested (Supplementary Figure 2).

Sample Stability
Serum NfL stability was assessed at room temperature for up to
48 h and over five freeze-thaw cycles. All the samples were stable

under these conditions as demonstrated by <5% difference from
the control condition (Supplementary Figure 1).

Method Comparison With Quanterix Simoa Assay
The analysis of MS patient serum samples (n= 418 above LLoQ)
demonstrated a high correlation (R2 = 0.907) between NfL
results from the Siemens ADVIA Centaur XP and the Quanterix
Simoa platform (Figure 5).

Analytical Performance (LDT Version of
NfL Assay)
Specimen Equivalence
All the three tube types demonstrated specimen equivalence
(Figure 6). Linear fits for all the tube type combination
comparisons were within the acceptance criteria of a slope equal
to 1 ± 0.1 and y-intercept less than or equal to the LLoQ of the
NfL assay (P < 0.0001).

Precision (K2 EDTA Plasma)
The repeatability and within-laboratory precision for the three
tested plasma samples are summarized in Table 5. The within-
laboratory percent coefficient of variation was ≤5.8% over the
5-day period for both reagent lots.

Plasma Parallelism
Parallelism was demonstrated in matched K2 EDTA and lithium
heparin plasma collected samples from 5 individuals (Figure 7).
Endogenous levels ranged from 15.1 to 38.4 and from 16.7 to
38 pg/mL for the lithium heparin and K2 EDTA tube types,
respectively. Percent recovery for 2-, 4-, 8-, and 10-fold dilutions
with NfL Sample Diluent were all within 80–120% of the neat
sample concentration.

CSF Parallelism
Seven CSF samples from normal individuals with NfL levels
ranging from 206 to 1,439 pg/mL were tested serially diluted
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FIGURE 6 | Equivalence of serum and plasma NfL levels in the LDT implementation of the NfL assay shown as regression (A,C) and Bland-Altman plots (B,D). LDT,

laboratory-developed test; NfL, neurofilament light chain.

TABLE 5 | Precision with the LDT version of the NfL assay (K2 EDTA plasma).

Repeatability Within-lab precision

Sample Reagent lot Mean (pg/mL) SD (pg/mL) CV% SD (pg/mL) CV%

Plasma Level 1 Lot 1 10.1 0.3 2.8 0.4 3.9

Plasma Level 2 45.7 2.1 4.7 2.4 5.3

Plasma Level 3 346.3 16.4 4.7 19.8 5.7

Plasma Level 1 Lot 2 9.9 0.2 2.4 0.4 4.2

Plasma Level 2 46.0 2.4 5.2 2.7 5.8

Plasma Level 3 325.0 14.0 4.3 17.0 5.2

CV, coefficient of variation; LDT, laboratory-developed test; NfL, neurofilament light chain; SD, standard deviation.
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FIGURE 7 | Parallelism for plasma tube types. Five matched lithium heparin (A) and K2 EDTA (B) samples with endogenous NfL levels of up to 45 pg/mL were tested,

and diluted 2-, 4-, 8-, and 10-fold using NfL sample diluent. DF, dilution factor; NfL, neurofilament light chain.

10, 20, 40, 80, 160, and 400-fold using NfL Sample Diluent
with the LDT version of the NfL assay. Parallelism was
assessed using the 10-fold diluted measured concentration
as the expected concentration instead of neat CSF because
3 of the 4 samples were out of the measurable assay
range. All dilutions with measured concentrations above LLoQ
for the 7 individual CSF donors tested exhibited 80–120%
recovery in comparison to the 10-fold diluted concentration
(not shown). Four of the seven CSF samples at starting
concentrations <400 pg/mL did not have reportable results at
400-fold dilution.

Onboard Sample Stability
The mean, coefficient of variation, and percent recovery of
all replicates (n = 5) per time point for each test sample
are summarized in Supplementary Table 1. Recovery was 94.5–
99.7% for all the testing time points when compared to baseline
mean at time 0.

CLIA Validation
The optimized NfL assay for serum, K2 EDTA plasma, lithium
heparin plasma, and CSF was transferred to the Siemens CLIA
laboratory for validation. Results are summarized in Table 6.
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FIGURE 8 | NfL levels are associated with neurodegenerative disease. (A) Patients with multiple sclerosis (MS) from the ADVANCE study (11) were separated into

tertiles based on baseline (BL) sNfL. The vertical axis shows the number of T2 lesions that developed 6 months later. The lower and upper limits of each tertile were

5.6–11.3 pg/mL for tertile 1, 11.4–22.1 pg/mL for Tertile 2, and 22.4–100.4 pg/mL for tertile 3. (B) NfL levels were assessed in the CSF derived from healthy controls

and patients with a definite ALS diagnosis. ALS, amyotrophic lateral sclerosis; ANOVA, analysis of variance; BL, baseline; CSF, cerebrospinal fluid; NfL, neurofilament

light chain; sNfL, serum neurofilament light.
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TABLE 6 | Summary of analytical validation of the LDT version of the NfL assay.

Characteristic Serum Plasma CSF

Reportable range 3.9–500 pg/mL 4.9–477 pg/mL (K2 EDTA)

2.4–549 pg/mL (Lithium Heparin)

85.5–25,700 pg/mL

Reproducibility 4.9–8.4% 7.7–18.1% (K2 EDTA)

3.5–16.3% (Lithium Heparin)

4.0–16.5%

Method comparison Quanterix vs Atellica® platform:

Avg Quantitation Difference: −8%;

Pearson correlation: R = 0.995

ADVIA Centaur XP vs. Atellica® platform:

Average Quantitation Difference: 9%;

Pearson correlation: R = 1.0

Tested for serum only; specimen

equivalence was established based on

precision and accuracy (CLSI EP35)

Quanterix vs. Atellica® platform:

Avg Quantitation Difference: −29%;

Pearson correlation: R = 0.994

ADVIA Centaur XP vs Atellica® platform:

Average Quantitation Difference: −13.2%;

Pearson correlation: R = 0.996

Specimen handling NfL is stable under the

following conditions:

• Up to 6 freeze/thaw cycles

• Up to 1 week at room temperature

• Up to 2 weeks refrigerated

• Frozen at −20◦C for 1 year

• Frozen at −80◦C for 1 year

NfL is stable under the following

conditions:

• Up to 6 freeze/thaw cycles

• Up to 1 week at room temperature

• Up to 2 weeks refrigerated

• Frozen at −20◦C: 3 months (K2 EDTA)

and 6 months (Lith Hep)

• Frozen at −80◦C: 6 months (K2 EDTA)

and 1 year (Lith Hep)

NfL is stable under the following conditions:

• Up to 6 freeze/thaw cycles

• Up to 1 week at room temperature

• Up to 1 week refrigerated

• Frozen at −20◦C for 3 months

• Frozen at −80◦C for 1 year

Interfering

substances

Interference testing for endogenous

substances. Assay interference was not

observed in samples with the following

substances and concentrations:

• Hemoglobin below 500 mg/dL

• Direct bilirubin below 60 mg/dL

• Indirect bilirubin below 40 mg/dL

• Albumin below 6 g/dL

• Triglycerides below 2,000 mg/dL

• RF below 193 U/mL

• Biotin below 3,500 ng/mL

• Neurofilament Heavy Chain below 1000

pg/mL

• Neurofilament Medium Chain below

1000 pg/mL

Tested for serum only; specimen

equivalence was established based on

precision and accuracy (CLSI EP35)

Tested for serum only; specimen

equivalence was established based on

precision and accuracy (CLSI EP35)

Drug interference Drug interference testing was performed

using the following drugs used to treat

patients with Alzheimer’s and MS:

• Donepezil

• Rivastigmine

• Memantine

• Galantamine

• Citalopram

• Mirtazapine

• Sertraline

• Bupropion

• Duloxetine

• Imipramine

• Ibuprofen

• Siponimod

• Acetaminophen

• Aspirin

• Beta interferon 1a

• Beta interferon 1b

• Fingolimod

• Dimethyl fumarate

• Teriflunomide

• Ocrelizumab

• Mitoxantrone

• Caldribine

• Alemtuzumab

• Glucose

• Drug interference (±20%) was observed

in the presence of Mitoxantrone at

concentrations >0.113 mg/dL.

Tested for serum only; specimen

equivalence was established based on

precision and accuracy (CLSI EP35)

Tested for serum only; specimen

equivalence was established based on

precision and accuracy (CLSI EP35)

CLSI, clinical and laboratory standards institute; CSF, cerebrospinal fluid; MS, multiple sclerosis; NfL, neurofilament light chain.
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Potential Clinical Application
NfL levels in patients with neurodegenerative diseases were
shown to be correlated with disease severity (9). To examine
whether disease-specific trends inNfL using this assay, serum and
CSF samples from patients with MS and ALS, respectively, were
tested. Serum NfL data from patients with MS demonstrated an
association with radiological disease activity (11). Baseline sNfL
levels from 212 patients with MS were separated into tertiles and
compared against the number of new T2 lesions that appeared
6 months later. The analysis of variance demonstrated that
patients with higher NfL level exhibited a statistically significant
(P < 0.0001) greater number of new T2 lesions after 6 months
(Figure 8A). NfL levels were also assessed in the CSF derived
from four healthy controls and four patients with a definite
ALS diagnosis. Confirming previous studies (23, 24), NfL was
significantly elevated (P < 0.0001) in the CSF of patients with
ALS (Figure 8B). Additionally, NfL levels in the CSF were
generally two orders of magnitude higher than the levels found
in serum (23).

DISCUSSION

In this report, we describe the performance of a novel NfL
assay that demonstrates operational and technical features that
are compatible with Siemens automated AE-based immunoassay
platforms that are used in laboratories for clinical trial testing
applications. The assay provides a wide dynamic range and
can be run on plasma (K2 EDTA and lithium heparin), serum,
or CSF samples (Table 6). There is low cross-reactivity with
the neurofilament medium and heavy chains, and the assay
is not significantly affected by various interfering substances
encountered in clinical specimens. Hemoglobin is a potential
interferent. Healthy levels of hemoglobin are 14–17 g/dl for
men and 12–15 g/dl for women (25). Generally, >100 mg/dl
hemoglobin can have an effect on laboratory results. If a sample
presents gross hemolysis, either it should be rejected based on
previously established rejection criteria or hemoglobin should be
quantified before an NfL test. The prevalence is expected to be
low if phlebotomy and preanalytical factors are well-controlled.
The LDT assay did not have significant interference when tested
at 500 mg/dL (Table 6).

The NfL assay was designed for compatibility with widely
available AE-based platforms. Instrument configurations are
available for small-, medium-, and high-throughput laboratories.
In our LDT validation, we utilized the Atellica Solution, which is
the highest-throughput platform and the most recently launched
hardware; this option would be appropriate for supporting
largest global clinical trials and large clinical practices. Using this
platform, the time to first results is 51min, and throughput using
a single immunoassay module on the Siemens Atellica solution is
171 samples per hour.

Many neurodegenerative diseases often progress stealthily
with a long preclinical stage. It is during this prodromal stage
that treatments could bemost effective before serious, irreversible
clinical symptoms become evident. In addition, MRI of the
brain has shown that CNS atrophy occurs continuously in

diseases such as MS even during periods of apparent clinical
remission. Therefore, it appears that neurodegeneration may be
clinically silent in younger patients who are having an ongoing
low-level CNS injury but can compensate clinically because
of reserve capacity and plasticity. However, the compensation
eventually fails, and the ongoing process accelerates the time
to future disability. Therefore, noninvasive biomarkers are
needed that can detect underlying pathologies and monitor
disease activity. Such biomarkers could also play a role in drug
development by providing both a means to stratify patient
populations and evidence that new drugs are reaching the
appropriate molecular target. Furthermore, a biomarker of
immunemediated neuronal injury could informwhether existing
drugs are optimally effective and guide clinical decision-making
for escalation of disease-modifying immunotherapies of various
potencies. Currently, there is a lack of standardized, validated
biomarkers in neurological diseases. NfL, however, is a very
promising candidate, with evidence in the literature supporting
the value of sNfL as a sensitive and clinically meaningful blood
biomarker to monitor neuronal tissue damage and the effects
of therapies on neurodegenerative disease (26–30). As we learn
more about the strengths and limitations of NfL as a clinical
biomarker, it is recognized that a highly sensitive, precise, and
accurate test, accessible in the clinical practice setting, would
be needed for widespread adoption of NfL in management of
patients with neurodegenerative diseases.

Continuing use of this assay in clinical trials and biomarker
validation studies, and with normative reference populations,
is expected to help establish the utility of NfL in evidence-
based decision-making in care of patients with MS and as a
potential measure of neurodegeneration, which may accelerate
development of treatments that slow disease progression in other
diseases such as ALS. Demonstration of the performance of
an NfL assay on a routine clinical laboratory platform is an
important step toward bringing NfL into clinical practice and
developing drugs for a wide range of potential applications
in neurology.
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