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Detecting protein complexes is one of the keys to understanding cellular organization and
processes principles. With high-throughput experiments and computing science
development, it has become possible to detect protein complexes by computational
methods. However, most computational methods are based on either unsupervised
learning or supervised learning. Unsupervised learning-based methods do not need
training datasets, but they can only detect one or several topological protein
complexes. Supervised learning-based methods can detect protein complexes with
different topological structures. However, they are usually based on a type of training
model, and the generalization of a single model is poor. Therefore, we propose an
Ensemble Learning Framework for Detecting Protein Complexes (ELF-DPC) within
protein-protein interaction (PPI) networks to address these challenges. The ELF-DPC
first constructs the weighted PPI network by combining topological and biological
information. Second, it mines protein complex cores using the protein complex core
mining strategy we designed. Third, it obtains an ensemble learning model by integrating
structural modularity and a trained voting regressor model. Finally, it extends the protein
complex cores and forms protein complexes by a graph heuristic search strategy. The
experimental results demonstrate that ELF-DPC performs better than the twelve state-of-
the-art approaches. Moreover, functional enrichment analysis illustrated that ELF-DPC
could detect biologically meaningful protein complexes. The code/dataset is available for
free download from https://github.com/RongquanWang/ELF-DPC.
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1 INTRODUCTION

Most complex systems, such as biological systems and human society, can be presented as complex
networks in the real world. Social networks, biological networks, brain networks, citation networks,
and protein-protein interaction networks are examples of complex networks (Pourkazemi and
Keyvanpour, 2017). Community detection in complex networks is essential in many fields, aiming to
identify clusters with high internal connectivity. These clusters are well separated from the rest of the
network. Over the past several years, the study of community identification in complex networks has
grown popular. Community detection is a fundamental problem in network analysis that tries to
mine the hidden structure of a specific complex network (Fortunato, 2010; Abduljabbar et al., 2020).
In bioinformatics, the crucial topic is to mine protein complexes in PPI networks. Proteins usually
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interact with each other, forming protein complexes to
accomplish their biological functions (Gavin et al., 2002;
Spirin and Mirny, 2003). As a community structure in the PPI
network, it may be the natural protein complex, and the proteins
in the protein complex should be highly interconnected (Girvan
and Newman, 2002; Chen et al., 2014). The truth is that the
prediction of protein complexes is essential for studying cellular
organization theory and understanding protein complex
formation. Biologically, a protein complex is a group of
proteins formed by interacting simultaneously and in place.
The detection of protein complexes using biological
experiments is both costly and time-consuming. With the
development of high-throughput experimental methods, many
PPI networks have been produced, which usually have small
world, scale-free, and modularity characteristics. They could be
formulated as graphs where the nodes represent the proteins, and
the edges represent the interactions. Therefore, many
computational algorithms present alternate ways to
automatically discover protein complexes from the PPI
networks. More details on the related work are introduced in
the related work section.

1.1 Related Work
During the past decade, various computational methods have
been presented to identify protein complexes in PPI networks.
We will briefly review the related work from three aspects. The
first is identifying protein complexes based on unsupervised
learning-based methods. Another type of identifying protein
complex methods is based on a model optimization-based
method. The last type of identifying protein complex methods
is based on supervised learning-based methods.

1.1.1 Unsupervised Learning-Based Methods
Many researchers hypothesize that subgraphs with different
topological structures in PPI networks are factual protein
complexes (Wang et al., 2010) such as density, k-clique, and
core-attachment structures. Most of these methods are either
global heuristic search, local heuristic search, or both. Meanwhile,
somemethods integrate topological and biological information to
further improve the accuracy of detecting protein complexes.

Many local heuristic-based methods have been proposed to
identify protein complexes. For instance, Altaf-Ul-Amin et al.
(Altaf-Ul-Amin et al., 2006) developed DPClus, which generates
clusters by ensuring density and checking the periphery of the
clusters. Gavin et al. (Gavin et al., 2006) studied the organization
of protein complexes, demonstrating that a protein complex
generally contains a unique protein complex core and
attachment proteins, called a core-attachment structure. Here,
proteins in a protein complex core have relatively more reliable
interactions among themselves. The attachment proteins are the
surrounding proteins of the protein complex core to assist it in
performing related functions (Lakizadeh et al., 2015). Wu et al.
(Wu et al., 2009) proposed a classic protein complex discovery
method (COACH) using the core-attachment structure. COACH
first detects protein complex cores and then identifies its
attachment proteins to form a whole protein complex. Peng
et al. (Peng et al., 2014) designed a PageRank Nibble strategy

to give adjacent proteins different probabilities with core-
attachment structures and proposed WPNCA to predict
protein complexes. Nepuse et al. (Nepusz et al., 2012)
presented ClusterONE, which utilizes a demanding growth
process to mine subgraphs with high cohesiveness that may be
protein complexes. Recently, Wang et al. (Wang et al., 2020)
presented a new graph clustering method using a local heuristic
search strategy to detect static and dynamic protein complexes.
These local heuristic methods have strong local searchability, but
finding an optimal global solution is difficult.

Meanwhile, some global heuristic-based methods have been
proposed to identify protein complexes. In 2009, Liu et al. (Liu
et al., 2009) used an iterative method to weight PPI networks and
developed a maximal clique-based method (CMC) to discover
protein complexes from weighted PPI networks. Wang et al.
(Wang et al., 2012) were inspired by the hierarchical organization
of GO annotations and known protein complexes. Then they
proposed OH-PIN, which is based on the concepts of overlapping
M-clusters, λ-module, and clustering coefficients to detect both
overlapping and hierarchical protein complexes in PPI networks.
PC2P (Omranian et al., 2021) is a parameter-free greedy
approximation algorithm casts the problem of protein complex
detection as a network partitioning into biclique spanned
subgraphs, which include both sparse and dense subgraphs.
Although these global heuristic search methods have a strong
global search ability, they require considerable time and
computing resources.

Recently, some methods based on network embedding
strategies have been used to detect protein complexes. DPC-
HCNE (Meng et al., 2019) is a novel protein complex detection
method based on hierarchical compressing network embedding
and core-attachment structures. It can preserve both the local
topological information and global topological information of a
PPI network. CPredictor 5.0 (Yao et al., 2019) uses the network
embedding method Node2Vec (Grover and Leskovec, 2016) to
learn node feature vector representation and then calculates the
node embedding similarity and the functional similarity between
interacting proteins to construct the weight PPI networks. These
methods illustrate that employing the network embedding
method could improve the accuracy of protein complex
identification.

It is well known that PPI networks contain many false-positive
and false-negative interactions, i.e., noise. To overcome the noise
of the PPI networks, some studies try to exploit biological
information, such as gene expression data (Keretsu and
Sarmah, 2016), gene ontology (GO) data (Wang et al., 2019;
Yao et al., 2019), and subcellular localization data (Lei et al., 2018)
to complement the interactions in PPI networks. CPredictor2.0
(Xu et al., 2017) effectively detects protein complexes from PPI
networks, and first groups proteins based on functional
annotations. Then, it applies the MCL algorithm to detect
dense clusters as protein complexes. Zhang et al. (Zhang et al.,
2016) calculated the active time point and the active probability of
each protein and constructed dynamic PPI networks. Then a
novel method was proposed based on the core-attachment
structure. Zhang et al. (Zhang et al., 2019) proposed a novel
method based on the core-attachment structure and seed
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expansion strategy to identify protein complexes using the
topological structure and biological data in static PPI
networks. ICJointLE (Zhang et al., 2019) is a novel method to
identify protein complexes with the features of joint
colocalization and joint coexpression in static PPI networks.
NNP (Zhang et al., 2021) is a new method for recognizing
protein complexes by topological characteristics and biological
characteristics. Some methods (Zaki et al., 2013; Wang et al.,
2019) are based on topological information to weight interactions
in PPI networks. For example, PEWCC (Zaki et al., 2013) is a
novel graph mining method that first assesses the reliability of the
interactions and then detects protein complexes based on the
concept of the weighted clustering coefficient. These methods
have shown that the accuracy of protein complex identification
can be significantly improved by integrating network topological
structure and multiple biological information.

1.1.2 Model Optimization-Based Methods
Several recent methods suggested that identifying protein
complexes or community structures can be an optimization
problem using network topology and protein attributes. For
example, RNSC (King et al., 2004) attempts to find an optimal
set of partitions of a PPI network graph by employing different
cost functions for detecting protein complexes. RSGNM (Zhang
et al., 2012) is a regularized sparse generative network model that
adds another process that generates propensities into an existing
generative network model for protein complex identification.
EGCPI (He and Chan, 2016) formulates the problem as an
optimization problem to mine the optimal clusters with
densely connected vertices in the PPI networks to discover
protein complexes. DPCA (Hu et al., 2018) formulates the
problem of detecting protein complexes as a constrained
optimization problem according to protein complexes’
topological and biological properties. In particular, it is an
algorithm with high efficiency and effectiveness. GMFTP
(Zhang et al., 2014) is a generative model to simulate the
generative processes of topological and biological information,
and clusters that maximize the likelihood of generating the given
PIN are considered protein complexes. DCAFP (Hu and Chan,
2015) transforms the problem of identifying protein complexes
into a constrained optimization problem and introduces an
optimization model by considering the integration of
functional preferences and dense structures. He et al. (He
et al., 2019) introduced a novel graph clustering model called
contextual correlation preserving multiview featured graph
clustering (CCPMVFGC) for discovering communities in
graphs with multiview features, viewwise correlations of
pairwise features and the graph topology. VVAMo (He et al.,
2021a) is a novel matrix factorization-based model for
communities in complex network. It proposes a unified
likelihood function for VVAMo and derives an alternating
algorithm for learning the optimal parameters of the proposed
model. In 2017, Zhang et al. (Zhang et al., 2017) proposed a new
firefly clustering algorithm for transforming the protein complex
detection problem into an optimization problem. IMA (Wang
et al., 2021) is a novel improved memetic algorithm that
optimizes a fitness function to detect protein complexes. These

model optimization-based methods usually have more
parameters and variables, and the parameter optimization
process is time-consuming. However, these methods also have
some significance for us to transform the identification of protein
complexes into an optimization problem.

1.1.3 Supervised Learning-Based Methods
The methods mentioned above are either unsupervised learning-
based or model optimization-based methods that identify protein
complexes using predefined assumptions and determined
models. Unsupervised learning-based methods do not need to
resolve practical problems, such as insufficient feature extraction
from known protein complexes, model selection, and model
training. Those methods cannot utilize the information of
known protein complexes, and they neglect some other
topological protein complexes such as the ‘star’ mode and
‘spoke’ mode and so on. Generally, supervised learning-based
methods first train a supervised learning model by extracting
features, and then trained supervised learning models are used to
search new protein complexes.

Many standard protein complex datasets have been obtained
in recent years. Therefore, several supervised learning-based
methods based on training regression or classification models
are proposed to discover protein complexes from PPI networks.
For example, Qi et al. (Qi et al., 2008) proposed a framework to
learn the parameters of the Bayesian network model for
discovering protein complexes. Yu et al. (Yu et al., 2014)
presented a supervised learning-based method to detect
protein complexes, which used cliques as initial clusters and
selected a trained linear regression model to form protein
complexes. Lei et al. (Shi et al., 2011) proposed a
semisupervised algorithm, and trained a neural network model
to detect protein complexes. ClusterEPs (Liu et al., 2016)
estimated the possibility of a subgraph being a protein
complex by emerging patterns (EPs). Dong et al.(Dong et al.,
2018) provided the ClusterSS method, which integrates a trained
neural network model and local cohesiveness function to guide
the search strategy to identify protein complexes. Liu et al. (Liu
et al., 2018) proposed a supervised learning method based on
network embeddings and a random forest model for discovering
protein complexes. Based on the decision tree, Sikandar et al.
(Sikandar et al., 2018) presented a method using biological and
topological information to detect protein complexes. Liu et al.(Liu
et al., 2021) proposed a novel semisupervised model and a protein
complex detection algorithm to identify significant protein
complexes with clear module structures from PPI networks.
Mei et al. (Mei, 2022) proposed a computational method that
combines supervised learning and dense subgraph discovery to
predict protein complexes. On the one hand, the accuracy of these
detection methods based on semisupervised learning or
supervised learning is limited due to the small training dataset.
On the other hand, these methods only train a single type of
learning model, so these models are not so generalizable and their
learning ability has certain limitations.

Some existing studies show that graph neural networks
(GNNs) methods can effectively learn graph structure and
node features. For example, Kipf et al. (Kipf and Welling,
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2016) presented a scalable approach for semisupervised learning
on graph-structured data. The proposed graph convolutional
network (GCN) model is based on an efficient variant of
convolutional neural networks. It can encode both graph
structure and node features in a way useful for semisupervised
classification. In 2021, Zaki et al. (Zaki et al., 2021) introduced
various GCN approaches to improve the detection of protein
complexes. graph attention networks (GATs), which aggregate
neighbor nodes through the attention mechanism, realize the
adaptive allocation of weights of different neighbors, thus greatly
improving the expression ability of GNN models. He et al. (He
et al., 2021b) proposed a class of novel learning-to-attend
strategies, named conjoint attentions (CAs) to construct graph
conjoint attention networks (CATs) for GNNs. CAs offer flexible
incorporation of layerwise node features and structural
interventions that can be learned outside the GNNs to
compute appropriate weights for feature aggregation. We will
study the detection of protein complexes in PPI networks using
GATs in the future.

1.2 Observations and Contributions
Based on the related work, assigning weights to the interacting
edges by the network embedding method and multiple biological
information can effectively improve the accuracy of the
detection methods. Meanwhile, some studies have shown
that protein complexes have core-attachment structures.
Therefore, our ELF-DPC is based on a core-attachment
structure, and we constructed a weighted PPI network.
Second, we proposed a protein complex core strategy to
mine local protein complex cores. We identified global
protein complex cores using the CPredictor2.0 method,
which endows our ELF-DPC with both global search ability
and local search ability. Third, most current methods are based
on either unsupervised learning or supervised learning.
Unsupervised learning-based methods can detect only one
or several topological protein complexes and cannot fully
learn the characteristics of known protein complexes.
Supervised learning-based methods can learn the
characteristics of known protein complexes, detecting
protein complexes with different topological structures. Still,
current supervised learning-based methods are based on a
single base model for training. However, the generalization of a
single model is poor. Therefore, we propose an ensemble
learning model consisting of a trained voting regression
model based on different types of base regression models
and structural modularity to detect protein complexes with
different topological structures. Finally, we proposed a graph
heuristic search strategy to extend each protein complex core

to form a protein complex. The results obtained show that
ELF-DPC attained superior performances over 12 state-of-the-
art methods. Furthermore, functional enrichment analysis
results of ELF-DPC showed higher biological relevance by
GO enrichment analysis.

To summarize, we make the following contributions:

• We introduce a protein complex core mining strategy based
on the core-attachment structure and design a graph
heuristic search strategy to search protein complexes.

• We propose structural modularity to describe the inherent
topological organization of protein complexes.

• We present some new topological features and design an
ensemble learning model by combining structural
modularity and a voting regression model, which
quantifies the possibility for a cluster as a protein complex.

• We present an ensemble learning framework to identify
protein complexes, and it achieves better performance than
other competing methods.

The rest of this study is organized as follows. The Materials
and methods section introduces the datasets, terminologies, and
methods. The Experiments and results section describes
evaluation metrics and parameter selection and compare ELF-
DPC with the competing methods. Finally, the Conclusion
section provides a conclusion and future work.

2 MATERIALS AND METHODS

2.1 Datasets
2.1.1 Protein-Protein Interaction Networks
In this paper, we used the four PPI networks for the experiments,
i.e., Gavin (Gavin et al., 2006), Krogan core (Krogan et al., 2006),
DIP (Xenarios et al., 2002), andMIPS (Güldener et al., 2006). The
detailed properties of these PPI networks are shown in Table 1.
Here, the self-interactions and duplicate interactions were
eliminated.

2.1.2 Standard Protein Complexes
We used two standard protein complexes that were constructed
in the literature (Wang et al., 2020). Their properties are shown in
Table 2. Here, standard protein complexes 1 consists of the
known protein complexes from MIPS (Mewes et al., 2004),
SGD (Hong et al., 2007), TAP06 (Gavin et al., 2006), ALOY
(Aloy et al., 2004), CYC 2008 (Pu et al., 2009), and NEWMIPS
(Friedel et al., 2009). Standard protein complexes 2 is also a
combined protein complex dataset (Ma et al., 2017). It consists of
the Wodak database (Pu et al., 2009), PINdb and GO complexes
(Ma et al., 2017).

TABLE 1 | The detailed properties of the protein-protein interaction datasets.

Dataset Number of node Number of edge Density

Gavin 1855 7,669 0.004 459796 985
Krogan core 2,674 7,075 0.001 979684 934
DIP 4,930 17 201 0.001 415 721912 41
MIPS 4,553 12 318 0.001 188 694605 27

TABLE 2 | The properties of the standard protein complexes.

Datasets Number Protein coverage Avg size

standard protein complexes 1 812 2,773 8.92
standard protein complexes 2 1,045 2,778 8.97
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2.1.3 GO Annotation Data and Gene Expression Data
In this study, we used the GO-slim data for describing the
functional similarity of interactions, which is available on the
link: https://downloads.yeastgenome.org. Meanwhile, the gene
expression data were obtained from https://www.ncbi.nlm.nih.
gov/sites/GDSbrowser. Additionally, subcellular localization data
was obtained from https://compartments.jensenlab.org/
Downloads.

2.2 Terminologies
Here, we will give some terminologies that are used in this paper.
A PPI network is generally described as a weighted graph G = (V,

E,W), whereV is a set of proteins, E is a set of interactions, andW
is a n × n(n = |V|) matrix that represents the reliability of protein
pairs in PPI networks. The direct interacting neighbor of node v is
defined as Nv = {u|(u, v) ∈ E, u ∈ V}.

2.3 Methods
2.3.1 The Framework of ELF-DPC Algorithm
This work is a novel ensemble learning framework to identify
protein complexes from PPI networks. The block diagram of the
detection process is shown in Figure 1.

The framework of this method is outlined in Algorithm 1. The
input to the algorithm is the PPI network, which produces a set of

FIGURE 1 | The ensemble framework of proposed protein complex detection.

Algorithm 1 | The framework of ELF-DPC algorithm.
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protein complexes as output. Our algorithm consists of five main
steps. The first step is to construct a weighted PPI network by
combining topological structure, gene expression data, GO
annotation data, and subcellular location data in Line 2
(Constructing a weighted PPI network section). The second
step is to design a protein complex core mining strategy to
identify protein complex cores in the PPI networks (Mining
protein complex cores section) in Line 3. The third step is first
to construct feature vectors to describe the properties of known
and false protein complexes in the PPI networks and train a
voting regression model (Training a voting regression model
section) to model and represent the protein complex based on
supervised learning in Line 5. Then second, we define a quality
function called structural modularity to describe the structural
modularity of protein complexes. Then we combine the trained
voting regression model and structural modularity to obtain an
ensemble learning model in Line 6. In the fourth step, based on
the ensemble learning model, we propose a graph heuristic search
strategy (Forming protein complexes section) to extend each
protein complex core for forming protein complexes from the
PPI networks in Lines 7–14. Finally, we remove these redundant
identified protein complexes in Line 15.

2.3.2 Constructing a Weighted PPI Network
Some studies have confirmed that the performance of protein
complex detection could be markedly enhanced when the weight
of edges is considered (Keretsu and Sarmah, 2016; Lei et al., 2018).
Meanwhile, integrating multiple data sources into a PPI network
can strengthen the reliability of the PPI networks (Lei et al., 2018;
Wang et al., 2020), which inspires us with confidence to give the
weight for interactions. Moreover, a protein complex consists of
proteins and interactions among themselves, and the proteins in
the same protein complex are coexpressed and have a similar
function and localization. Thus, we integrate multiple pieces of
information, including gene expression data, protein localization
data, and gene ontology data, to weight the interactions within the
PPI networks.

2.3.2.1 Protein Coexpression Similarity
Generally, for a pair of interacting proteins, their coexpression
level can reflect the strength of their interactions. Proteins with
coexpressed relationships may also have similar functions (Eisen
et al., 1998) and show stronger consistency of functions (Chen
and Xu, 2004). Some studies have shown that coexpressed protein
pairs tend to interact in the same protein complexes (Keretsu and
Sarmah, 2016). Furthermore, the Person correlation coefficient
(PCC) was used to estimate how strongly two interacting proteins
are coexpressed (Lei et al., 2016; Shang et al., 2016). For a pair of
proteins X and Y, their gene expression profiles are X = {x1, x2, . . .
, xi, . . . , xm} and Y = {y1, y2, . . . , yi, . . . , ym}, respectively. The
value of their PPC is defined as Eq. 1 (Wang et al., 2013).

PCC X,Y( ) � ∑m
i�1 xi − �X( ) × yi − �Y( )�����������∑m

i�1 xi − �X( )2√
×

�����������∑m
i�1 yi − �Y( )2√ (1)

where �X and �Y are the average gene expression of proteins X and
Y at n time points, respectively. The value of PCC(X, Y) ranges

from -1 to 1. For convenience, we use (PCC(X, Y) + 1)/2 to replace
PCC(X, Y), which sets the value of PCC(X, Y) in (0,1). The value
of PCC(X, Y) is higher, and then the coexpression probability of
nodes X and Y is larger. At the same time, they could consist of
the same protein complex.

2.3.2.2 Protein Functional Similarity
From a functional standpoint, we use GO-slim data to reflect the
functional similarity of proteins. If a pair of proteins have more
common GO-slim annotations, they are more likely to have the
same biological function. Even the reliability of interactions
between them will become stronger. Here, we let FS(X, Y)
describe this relationship, which is defined as Eq. 2:

FS X, Y( ) �
|FS X( ) ∩ FS Y( )|

min |FS X( )|, |FS Y( )|{ }, min |FS X( )|, |FS Y( )|{ }P1

0, otherwise

⎧⎪⎪⎨⎪⎪⎩
(2)

where |FS(X)| and |FS(Y)| represent the number of GO-slim
annotations for proteins X and Y, respectively. |FS(X) ∩ FS(Y)|
denotes the number of common GO-slim annotations for
proteins X and Y.

2.3.2.3 Protein Subcellular Location Similarity
Generally, if two interacting proteins have more exact subcellular
locations, the interaction between proteins is more reliable. Here,
we define the subcellular location similarity SL(X, Y), which is
defined as Eq. 3:

SL X, Y( ) � 2 ×|SL X( ) ∩ SL Y( )|
|SL X( )| + |SL Y( )| (3)

where |SL(X)| and |SL(Y)| denote the number of subcellular
localizations of proteins X and Y, respectively. |SL(X) ∩ SL(Y)|
represents the number of common subcellular localizations
between proteins X and Y.

2.3.2.4 Protein Topological Structure Similarity
The network embedding method is a representation learning
technique for representing the network’s nodes, which can
automatically learn topological information from PPI
networks. In this study, we use the network embedding
method Node2Vec (Grover and Leskovec, 2016) to learn low-
dimensional feature representations for the structural
information of the proteins in a PPI network. For proteins X
and Y, their representations are two vectors, namely, X and Y.
Meanwhile, the obtained protein embedding vectors by
node2vec can reflect the topological structure similarity
among proteins, and we use cosine similarity to calculate the
similarity of vector representation of proteins X and Y, which is
defined as Eq. 4:

TSS X, Y( ) � ∑n
i�1xi × yi������∑n

i�1x
2
i

√
×

������∑n
i�1y

2
i

√ (4)

where F(X) = (x1, x2, . . . , xi, . . . , xn) and F(Y) = (y1, y2, . . . , yi, . . . ,
yn) is the n dimension of the corresponding vector. TSS(X, Y)
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indicates the topological structure similarity of two connecting
proteins, X and Y.

For each edge, its weighted value W(X, Y) is expressed by
Eq. 5:

W X,Y( ) � PCC X,Y( ) + FS X, Y( ) + SL X, Y( ) + TSS X, Y( )
4

(5)
when the edges, whose weight is 0, are noise and should be
removed from the PPI networks. Finally, we integrate topological
structure similarity and biological information similarity, which
can enhance the reliability of PPI networks. Therefore, a weighted
PPI network is constructed.

2.3.3 Mining Protein Complex Cores
According to the constructing a weighted PPI network section,
the weight of interactions is weighted using multiple biological
properties and its topological structure, so the higher weight the
edge has, the more likely it is that two terminate proteins are
inside the same protein complex (Wang et al., 2011; Li et al.,
2012). Furthermore, the protein complex cores often correspond
to dense subgraphs in PPI networks (Wu et al., 2009; Wang et al.,
2019). The pseudocode of mining protein complex cores is
presented in Algorithm 2.

First, for the edge (v, u), its weight is w(v, u), and its
neighborhood graph is denoted as NG(v, u) = (V*, E*, W*),
where V* = Nv ∪ Nu ∪ {v, u}. Furthermore, the average weighted
degree of NG(v, u) is denoted as AWD(NG(v, u)) (Eq. 6):

AWD NG v, u( )( ) � 2 × ∑ s,t( )∈E*w s, t( )
|V*| . (6)

Based on the analysis above, we propose a score function (Eq.
7) to score seed edges based on the weight of the edge w(v, u) and
the average weighted degree of the neighborhood graph of the
edge (Eq. 6) to select seed edges in Line 1. Then, we sort all edges
in nonascending order based on the score function (see Eq. 7) in
the PPI networks. Only edges whose score function is greater than
the mean of the score function of all edges are queued intoQ. Seed
edges in Q will mine protein complex cores in Line 2.

As a result, the score function of edge (v, u) is defined as Eq. 7:

Scoreedge v, u( ) � w v, u( ) × AWD NG v, u( )( ). (7)
For an edge (v, u) ∈ E, its edge clustering coefficient (ECC(v,

u)) is defined as the number of triangles to which (u, v) belongs,
divided by the number of triangles that might potentially include
(u, v), as shown in Eq. 8.

ECC v, u( ) � Z v, u( )
min |deg v( )|, |deg u( )|( ). (8)

where Z(v, u) denotes the number of triangles built on edge (v, u),
and min(| deg(v)|, | deg(u)|) is the minimum degree of the two
terminate proteins.

Initially, select the protein with the highest weight edge as the
first seed edge (v, u), and create a protein complex core in Line 6,
where neighbors of the complex core are added to both the weight
of edgew(x, t) ≥Avgedgesweight (Avgedgesweight is defined as Eq.

9) and ECC(x, t) is greater than the average edge clustering
coefficient ECC of all edges (AvgweightECC), according to the
closeness between the seed edge (v, u) and its neighbors in Lines
9–17. These two constraints can ensure that the proteins in the
protein complex core are correlated in biological relations and
closely connected in topological structure. The protein complex
core is retained if it contains more than or equals two proteins in
Lines 18–20. Meanwhile, the seed edge (including two terminate
proteins) would be marked and cannot be used as the seed edge of
another cluster in Lines seven and eight. We select the next edge
with the highest weight where its two terminal proteins are not
included before seed edges, and it is used to form the next protein
complex core until the seed queue Q is empty in Lines 6–22.

Avgedgesweight � ∑ v,u( )∈Ew v, u( )
|V| . (9)

CPredictor2.0 (Xu et al., 2017) is also employed to detect
global protein complex cores. Here, CPredictor2.0 detects protein
complexes using MCL and protein functional information. It first
discovers clusters in each functional group using the Markov
clustering algorithm and merges them with higher overlap. We
use CPredictor2.0 to obtain global protein complex cores
(CPrclusters) in Line 23. Next, we combine these local protein
complex cores by a graph heuristic search method and global
protein complex cores using the CPredictor2.0 method in Line 24.

Here, Algorithm 2 identifies the protein complex cores, which
may have some redundant protein complex cores. For these
redundant protein complex cores, we only keep one of them
in the list of protein complex cores in Line 25.

Algorithm 2. Mining protein complex cores.

2.3.4 Obtaining an Ensemble Learning Model
2.3.4.1 Training a Voting Regression Model
To obtain the trained regression model, we will follow several
steps. First, we collect the known protein complexes and weighted
a weighted PPI network based on Eq. 5. Second, we map these
known protein complexes to the weighted and unweighted PPI
networks to obtain mapped protein complexes. Third, we
generate false protein complexes in current weighted and
unweighted PPI networks based on the same size distribution
of mapped protein complexes. Then we analyze the topological
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properties of known and false protein complexes. Fourth, we
extract and select topological features from these mapped protein
complexes and false protein complexes. Fifth, we chose an
appropriate regression model and train it. Finally, we obtained
the trained regression model. The whole training routine is
illustrated in Figure 2.

Next, we mainly introduce the differences and contributions
between this study and previous research works. Obtaining
known protein complexes from the database of standard
protein complexes 1 and 2 (Wang et al., 2020) is very
important, because they are used as factual protein complexes
for training a model. Note that the protein complex has more
than or equal to three proteins. Given machine learning, the
quality of the training dataset is vital to model training. Previous
methods generally construct false protein complexes by randomly
selecting nodes in the graph. It has two disadvantages: it does not
guarantee that the generated subgraphs are connected graphs and
they cannot reflect the veracity of the topology of subgraphs in
PPI networks. Therefore, we propose a false protein complex
generating strategy. First, standard protein complexes are
mapped to the PPI networks. Note that some standard protein
complexes could not be mapped to the PPI networks, so the
number of mapped protein complexes is generally less than the
number of standard protein complexes. Second, we analyze the
size distribution of the mapped protein complexes, and the size
distribution of the generated false protein complexes follow the
same power-law distribution. Third, according to the size
distribution of the mapped protein complexes, we generate

false protein complexes by randomly selecting the local
neighborhood subgraphs in the PPI networks. Here, false
protein complexes whose neighborhood affinity NA(A, B)
(Eq. 15) with known protein complexes is less than 0.2.
Finally, the ratio between the number of false protein
complexes and the number of mapped protein complexes
was 5 to 1. For selecting the parameter ratio, please see the
parameter selection section.

In this paper, both known and false protein complexes in the
PPI networks are modeled as weighted and unweighted
undirected graphs. The weight is calculated based on Eq. 5.
Extracting and selecting appropriate features are essential to
distinguish between factual and false protein complexes.
Previous supervised learning methods rely on finding cliques,
triangles, rectangles, spokes, and star graphs to mine protein
complexes in PPI networks. Of course, we can use topological
features such as degree statistics, node size, and edge statistics. On
the one hand, we use some existing topological features for
protein complex identification.

On the other hand, we propose some topological features to
describe the topological properties of protein complexes. We use
65 topological features to represent protein complexes in the PPI
networks. Table 3 presents the list of topological features we used.
Some topological features are extracted from the unweighted
and weighted PPI networks. The implementation details about
these topological features are well described in https://github.
com/RongquanWang/ELF-DPC/Methods/Feature_selection.py.
Additionally, if the reader discovers other relevant and valid

FIGURE 2 | A procession of training a regression model.
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topological features, please use them to represent protein
complexes further.

Ensemble learning combines multiple individual learners with
certain strategies to form a learning committee, so that the overall
generalization performance is greatly improved. In general, the
generalization capability of an ensemble learner model is much
greater than the generalization capability of a single learner
model. Meanwhile, we know that there is a barrel theory so
we focus on two major standards: accuracy and diversity:

• Accuracy: The individual learner must not be too bad, but it
must be accurate.

• Diversity: The output of individual learners should be
different from each other.

Therefore, producing and combining “good but different”
individual learners is the core of ensemble learning. The
VotingRegressor model is one of the most efficient ensemble
learning techniques to reduce the variance and improve
detection accuracy. In this paper, we use a VotingRegressor
model based on several base models for training. A
VotingRegressor is an ensemble meta-estimator that fits
several base estimators and averages the individual
predictions to form a final prediction. Here, linear regression,

BayesianRidge, DecisionTreeRegressor, and SVM. SVR (kernel
= “linear”) are used as the base estimators to build the
VotingRegressor model. We select the VotingRegressor
model due to its reduced variance in individual base
estimators and better generalization capabilities, and the
Voting Regressor model has more robustness than a single
estimator. In this study, the VotingRegressor model and base
estimators use default parameters. These models are a freely
available machine learning tool used on scikit-learn (Pedregosa
et al., 2011), and they can be determined by the website https://
scikit-learn.org/stable/supervised_learning.html#supervised-
learning.

As a result, a trained VotingRegressor model could be used to
estimate the probability of a subgraph being a natural protein
complex from a supervised learning perspective to detect protein
complexes with various topological structures. The score of the
VotingRegressor is based on the higher probability that it is an
actual protein complex. The VotingRegressor is defined as Eq.
10a and Eq. 10b:

LR � LinearRegression()
BSR � BayesianRidge()

DTR � DecisionTreeRegressor()
SVR � SVM.SVR kernel� ′linear′( )

(10a)

TABLE 3 | The topological features are used for representing protein complexes.

Num Feature name Num Feature name

1 Graph entropy 2 Graph weight entropy
3 Node size 4 Edge size
5 Graph clustering coefficient 6 Maximum degree
7 Minimum degree 8 Mean degree
9 Median degree 10 Variance degree
11 standard deviation degree 12 Maximum weight degree
13 Minimum weight degree 14 Average weight degree
15 Median weight degree 16 standard weight degree
17 Graph density 18 Graph weight density
19 Edge mean weight 20 Edge median weight
21 Edge variance weight 22 Edge standard weight
23 Average shortest path length 24 Graph diameter
25 Maximum Clustering Coefficient 26 Minimum Clustering Coefficient
27 Mean Clustering Coefficient 28 Median Clustering Coefficient
29 Variance Clustering Coefficient 30 Graph conductance
31 Graph weight conductance 32 Modularity score
33 Weight modularity score 34 Average boundary edge weight
35 Average edge modularity 36 Average common neighbor
37 Standard common neighbor 38 Variance common neighbor
39 Minimum common neighbor 40 Median common neighbor
41 Maximum common neighbor 42 Mean topological features
43 Median topological feature 44 Variance topological feature
45 Maximum topological feature 46 Minimum topological feature
47 Standard topological feature 48 Mean Degree correlation
49 Minimum Degree correlation 50 Variance Degree correlation
51 Maximum Degree correlation 52 Median Degree correlation
53 Community model 54 Weight community model
55 Topological Change 1 56 Topological Change 2
57 Topological Change 3 58 Topological Change 4
59 Topological Change 5 60 Topological Change 6
61 Topological Change 7 62 Topological Change 8
63 First Eigenvalues 1 64 First Eigenvalues 2
65 First Eigenvalues 3
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VR C( ) � VotingRegressor LR( ), BSR( ), DTR( ), SVR( )[ ]( )
(10b)

2.3.4.2 The Structural Modularity of Protein Complexes
Based on the within-module and between module edges of
subgraphs and the size of the subgraph, we present a new
formal definition of protein complexes in PPI networks (Wu
et al., 2009; Yu et al., 2011; Nepusz et al., 2012; Wang et al., 2019).
Given the new module definition, an effective method of
quantitative measurement is introduced to estimate the
likelihood of a cluster C = (VC, EC, WC) being a protein
complex in the PPI network. We introduce a structural
modularity (SM) model to estimate the likelihood of a cluster
C = (VC, EC,WC) being a protein complex, which can detect both
dense and sparser protein complexes in PPI networks. First,
structural modularity (SM) is combined by Cohesion(C) and
Coupling(C), and Cohesion(C) is defined as Eq. 11 and
Coupling(C) is defined as Eq. 12.

Cohesion C( ) � 2 × Win C( )
sqrt |C|( ) × |C| − 1( ), (11)

where Win � ∑(v,u)∈EC
w(v, u) denotes the total weight of the

internal edges contained entirely in cluster C, and |C| is the
number of nodes in the cluster C. Cohesion(C) could estimate a
protein complex with a community structure having dense
connections among its nodes. Here, Cohesion(C) is based on
the definition of density of a cluster C by density multiplied by the
square root of the size of cluster C to quantify the likelihood that a
cluster is a protein complex. The idea of Cohesion(C) is that a
protein complex in the PPI network is usually relatively sparse, so
Cohesion(C) is used to adopt density as the quality function, and
it may be more appropriate.

Coupling C( ) � Wout C( )
|C| , (12)

whereWout(C) =∑v∈C,u∉Cw(v, u) represents the total weight of the
boundary edges that connect the cluster C with the rest of the PPI
network, and it can measure that the cluster C has sparse
connections with its neighbor nodes.

Finally, Structural Modularity (SM) is calculated as Eq. 13:

SM C( ) � Cohesion C( )
Cohesion C( ) + Coupling C( ) (13)

In this work, a protein complex will be assigned a higher value
of SM(C) when it has a high adapting density and is well separated
from the rest of the network. SM(C) can identify protein
complexes with cohesion and separation topological properties.
This shows that proteins in a protein complex displayed intense
and frequent connections within the protein complex and weak
and rare connections to proteins outside of the protein complex.

2.3.4.3 Building an Ensemble Learning Model
In this paper, we propose an ensemble learning model that
combines the VotingRegressor model and structural
modularity (SM) to quantify the likelihood of a cluster C =

(VC, EC, WC) being a candidate protein complex to guide the
identification of protein complex processes. An ensemble
learning model can improve the robustness and stability of the
clusterings by combining the output of several models, thus
improving the overall accuracy. For a cluster C, its ensemble
learning model is defined as Eq. 14:

Fitness C( ) � VR C( ) × SM C( ) (14)
Based on the ensemble learning model, we will introduce a

graph heuristic search strategy by using the ensemble learning
model to form protein complexes.

2.3.5 Forming Protein Complexes
Based on the fact that a protein complex core and attachment
proteins form a protein complex, we obtain some protein complex
cores. Next, we extract the attachment proteins of each protein
complex core and select reliable attachments cooperating with its
protein complex core to form a protein complex. We design a graph
heuristic search strategy for each protein complex core to extend the
protein complex core to form a whole protein complex. First, it starts
with a protein complex core, which iteratively inserts neighboring
proteins into the protein complex core and then removes proteins
from the protein complex core to search for a locally optimal cluster.
In this paper, each protein complex core is subjected to a graph
heuristic search strategy and an ensemble learning model to form a
protein complex. The basic idea of a graph heuristic search strategy
for a protein complex core is iteratively extended and corrected to
form a protein complex by maximizing the score of the ensemble
learning model (please see Obtaining an ensemble learning model
section).

The pseudocode of the graph heuristic search strategy is
shown in Algorithm 3, which consists of the following steps:

i Input a protein complex core.
ii Adding outer boundary proteins process in Lines 3–12: First, for

the current protein complex core, we construct its outer
boundary proteins set. We first obtain all directly connected
neighbor proteins of the current protein complex core, and
then we rank these neighbor proteins according to the number
of shared proteins between the neighbor of the neighbor
protein and current protein complex core. We discard the
neighboring proteins with fewer than two common proteins to
select high-quality candidate neighboring proteins. Then we
select only half of the neighboring protein set reserved
according to the sorting results as the outer boundary
proteins set in Line 3. Second, we calculate the ensemble
learning model score for the current protein complex core
when each outer boundary protein is temporarily added. The
outer boundary protein that allows the ensemble learning
model score to reach a maximum will be inserted into the
protein complex core in Lines 5–11. This process is repeated
until the ensemble learning model score of the protein
complex core is not increased, or the size of the outer
boundary nodes is zero in Lines 10 and 4.

iii First, for the current protein complex core, inner boundary
proteins are the set of proteins that belong to the protein
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complex core and connect at least one other protein in the PPI
networks in Line 16. Second, we calculate the score of the
ensemble learning model after each inner boundary node is
temporarily removed from the protein complex core. The
inner boundary protein that increases the ensemble learning
model score is determined, and it will be eliminated from the
protein complex core in Lines 19–21. This process is continued
until the ensemble learning model score of the protein
complex core reaches a maximum or the size of the inner
boundary protein set is zero, and the number of current
protein complex cores is less than or equal to 2 in Lines
22–23 and 17.
iv We repeat ii) and iii) until the protein complex core is no
longer changed or no increment in the Fitness(SG) of the
protein complex core in Lines 27–30, the current protein
complex core is considered to be formed as a locally
optimal cluster in Line 2–31, and then output it as a
detected protein complex in Line 32.

Finally, we select the next protein complex core. Then we
repeat this process using a graph heuristic search strategy
(Algorithm 3) to extend the next protein complex core to form
a protein complex until no seed edges remain. In the last step of the
algorithm, some redundant protein complexes and protein
complexes containing fewer than three proteins are discarded.

Algorithm 3. A graph heuristic search strategy

3 EXPERIMENTS AND RESULTS

ELF-DPC was implemented in Python three and was successfully
executed on a PC with an Intel i7-4790 CPU @3.60 GHz and
80 GB RAM.

3.1 Evaluation Metrics
In this study, to evaluate the proposed method, we need to
compare the performance of our method against the
compared methods by some statistical metrics. For this

purpose, we used the neighborhood affinity, F-measure, CR,
ACC, MMR, and Jaccard criteria to evaluate the protein
complex detection algorithms. Let S denote the known protein
complexes, and D denote the protein complexes identified by a
detection method.

3.1.1 Neighborhood Affinity
Si is a standard protein complex in S, and Dj is a discovered
protein complex D. Their neighborhood affinity score (NA(Si,
Dj)) (Brohee and Van Helden, 2006) can describe the similarity of
two protein complexes Si and Dj, and it is defined as Eq.15:

NA Si, Dj( ) � |Si ∩ Dj|2
|Si|×|Dj| . (15)

Generally, if NA(Si, Dj) is larger than or equal to 0.2, protein
complexes Si and Dj are regarded as matching protein complexes
(Li et al., 2010).

3.1.2 F-Measure
Let Nsm be the number of standard protein complexes that match
at least one detected protein complex, i.e., Nsm = |{s|s ∈ S, ∃d ∈ D,
NA(s, d) ≥ ω}| and Nim be the number of detected protein
complexes that match at least one standard protein complex,
i.e., Nim = |{d|d ∈D, ∃s ∈ S,NA(d, s) ≥ ω}|, where ω is a predefined
threshold and is usually 0.20. Recall and precision are defined as
recall � Nsm

|S| and precision � Nim
|D| , respectively. Finally, the

F-measure is the compromise between precision and recall
and is defined by Eq. 16:

F −measure � 2 × precision × recall

precision + recall
. (16)

3.1.3 ACC
Let Tij be the number of proteins that are included in both
standard protein complex Si and detected protein complex Dj,
and letNi be the number of proteins that are included in standard
protein complexes S. Meanwhile, Sn and PPV are calculated by

Sn � ∑|S|
i�1max|D|

j�1 Tij{ }∑|S|
i�1Ni

and PPV � ∑|D|
j�1max|S|i�1 Tij{ }
∑|D|

j�1∑|S|
i�1Tij

, respectively. As a

result, the accuracy (ACC) is defined by Eq. 17:

ACC � ���������
Sn × PPV

√
. (17)

3.1.4 MMR
We used the third metric, the maximum matching ratio
(MMR) (Nepusz et al., 2012) based on the maximal one-
to-one mapping between standard protein complexes and
detected protein complexes. First, we need to construct a
bipartite graph between S and D, and then each standard
protein complex Si ∈ S and detected protein complex Dj ∈ D
are connected by the weight W(Si, Dj) edge. Next, we select
disjoint edges from the bipartite graph to maximize the sum
of their weights; Finally, the MMR is the sum of the weights
of all selected edges divided by |S|, which is denoted by
Eq. 18:
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MMR �
∑|S|

i�1 max
j

NA Si, Dj( )
|S| . (18)

3.1.5 Coverage Rate
The coverage rate (CR) was used to assess how many proteins
in the standard protein complexes could be covered by

the identified complexes. When the standard protein
complexes S and the detected protein complexes D are
given, the |S|×|D| matrix T is constructed, where each
element max{Tij} is the most significant number of shared
proteins between the ith standard protein complex, and the
jth detected protein complex. The coverage rate is calculated
by Eq. 19:

FIGURE 3 | Value of parameters ratio for ELF-DPC based on standard protein complexes 1.

FIGURE 4 | Value of parameters ratio for ELF-DPC based on standard protein complexes 2.
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CR � ∑|S|
i�1 max Tij{ }
∑|S|

i�1Ni

. (19)

where Ni is the number of proteins in the ith standard complex.

3.1.6 Jaccard
Jaccard is the final method for measuring the clustering methods
(Song and Singh, 2009). Here, a standard protein complex is Si ∈
S, and a discovered protein complex isDj ∈ D. Then, their Jaccard
is Jac(Si, Dj) � |Si ∩ Dj |

|Si ∪ Dj |. For the discovered protein complexDj, its
Jaccard is Jac(Dj) � maxSi∈SJac(Di, Si). For a standard protein
complex Si, its Jaccard is Jac(Si) � maxDj∈DJac(Si, Dj). Then,
for detected protein complexes D, the average of the weighted

Jaccard is JaccardD � ∑Dj∈D
|Dj |Jac(Dj)

∑Dj∈D
|Dj| . Similarly, for the standard

protein complexes S, its JaccardS is defined by

JaccardS � ∑Si∈S
|Si|Jac(Si)∑Si∈S

|Si | . Finally, the Jaccard is calculated by Eq. 20:

Jaccard � 2 × JaccardD × JaccardS( )
JaccardD + JaccardS

. (20)

3.1.7 Functional Enrichment Analysis
In addition to these metrics to measure the performance of ELF-
DPC, we investigated whether these identified protein complexes
have biological significance by calculating the p-value. Generally,
a detected protein complex possesses biological significance if its
p-value is less than 0.01. In this paper, we used the fast tool LAGO
(Boyle et al., 2004) to compute a p-value, and it is based on the
hypergeometric distribution and Bonferroni correction. For more
information about it, please refer to the literature (Boyle et al.,
2004; Wang et al., 2019). The p-value is denoted as Eq. 21

p − value � 1 −∑k−1
i�0

F
i( ) N−F

C−i( )
N
C( ) , (21)

where k is the number of functional group proteins in the protein
complex, and N is the number of proteins in the PPI networks. F

is the size of the functional group in the PPI networks.We assume
that a discovered protein complex contains C proteins.

3.2 Parameter Selection
To study the effect of parameter ratio on the performance of ELF-
DPC, we adjusted the value of ratio from 1 to 20 by increments of
5 through several experiments and set it to the appropriate values.
Figures 3, 4 show the changing trend of the Total score with the
value of ratio for the ELF-DPC algorithm with four PPI networks
and two standard protein complex combinations. In standard
protein complexes 1, ratio reaches its maximum value at ratio = 5.
In standard protein complexes 2, ratio reaches its maximum value
at ratio = 15. We can see that the Total score is not very sensitive
to ratio, it tends to be stable when ratio falls in (5,15), and the
fluctuations of the Total score are not significant. Therefore, the
value of ratio is set as 5 by the default value in this study.

3.3 Comparison With State-of-the-art
Algorithms
We obtained the software implementations for all the compared
methods, and their parameters are shown in Table 4. Although
better results could probably be obtained by fine-tuning these
parameters, to maintain the fairness of different algorithms, the
parameters of the compared algorithms and the ELF-DPC
algorithm were set as the recommended values by the authors.

In this section, we tested ELF-DPC on four original PPI
networks, i.e., Gavin and Krogan core, DIP, and MIPS, and
two known protein complexes were used for training and
assessing the performance of ELF-DPC. We used six
computational metrics, the F-measure, CR, ACC, MMR,
Jaccard, and total score, to evaluate the performance. Here, we
define the sum of the top five measures as the Total score. Note
that the number of identified protein complexes (Num) was
counted by each method. To illustrate the performance of
ELF-DPC, we selected ten representative unsupervised
methods, including DPClus (Altaf-Ul-Amin et al., 2006), CMC
(Liu et al., 2009), ClusterONE (Nepusz et al., 2012), PEWCC
(Zaki et al., 2013), WPNCA (Peng et al., 2014), CPredictor2.0 (Xu

TABLE 4 | Parameters of each method used in the study.

ID Year Algorithms Parameter

1 2003 MCL inflation = 2 (default setting)
2 2006 DPClus din = 0.7, cpin = 0.50 (author suggestions)
3 2009 CMC min _deg_ratio = 1, min _size = 3, overlap_thres = 0.5, mergethres = 0.25(default setting)
4 2012 ClusterONE Density = auto, Overlap threshold = 0.8(author suggestions)
5 2013 PEWCC Overlap = 0.8,-r = 0.1, Re-join = 0.3(author suggestions)
6 2015 WPNCA lambda = 0.3, size = 3 (author suggestions)
7 2016 CPredictor2.0 func_lvl = 6, Overlap threshold = 0.8, size = 3 (default setting)
8 2016 Zhang Complex_thresh = 0.1 (author suggestions)
9 2017 ClusterEPs NEPs of Complexes (minimum support threshold = 0.4, maximum support threshold = 0.05); NEPs of non-complexes

(maximum support threshold = 0.05, minimum support threshold = 0.4); maximum overlap = 0.9, Maximum size of clusters
= 100 (author suggestions)

10 2018 ClusterSS numEpochs = 500, learnRate = 0.2, thresholdIn = 1.0, thresholdOut = 1.02, negativeTime = 20, minimum cluster size = 3
(author suggestions)

11 2019 ICJointLE -L = 1,-r = 999,-d = 0.3,-c = 0.7,-f = 0.75,-p = 0.3,-m = 0.08, -u = 0.01,-e = 0.9, size = 3 (author suggestions)
12 2021 PC2P minimum cluster size = 3
13 2022 ELF-DPC ratio = 5, minimum cluster size = 3 (default setting)
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TABLE 5 | Experimental results by the different methods using standard protein complexes 1.

Name Num F-measure CR ACC MMR Jaccard Total score

Gavin

MCL 220 0.535 8 0.489 1 0.365 7 0.149 4 0.361 0 1.901 0
DPClus 285 0.597 2 0.438 2 0.346 6 0.173 6 0.402 5 1.958 1
CMC 294 0.584 4 0.450 1 0.348 7 0.222 9 0.417 9 2.023 9
ClusterONE 258 0.597 6 0.451 4 0.345 8 0.192 1 0.397 4 1.984 4
PEWCC 664 0.657 6 0.431 6 0.314 6 0.353 8 0.396 9 2.154 6
WPNCA 484 0.642 8 0.494 9 0.311 4 0.255 7 0.355 4 2.060 2
CPredictor2.0 266 0.628 6 0.375 0 0.306 2 0.214 4 0.412 4 1.936 5
Zhang 438 0.647 5 0.397 6 0.315 6 0.318 2 0.408 4 2.087 2
ClusterEPs 271 0.601 4 0.365 6 0.284 1 0.216 6 0.409 0 1.876 6
ClusterSS 482 0.560 0 0.394 1 0.321 8 0.253 5 0.368 5 1.897 9
ICJointLE 243 0.632 9 0.355 7 0.298 9 0.261 9 0.402 1 1.951 5
PC2P 219 0.576 9 0.443 9 0.355 1 0.182 5 0.392 2 1.950 5
ELF-DPC 286 0.667 4 0.479 2 0.339 1 0.251 6 0.433 0 2.170 2

Krogan core

MCL 370 0.400 4 0.389 5 0.319 2 0.136 1 0.290 2 1.535 4
DPClus 497 0.413 8 0.367 2 0.307 1 0.174 5 0.323 5 1.586 1
CMC 264 0.481 9 0.365 6 0.297 8 0.158 4 0.368 8 1.672 4
ClusterONE 240 0.469 4 0.308 5 0.282 9 0.152 3 0.332 4 1.545 4
PEWCC 383 0.528 9 0.323 1 0.230 9 0.147 1 0.378 6 1.608 5
WPNCA 369 0.544 6 0.389 7 0.275 8 0.191 2 0.341 5 1.742 8
CPredictor2.0 236 0.589 5 0.303 7 0.272 5 0.195 4 0.368 8 1.729 8
Zhang 326 0.556 3 0.288 4 0.254 9 0.218 2 0.340 8 1.658 5
ClusterEPs 410 0.583 6 0.335 2 0.262 1 0.220 9 0.344 8 1.746 7
ClusterSS 722 0.437 7 0.375 8 0.307 2 0.240 2 0.335 7 1.696 6
ICJointLE 216 0.538 9 0.220 6 0.228 4 0.193 6 0.304 2 1.485 7
PC2P 249 0.435 6 0.345 8 0.297 0 0.133 7 0.319 0 1.531 0
ELF-DPC 304 0.628 7 0.423 9 0.298 4 0.268 7 0.430 2 2.049 9

DIP

MCL 628 0.310 6 0.357 8 0.268 4 0.093 2 0.215 5 1.245 5
DPClus 909 0.308 5 0.379 2 0.272 0 0.123 7 0.264 5 1.348 0
CMC 1,192 0.361 1 0.355 2 0.248 8 0.197 3 0.296 0 1.458 4
ClusterONE 904 0.511 8 0.506 2 0.327 0 0.175 2 0.329 7 1.849 9
PEWCC 648 0.600 4 0.378 3 0.226 2 0.157 3 0.351 4 1.713 6
WPNCA 623 0.588 8 0.430 7 0.259 4 0.207 0 0.336 0 1.821 9
CPredictor2.0 293 0.500 8 0.230 2 0.228 7 0.111 0 0.282 5 1.353 3
Zhang 502 0.562 2 0.325 7 0.242 6 0.181 1 0.322 3 1.633 9
ClusterEPs 804 0.573 0 0.295 4 0.214 7 0.215 4 0.308 7 1.607 3
ClusterSS 2,375 0.323 0 0.333 5 0.257 7 0.233 1 0.257 3 1.404 7
ICJointLE 286 0.573 3 0.232 9 0.204 6 0.150 7 0.303 9 1.465 5
PC2P 441 0.341 9 0.340 1 0.254 2 0.085 4 0.232 4 1.254 0
ELF-DPC 564 0.620 0 0.492 2 0.276 8 0.227 3 0.345 4 1.961 7

MIPS

MCL 594 0.068 1 0.168 6 0.157 7 0.021 4 0.106 4 0.522 1
DPClus 207 0.378 4 0.203 1 0.213 3 0.082 0 0.226 4 1.103 1
CMC 408 0.334 4 0.233 4 0.212 6 0.099 7 0.225 8 1.105 9
ClusterONE 690 0.292 5 0.271 9 0.248 9 0.098 9 0.204 4 1.116 7
PEWCC 382 0.280 2 0.190 0 0.138 9 0.056 6 0.167 9 0.833 5
WPNCA 527 0.330 1 0.260 3 0.182 4 0.101 7 0.179 8 1.054 3
CPredictor2.0 265 0.434 4 0.221 2 0.228 8 0.114 0 0.254 5 1.252 9
Zhang 406 0.370 2 0.205 1 0.202 5 0.107 7 0.217 6 1.103 1
ClusterEPs 645 0.461 0 0.242 6 0.194 3 0.158 0 0.254 3 1.310 2
ClusterSS 1,266 0.230 9 0.240 0 0.232 0 0.124 2 0.194 2 1.021 3
ICJointLE 121 0.364 9 0.134 3 0.172 3 0.084 5 0.206 6 0.962 6
PC2P 374 0.234 7 0.237 1 0.213 7 0.065 2 0.166 2 0.917 0
ELF-DPC 483 0.481 1 0.291 4 0.223 7 0.167 8 0.259 9 1.423 9

The bold values are the highest value of each metric of each PPI network.
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TABLE 6 | Experimental results by the different methods using standard protein complexes 2.

Name Num F-measure CR ACC MMR Jaccard Total score

Gavin

MCL 220 0.375 6 0.409 1 0.358 7 0.115 3 0.312 6 1.571 3
DPClus 285 0.385 4 0.348 3 0.329 3 0.140 5 0.314 7 1.518 2
CMC 294 0.380 3 0.357 5 0.330 1 0.145 9 0.325 7 1.539 5
ClusterONE 258 0.409 0 0.363 3 0.335 9 0.141 9 0.320 0 1.570 3
PEWCC 664 0.418 5 0.348 3 0.313 7 0.215 2 0.299 9 1.595 5
WPNCA 484 0.421 7 0.411 6 0.330 5 0.167 0 0.296 2 1.627 0
CPredictor2.0 266 0.482 0 0.307 6 0.281 6 0.156 4 0.330 9 1.558 4
Zhang 438 0.436 5 0.320 9 0.294 2 0.205 7 0.318 6 1.575 8
ClusterEPs 271 0.433 1 0.290 6 0.271 5 0.167 0 0.317 3 1.479 5
ClusterSS 487 0.372 9 0.327 9 0.317 0 0.171 6 0.292 4 1.481 9
ICJointLE 243 0.486 1 0.292 0 0.283 4 0.191 2 0.325 7 1.578 5
PC2P 219 0.402 5 0.361 0 0.341 3 0.129 5 0.320 4 1.554 7
ELF-DPC 265 0.454 6 0.383 8 0.325 9 0.174 5 0.361 9 1.700 6

Krogan core

MCL 370 0.321 4 0.353 4 0.308 8 0.094 4 0.255 9 1.333 9
DPClus 497 0.357 7 0.333 5 0.289 9 0.120 0 0.289 3 1.390 4
CMC 264 0.399 9 0.319 2 0.273 2 0.110 1 0.314 9 1.417 3
ClusterONE 240 0.391 3 0.272 9 0.275 6 0.105 8 0.282 6 1.328 2
PEWCC 383 0.422 8 0.291 3 0.212 5 0.098 7 0.324 7 1.350 0
WPNCA 369 0.436 1 0.357 2 0.261 4 0.125 0 0.296 0 1.475 7
CPredictor2.0 236 0.493 2 0.278 7 0.242 1 0.125 8 0.321 6 1.461 4
Zhang 326 0.463 7 0.263 4 0.237 3 0.145 6 0.295 7 1.405 7
ClusterEPs 410 0.465 8 0.302 1 0.239 0 0.144 4 0.297 5 1.448 8
ClusterSS 342 0.430 4 0.320 1 0.270 5 0.131 8 0.314 0 1.466 9
ICJointLE 216 0.451 6 0.208 3 0.214 7 0.123 0 0.272 6 1.270 2
PC2P 249 0.363 6 0.314 1 0.288 4 0.095 1 0.281 8 1.342 9
ELF-DPC 281 0.533 6 0.376 8 0.282 7 0.175 0 0.378 5 1.746 7

DIP

MCL 628 0.240 9 0.302 5 0.250 4 0.061 3 0.192 1 1.047 3
DPClus 909 0.278 4 0.342 4 0.249 3 0.089 8 0.244 5 1.204 4
CMC 1,192 0.313 0 0.321 3 0.219 3 0.132 9 0.266 4 1.253 0
ClusterONE 904 0.423 2 0.435 8 0.293 7 0.118 4 0.287 4 1.558 5
PEWCC 648 0.481 2 0.333 6 0.218 2 0.095 0 0.298 6 1.426 6
WPNCA 623 0.460 3 0.370 9 0.247 2 0.122 6 0.286 6 1.487 6
CPredictor2.0 293 0.465 3 0.226 5 0.207 7 0.073 6 0.263 5 1.236 7
Zhang 502 0.492 9 0.292 8 0.221 5 0.122 3 0.281 8 1.411 3
ClusterEPs 804 0.461 1 0.264 6 0.192 9 0.132 3 0.265 2 1.316 2
ClusterSS 2,179 0.367 6 0.316 8 0.236 0 0.158 8 0.234 0 1.313 2
ICJointLE 286 0.473 4 0.216 8 0.202 7 0.096 1 0.266 8 1.255 8
PC2P 441 0.266 2 0.296 7 0.233 7 0.058 8 0.208 3 1.063 6
ELF-DPC 545 0.512 6 0.399 8 0.260 7 0.138 6 0.302 0 1.613 7

MIPS

MCL 594 0.055 1 0.164 0 0.147 5 0.012 5 0.103 1 0.482 2
DPClus 207 0.330 7 0.193 4 0.194 8 0.054 7 0.204 9 0.978 5
CMC 408 0.298 1 0.212 5 0.187 3 0.064 2 0.199 9 0.962 0
ClusterONE 690 0.247 3 0.238 4 0.214 8 0.063 0 0.180 1 0.943 5
PEWCC 382 0.230 9 0.170 0 0.116 6 0.029 6 0.130 1 0.677 3
WPNCA 527 0.264 0 0.238 3 0.154 9 0.062 1 0.152 2 0.871 6
CPredictor2.0 265 0.384 3 0.208 6 0.196 6 0.067 2 0.226 4 1.083 1
Zhang 406 0.341 3 0.194 4 0.185 7 0.071 0 0.200 2 0.992 5
ClusterEPs 645 0.358 2 0.211 5 0.172 0 0.088 4 0.212 0 1.042 1
ClusterSS 1,581 0.253 9 0.256 6 0.207 4 0.089 4 0.186 7 0.994 0
ICJointLE 121 0.295 9 0.122 4 0.159 3 0.053 8 0.178 7 0.810 1
PC2P 374 0.207 8 0.213 6 0.194 1 0.043 2 0.152 4 0.811 2
ELF-DPC 469 0.402 6 0.259 9 0.193 7 0.101 1 0.224 9 1.182 2

The bold values are the highest value of each metric of each PPI network.
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et al., 2017), Zhang (Zhang et al., 2016), ICJointLE (Zhang et al.,
2019), PC2P (Omranian et al., 2021), and two state-of-the-art
supervised methods, including ClusterEPs (Liu et al., 2016) and
ClusterSS (Dong et al., 2018). Tables 5, 6 show the comparison
results of all methods on four PPI networks in terms of six
evaluation metrics, and the highest value of each metric of each
PPI network is in bold.

As shown in Table 5, when standard protein complexes 2 was
used as the training set and standard protein complexes 1 was
used as the test set, the ELF-DPC achieved the highest F-measure,
Jaccard, and Total score based on most of the four PPI networks.
For the Gavin dataset shown in Table 5, the ELF-DPC algorithm
ranks third in terms of CR, sixth in terms of ACC, and sixth in
terms of MMR. The Krogan core dataset shown in Table 5
shows that the ELF-DPC achieves first place on CR and obtains
four places on the ACC statistics. However, ELF-DPC achieves
first place on MMR, it is 0.2687. For the DIP dataset shown in
Table 5, the ELF-DPC method takes second in terms of CR and
ACC metrics, the ELF-DPC algorithm has the second-highest
top level in terms of MMR, and the ELF-DPC method takes
second in terms of Jaccard, which is slightly lower than the best
at 0.3454. For the MIPS dataset shown in Table 5, it can be seen

that the ELF-DPC method takes first in terms of CR, at 0.2914.
The ELF-DPC algorithm has the fourth-highest top level in
terms of ACC, and the ELF-DPC algorithm is the first place in
terms of MMR.

We used standard protein complexes 1 as the positive training
set and standard protein complexes 2 as the test set. The results
are presented in Table 6. One can quickly find that ELF-DPC has
the best F-measure, MMR, Jaccard, and Total score on most
tested datasets. Although ELF-DPC did not obtain the highest
score in terms of CR, and ACC, the experimental comparison
results are similar, taking standard protein complexes 1 inTable 5
as the test set. According to the experimental results in Tables 1
and 2, in some cases, some algorithms that identify more protein
complexes achieve the highest MMR, such as PEWCC and
ClusterSS, which means that detection algorithms that detect
more protein complexes are suitable for MMR. Meanwhile,
the number of protein complexes identified by the ELF-DPC
algorithm is relatively small. However, it also achieves the
highest values on some datasets, indicating that identifying
protein complexes by the ELF-DPC algorithm can obtain a
better maximal one-to-one mapping to standard protein
complexes. On the whole, comparative experimental

TABLE 7 | Results of function enrichment test with different thresholds of p-value on Gavin and Krogan core.

Algorithms Num As <E-20 <E-15 <E-10 <E-5 Significant

Gavin

MCL 220 7.56 39(17.73%) 48(21.82%) 83(37.73%) 183(83.18%) 194(88.18%)
DPClus 285 6.09 30(10.53%) 49(17.2%) 88(30.88%) 182(63.86%) 208(72.98%)
CMC 294 5.83 43(14.63%) 57(19.39%) 82(27.89%) 171(58.16%) 206(70.06%)
ClusterONE 258 7.24 39(15.12%) 53(20.55%) 101(39.15%) 187(72.48%) 205(79.46%)
PEWCC 664 8.14 61(9.19%) 117(17.62%) 238(35.84%) 480(72.29%) 546(82.23%)
CPredictor2.0 266 6.04 29(10.9%) 51(19.17%) 122(45.86%) 231(86.84%) 244(91.73%)
WPNCA 484 16.62 125(25.83%) 180(37.19%) 281(58.06%) 423(87.4%) 449(92.77%)
Zhang 438 6.30 44(10.05%) 83(18.95%) 164(37.44%) 318(72.6%) 354(80.82%)
ClusterEPs 271 6.25 53(19.56%) 86(31.74%) 143(52.77%) 240(88.56%) 256(94.46%)
ClusterSS 482 5.62 63(13.07%) 95(19.71%) 167(34.65%) 336(69.71%) 368(76.35%)

487 5.36 50(10.27%) 83(17.05%) 147(30.19%) 324(66.53%) 368(75.56%)
ICJointLE 243 5.73 25(10.29%) 27(11.11%) 83(34.16%) 196(80.66%) 207(85.19%)
PC2P 219 6.91 17(7.76%) 11(5.02%) 40(18.26%) 106(48.4%) 119(54.34%)
ELF-DPC 286 8.81 59(20.63%) 104(36.36%) 154(53.84%) 244(85.31%) 262(91.6%)

265 8.66 65(24.53%) 89(33.59%) 140(52.84%) 231(87.18%) 244(92.09%)

Krogan core

MCL 370 5.91 82(22.16%) 119(32.16%) 173(46.75%) 275(74.32%) 293(79.18%)
DPClus 497 4.23 20(4.02%) 43(8.65%) 75(15.09%) 253(50.9%) 303(60.96%)
CMC 264 5.05 20(7.58%) 29(10.99%) 44(16.67%) 60(22.73%) 63(23.87%)
ClusterONE 240 5.27 44(18.33%) 75(31.25%) 121(50.42%) 202(84.17%) 216(90.0%)
PEWCC 383 10.16 152(39.69%) 205(53.53%) 277(72.33%) 358(93.48%) 377(98.44%)
CPredictor2.0 236 5.19 24(10.17%) 46(19.49%) 93(39.41%) 213(90.26%) 219(92.8%)
WPNCA 369 12.59 43(11.65%) 81(21.95%) 172(46.61%) 321(86.99%) 339(91.87%)
Zhang 326 5.41 37(11.35%) 65(19.94%) 118(36.2%) 259(79.45%) 279(85.58%)
ClusterEPs 410 6.18 59(14.39%) 95(23.17%) 168(40.97%) 341(83.17%) 365(89.02%)
ClusterSS 722 4.86 47(6.51%) 95(13.16%) 160(22.16%) 371(51.38%) 454(62.88%)

342 7.01 48(14.04%) 88(25.74%) 155(45.33%) 280(81.88%) 304(88.9%)
ICJointLE 216 4.41 16(7.41%) 21(9.72%) 68(31.48%) 184(85.18%) 192(88.88%)
PC2P 249 5.81 16(6.43%) 23(9.24%) 46(18.48%) 136(54.62%) 159(63.86%)
ELF-DPC 304 9.55 80(26.32%) 115(37.83%) 163(53.62%) 277(91.12%) 292(96.05%)

281 9.13 81(28.83%) 111(39.51%) 155(55.17%) 262(93.25%) 269(95.74%)

The bold values are the highest value of each metric of each PPI network.
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results show that ELF-DPC can achieve a higher Total score
than all the compared methods on all datasets, which means
that ELF-DPC performs better than these competitive
methods on most computational evaluation metrics in the
tested datasets.

3.4 ComparisonWith Functional Enrichment
Analysis
We further substantiated the biological significance of the
detected protein complexes by different methods by
comparing the p-value of the identified proteins in GO (Gene
Ontology) databases, which cover three domains: biological
process, molecular function, and cellular component. Since the
p-values of identified protein complexes are closely related to
their size (Wang et al., 2019), we need to perform a
comprehensive analysis of these statistics. Therefore, the
number of significantly identified protein complexes and the
percentage of them in different values of the p-value from 1E-
2 to 1E-20 were used to estimate their functional enrichment. We
analyzed the protein complexes discovered by ELF-DPC and
compared algorithms using the p-value test. Generally, a protein

complex with a lower p-value is significant. The functional
enrichment analysis results for these methods are shown in
Tables 7 and 8, where Num is the total number of identified
protein complexes, and AS is the mean of the sizes of identified
protein complexes.

AsTable 7 shows, for the PPI Gavin dataset, ClusterEPs obtains
a higher proportion of significantly identified protein complexes,
which reaches 94.46%, higher than our ELF-DPC. However, ELF-
DPC achieves a high proportion of significantly identified protein
complexes with a p-value ≥ E-15. For the Krogan core PPI datasets,
PEWCC attains a higher proportion of significantly identified
protein complexes than our ELF-DPC. The reason is that
ClusterEPs identifies the mean size of the identified protein
complexes (AS) as 10.16. The AS of our ELF-DPC is 9.55 and
9.13, respectively. Generally, the p-value of an identified protein
complex is closely associated with the size of the identified protein
complex. Then the p-value decreases gradually when the size of the
detected protein complexes increases (Wu et al., 2009; Peng et al.,
2014). As Table 8 shows, for the PPI dataset DIP, CPredictor2.0
obtains a higher proportion of significantly identified protein
complexes than our ELF-DPC. At the same time, ELF-DPC
achieves a high proportion of significantly identified protein

TABLE 8 | Results of function enrichment test with different thresholds of p-value on DIP and MIPS.

Algorithms Num As <E-20 <E-15 <E-10 <E-5 Significant

DIP

MCL 628 6.31 74(11.78%) 125(19.9%) 209(33.28%) 414(65.92%) 471(75.0%)
DPClus 909 4.28 45(4.95%) 64(7.04%) 112(12.32%) 364(40.04%) 470(51.7%)
CMC 1,192 3.81 90(7.55%) 150(12.58%) 304(25.5%) 692(58.05%) 829(69.54%)
ClusterONE 904 6.40 54(5.97%) 110(12.16%) 259(28.64%) 606(67.02%) 705(77.97%)
PEWCC 648 10.10 156(24.07%) 249(38.42%) 379(58.48%) 584(90.12%) 605(93.36%)
CPredictor2.0 293 4.54 18(6.14%) 49(16.72%) 124(42.32%) 274(93.51%) 285(97.26%)
WPNCA 623 12.41 81(13.0%) 137(21.99%) 228(36.6%) 431(69.18%) 481(77.21%)
Zhang 502 5.18 44(8.76%) 99(19.72%) 200(39.84%) 424(84.46%) 448(89.24%)
ClusterEPs 804 4.26 91(11.32%) 145(18.04%) 268(33.34%) 625(77.74%) 683(84.95%)
ClusterSS 2,375 3.57 156(6.57%) 253(10.65%) 437(18.4%) 1,047(44.08%) 1,289(54.27%)

2,179 5.74 110(5.05%) 230(10.56%) 501(23.0%) 1,332(61.14%) 1,574(72.25%)
ICJointLE 286 3.84 29(10.14%) 27(9.44%) 103(36.01%) 248(86.71%) 253(88.46%)
PC2P 441 6.25 25(5.67%) 14(3.17%) 45(10.2%) 185(41.95%) 230(52.15%)
ELF-DPC 564 14.43 140(24.82%) 186(32.98%) 289(51.24%) 512(90.78%) 542(96.1%)

545 12.77 142(26.06%) 203(37.25%) 307(56.33%) 493(90.46%) 517(94.86%)

MIPS

MCL 594 6.16 17(2.86%) 29(4.88%) 80(13.47%) 165(27.78%) 230(38.72%)
DPClus 207 4.94 17(8.21%) 27(13.04%) 85(41.06%) 169(81.64%) 184(88.89%)
CMC 408 4.87 30(7.35%) 49(12.01%) 101(24.76%) 234(57.36%) 278(68.14%)
ClusterONE 690 6.03 22(3.19%) 47(6.81%) 137(19.85%) 327(47.39%) 483(70.0%)
PEWCC 382 24.70 67(17.54%) 94(24.61%) 172(45.03%) 308(80.63%) 325(85.08%)
CPredictor2.0 265 4.60 19(7.17%) 40(15.09%) 118(44.52%) 249(93.95%) 258(97.35%)
WPNCA 527 18.27 60(11.39%) 103(19.55%) 234(44.41%) 436(82.74%) 471(89.38%)
Zhang 406 5.14 16(3.94%) 37(9.11%) 111(27.34%) 319(78.57%) 355(87.44%)
ClusterEPs 645 4.78 22(3.41%) 45(6.98%) 150(23.26%) 443(68.69%) 500(77.53%)
ClusterSS 1,266 4.22 33(2.61%) 70(5.53%) 176(13.9%) 607(47.94%) 752(59.39%)

1,581 5.81 25(1.58%) 67(4.24%) 237(14.99%) 845(53.45%) 1,069(67.62%)
ICJointLE 121 3.70 14(11.57%) 16(13.22%) 42(34.71%) 102(84.3%) 103(85.13%)
PC2P 374 6.29 7(1.87%) 4(1.07%) 41(10.96%) 171(45.72%) 202(54.01%)
ELF-DPC 483 9.33 109(22.57%) 166(34.37%) 246(50.93%) 441(91.3%) 463(95.85%)

469 8.86 105(22.39%) 155(33.05%) 253(53.95%) 437(93.18%) 458(97.66%)

The bold values are the highest value of each metric of each PPI network.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 83994917

Wang et al. ELF-DPC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 5 | An example protein complex identified by different methods on the Krogan core PPI network. For example, (b) ELF-DPC-1.0–10, which means that the
neighborhood affinity (Eq. 15) of ELF-DPC is 1.0, and it contains 10 proteins. Here, the red nodes are proteins that are correctly identified by this method, the yellow
nodes are proteins that are missed by this method, and the blue nodes are the proteins that are incorrectly identified by this method.
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complexes with p-value ≥ E-20. For dataset MIPS, ELF-DPC
performs better than other competing methods regarding the
proportion of significantly identified complexes.

Therefore, we can conclude that ELF-DPC could detect more
protein complexes with biological significance. Although some
detected protein complexes currently do not match known
protein complexes, they are more likely to be verified as
actual protein complexes by laboratory techniques. Based on
the above results, the protein complexes identified by ELF-DPC
have significant biological meaning.

3.5 Case Study
To clearly show the clustering results, we visualized the
208th standard protein complex of standard protein
complexes 1 in Figure 5. We define a format to allow
readers to obtain information. For example, (b) ELF-DPC-
1.0–10, which means that the neighborhood affinity (Eq. 15)
of ELF-DPC is 1.0, and it contains 10 proteins. Here, the red
nodes are proteins that are correctly identified by this
method, the yellow nodes are proteins that are missed by
this method, and the blue nodes are the proteins that are
incorrectly identified by this method. Figure 5 (a) shows that
there were 10 proteins in the 208th standard protein
complex. The clustering results of the other thirteen
methods (b) ELF-DPC, (c) ClusterONE and ClusterSS, (d)
CPredictor2.0, (e) PEWCC, (f) MCL, (g) ClusterEPs, (h)
ICJointLE, (i) CMC, DPClus, PC2P, (j) WPNCA, and (k)
Zhang are all from the Krogan core dataset. (c) ClusterONE
and ClusterSS, (d) CPredictor2.0, (e) PEWCC, (g)
ClusterEPs, (h) ICJointLE, (i) CMC, DPClus, PC2P, and
(k) Zhang only successfully identified part of the 208th

standard protein complex, and they also did not identify
some proteins. Meanwhile, (j) WPNCA and (f) MCL missed
some proteins and incorrectly identified some proteins.
However, our ELF-DPC method accurately identified 10
proteins and achieved the best performance in identifying
the 208th standard protein complex.

Moreover, Table 9 provides 16 protein complexes with vital
biological significance identified by the ELF-DPC algorithm in
four PPI networks, which provide helpful biological knowledge to
related researchers.

4 CONCLUSION

Although many protein complex detection methods have been
presented in the recent decades, the detection method with
excellent performance is still a bottleneck in bioinformatics. This
study presented an ensemble learning framework to identify protein
complexes according to the core-attachment structure of protein
complexes. First, a weighted PPI network was constructed by
integrating the gene expression data, gene ontology data, and
subcellular location data, as well as topological structure. Next,
we used the protein complex core mining strategy to find protein
complex cores. After that, we provided a newmodel trainingmethod
to construct a training dataset and then extracted various topological
features for training a VotingRegressor model to describe protein
complexes based on supervised learning. Furthermore, we defined
structural modularity for modeling the internal organization of
protein complexes. As a result, an ensemble learning model is
presented to guide the search for protein complexes. Finally, we
designed a graph heuristic search strategy for extending protein

TABLE 9 | The identified protein complexes with small p-values.

Num p-value GOID Gene ontology term

Gavin
1 9.72 641e-59 GO:0000 502 proteasome complex
2 4.53 112e-61 GO:0005 762 mitochondrial large ribosomal subunit
3 9.18 655e-68 GO:0030 686 90S preribosome
4 2.61 255e-65 GO:0030 532 small nuclear ribonucleoprotein complex

Krogan core

1 2.50 943e-71 GO:0000 375 RNA splicing, via transesterification reactions
2 1.21 735e-66 GO:0005 681 spliceosomal complex
3 7.46 423e-67 GO:0000 377 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
4 5.5 331e-62 GO:0003 899 DNA-directed 5′-3′ RNA polymerase activity

DIP

1 2.14 679e-64 GO:0042 254 ribosome biogenesis
2 5.5 228e-53 GO:0042 274 ribosomal small subunit biogenesis
3 5.18 295e-62 GO:0016 592 mediator complex
4 6.85 479e-66 GO:0097 525 spliceosomal snRNP complex

MIPS

1 1.22 375e-47 GO:0050 657 nucleic acid transport
2 1.27 336e-44 GO:0030 687 preribosome, large subunit precursor
3 1.58 322e-42 GO:0022 624 proteasome accessory complex
4 9.71 714e-32 GO:0000 124 SAGA complex
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complex cores to form protein complexes in the PPI networks. The
experimental results show that ELF-DPC performs better than other
competing methods. Moreover, our ELF-DPC can mine protein
complexes with high biological significance. Because our ELF-DPC
can not detect small protein complexes (size ≤2), we will consider
integrating other data sources (Tan et al., 2018) to identify small
protein complexes. In the future, we can infer drug-disease
associations by constructing a heterogeneous network consisting
of drugs, detected protein complexes, and diseases to unveil disease
mechanisms, and discover available drugs (Yu et al., 2015). In
addition, we also consider using graph attention networks and
deep learning methods to identify protein complexes.
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