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ABSTRACT
Objective: The present study identified novel renal tubular biomarkers that may influence the
diagnosis and treatment of focal segmental glomerulosclerosis (FSGS) based on immune
infiltration.
Methods: Three FSGS microarray datasets, GSE108112, GSE133288 and GSE121211, were down-
loaded from the Gene Expression Omnibus (GEO) database. The R statistical software limma
package and the combat function of the sva package were applied for preprocessing and to
remove the batch effects. Differentially expressed genes (DEGs) between 120 FSGS and 15 con-
trol samples were identified with the limma package. Disease Ontology (DO) pathway enrich-
ment analysis was conducted with statistical R software to search for related diseases. Gene set
enrichment analysis (GSEA) was used to interpret the gene expression data and it revealed many
common biological pathways. A protein-protein interaction (PPI) network was built using the
Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes were identi-
fied by the Cytoscape (version 3.7.2) plug-in CytoHubba. The plug-in Molecular Complex
Detection (MCODE) was used to screen hub modules of the PPI network in Cytoscape, while
functional analysis of the hub genes and hub nodes involved in the submodule was performed
by ClusterProfiler. The least absolute shrinkage and selection operator (LASSO) regression and
support vector machine recursive feature elimination (SVM-RFE) analysis were used to screen
characteristic genes and build a logistic regression model. Receiver operating characteristic (ROC)
curve analyses were used to investigate the logistic regression model and it was then validated
by an external dataset GSE125779, which contained 8 FSGS samples and 8 healthy subjects. Cell-
type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to cal-
culate the immune infiltration of FSGS samples.
Results: We acquired 179 DEGs, 79 genes with downregulated expression (44.1%) and 100 genes
with upregulated expression (55.9%), in the FSGS samples. The DEGs were significantly associ-
ated with arteriosclerosis, kidney disease and arteriosclerotic cardiovascular disease. GSEA
revealed that these gene sets were significantly enriched in allograft rejection signaling pathways
and activation of immune response in biological processes. Fifteen genes were demonstrated to
be hub genes by PPI, and three submodules were screened by MCODE linked with FSGS.
Analysis by machine learning methodologies identified nuclear receptor subfamily 4 group A
member 1 (NR4A1) and dual specificity phosphatase 1 (DUSP1) as sensitive tubular renal bio-
markers in the diagnosis of FSGS, and they were selected as hub genes, as well as hub nodes
which were enriched in the MAPK signaling pathway. Immune cell infiltration analysis revealed
that the genetic biomarkers were both correlated with activated mast cells, which may amplify
FSGS biological processes.
Conclusion: DUSP1 and NR4A1 were identified as sensitive potential biomarkers in the diagnosis
of FSGS. Activated mast cells have a decisive effect on the occurrence and development of FSGS
through tubular lesions and tubulointerstitial inflammation, and they are expected to become
therapeutic targets in FSGS.

ARTICLE HISTORY
Received 23 November 2021
Revised 16 May 2022
Accepted 16 May 2022

KEYWORDS
Focal segmental
glomerulosclerosis; tubular;
immune infiltrates; machine
learning; nuclear receptor
subfamily 4 group A
member 1; dual specificity
phosphatase 1

CONTACT Enlai Dai del@gszy.edu.cn Department of Anesthesiology and Surgery, GanSu University of Traditional Chinese Medicine, 35 Dingxi
Road, Chengguan District, Lanzhou city, Gansu Province, GanSu, 730000, China
� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RENAL FAILURE
2022, VOL. 44, NO. 1, 966–986
https://doi.org/10.1080/0886022X.2022.2081579

http://crossmark.crossref.org/dialog/?doi=10.1080/0886022X.2022.2081579&domain=pdf&date_stamp=2022-06-15
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


1. Introduction

Focal segmental glomerulosclerosis is a common regu-
lar renal disease that can lead to steroid-resistant neph-
rotic syndrome (SRNS) in both adults and children [1].
The incidence of FSGS varies from 1.4 to 21 cases per
million people and it can occur in any age group;
approximately 7–10% of children and 20–30% of adults
have nephrotic syndrome [2]. Untreated or primary
FSGS often presents with progressive renal inadequacy
and progresses to end-stage renal disease (ESRD). FSGS
causes considerable clinical and economic burdens, and
the presence of proteinuria in the field of nephropathy
would also increase the economic burden [3].

The majority of patients with FSGS suffer from non-
selective proteinuria, hypertension, renal impairment
and renal tubular dysfunction. Pathologically, patients
with FSGS often present with severe tubulointerstitial
lesions. Previous research has linked the degree of
tubulointerstitial injury with glomerular injury and sub-
sequent renal scarring formation [4]. Previous studies
have shown that an increased rate of tubular apoptosis
in a kidney primary biopsy is an independent predictor
of early FSGS progression to ESRD [5]. Chronic tubuloin-
terstitial lesions affect the FSGS prognosis, and tubular
interstitial fibrosis is an independent risk factor for
decreased renal function in patients with FSGS.

Current therapeutic molecular pathways include
inhibitors of the renin-angiotensin-aldosterone axis
(RAAS), sodium-glucose cotransporter 2 (SGLT2), endo-
thelin (ET), and novel pathways such as tumor necrosis
factor (TNF), Janus kinase/signal transducer and activa-
tor of transcription (JAK-STAT) signaling [6]. The exist-
ence of cyclic permeability in the plasma of FSGS
patients suggests that autoantibody reactivity is the
main cause of primary FSGS. During nephrotic syn-
drome, the leakage of plasma protein into the urinary
cavity leads to immediate local tissue damage, such as
increased extracellular matrix and the formation of
interstitial fibrosis [7]. Studies have indicated that infil-
trating immune cells, including antibodies against T
cells, B cells and macrophages, were found in renal
biopsies from NS [8], while the deposition of comple-
ment C3 was found in the proximal tubules of FSGS [9].

Proteinuria is a significant driving factor for the pro-
gression of tubulointerstitial inflammation and fibrosis,
leading to the activation of proximal tubular inflamma-
tory responses [10], which are performed by several
intracellular signaling pathways, such as induction of
tubular chemokine expression, tubular epithelial cell
atrophy/apoptosis induced by endoplasmic reticulum
stress, oxidative stress, inflammatory cell filtration in the
interstitium and persistent fibrosis [11]. Previous studies

have identified biomarkers in the proximal tubules,
such as megalin, cubilin, the neonatal Fc receptor
(FcRn), CD36, CD44, neutrophil gelatinase-associated
lipocalin (NGAL), kidney injury molecule-1 (KIM-1), fatty
acid transporter-2 (FATP2). Megalin is expressed on the
apical membrane of proximal tubules and has a funda-
mental effect on the reabsorption of proteins of various
molecular dimensions [12]. Cubillin is essential for tubu-
lar absorption of albumin, and megalin is required for
the endocytosis of the cubilin-albumin complex [13].
Meanwhile, megalin/cubilin participates in albumin-
induced tubular lesions followed by tubulointerstitial
inflammation [11]. FcRn has been implicated as the
"receptor" mediating albumin transcytosis, in collabor-
ation with megalin and cubilin, primarily selecting pro-
teins for lysosomal degradation [14]. CD36 is expressed
in tubular epithelial cells and it affects kidney lipid
metabolism as well as the binding and uptake of albu-
min in the proximal tubule, is significantly upregulated
in chronic kidney disease (CKD), and it plays a signifi-
cant role both in the diagnosis and therapy of renal
fibrosis [15,16]. Albumin induces proximal tubular epi-
thelial cells (PECs) to express CD44 by activating the
ERK signaling pathway [17]. The increase in NGAL pro-
duction and release from tubular cells after harmful
stimuli of various kinds, which levels clearly correlate
with the severity of renal impairment, probably express-
ing the degree of active damage underlying the chronic
condition [18]. KIM-1 is a scavenger receptor that is
upregulated on the apical membrane of proximal
tubules in proteinuric kidney disease [19]. NGAL is a
biomarker of distal tubular segments, while KIM-1 is a
biomarker that originated from proximal tubules [20].
FATP2 is an important apical proximal tubule nonesteri-
fied fatty acid transporter that regulates lipoapoptosis
and it may be a target for the prevention of CKD pro-
gression [21]. Researchers have confirmed [22] that
urine is a valuable source of proteins and metabolites,
in which a decrease in a-1 antitrypsin, E-cadherin, 39S
ribosomal protein L17, histatin-3 and matrix-remodeling
protein 8 and an increase in transferrin, uromodulin,
calretinin ubiquitin-60S ribosomal protein L40 and apo-
lipoprotein-A1 can be considered potential biomarkers
of FSGS.

Traditional studies are mostly based on a single
gene detection mechanism, and there is a lack of stud-
ies evaluating multiple genes and pathways during the
formation of FSGS. To enable a better understanding of
the immune mechanisms involved in tubulointerstitial
fibrosis and to investigate the pathogenesis and mech-
anism of FSGS, in this study, machine learning
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methodologies were applied to perform complete bio-
informatics analysis.

2. Materials and methods

We obtained relevant gene chips from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/), which are
freely available. The DEGs were analyzed using the
limma package with standard data processing. DO ana-
lysis was carried out by statistical R-software to search
for related diseases associated with FSGS. GSEA was
applied to reveal the gene sets and biological pathways
enriched in FSGS. The PPI network was then executed
on the STRING website (https://cn.string-db.org/).
Cytoscape software was used to identify hub genes.
MCODE was used to screen submodules of the PPI net-
work. Meanwhile, Gene Ontology (GO) functional anno-
tation of the hub genes and Kyoto Encyclopedia of
Genes and Genomes (KEGG) signaling pathway enrich-
ment analysis of the hub nodes involved in the sub-
module was performed by ClusterProfiler. LASSO
regression and SVM-RFE analysis were used to screen
for characteristic genes and build a logistic regression
model to make the results more accurate and standar-
dized. ROC curve analysis was used to investigate the
logistic regression model, which was validated by an
external dataset. Then, the CIBERSORT algorithm was
applied to calculate the immune infiltration of the
FSGS samples.

2.1. Acquisition of gene expression data files

The FSGS series of GSE108112, GSE133288 and
GSE121211 were downloaded from the GEO database
and they contain tubulointerstitial transcriptome
expression profiles. GSE108112 was annotated by
GPL19983 as a Series Matrix File, including 46 FSGS and
5 control samples. The same as GSE108112, GSE133288
was also annotated by GPL19983, including 69 FSGS
patients and 5 control samples. The GSE121211 Series
Matrix File was annotated by GPL17586, involving 5
FSGS patients and 5 control samples. Global analysis of
gene expression patterns in datasets of GSE133288 and
GSE108112 was performed by Affymetrix Human Gene
2.1 ST Array, while datasets of GSE121211 were
obtained from the Affymetrix HTA 2.0 microarray. The R
statistical software limma package [23] and the combat
function of the sva package [24] were applied to pre-
process and remove the batch effects of these three
datasets. After integrating the three profile datasets, we
identified a total of 20178 expressed genes.

2.2. Identification of DEGs associated with FSGS

In the present study, to determine the DEGs between
FSGS and healthy tissues, the adj. p< 0.05 and jlogFold
Changej > 1 were selected as the cutoff criteria. The R
statistical software “limma” package was applied to
extract the DEGs from genes we identified in the inte-
grated dataset, while the “pheatmap” and “ggplot2”
packages [25] were applied to construct the heatmap
and volcano plot to visualize these DEGs.

2.3. DEGs disease ontology pathway enrichment
analysis in FSGS

DO pathway enrichment analysis was conducted with R
statistical software “clusterProfiler” [26], “org.Hs.eg.db,”
“DOSE” [27] and “enrichplot” packages to analyze the
DEGs and discover disease associations of the inte-
grated dataset. Then, the “ggplot2” package was
applied to create a barplot to visualize the core
enriched diseases.

2.4. DEGs gene set enrichment analysis in FSGS

To interpret the gene expression data and reveal the
many biological pathways in common by focusing on
gene sets, DEG-related GO and KEGG enrichment analy-
ses were performed by GSEA [28], and comprehensive
bioinformatics analyses were conducted via the
“limma,” “clusterProfiler” and “org.Hs.eg.db” packages
of R. The “c2.cp.kegg.v7.4.symbols.gmt” and
“c5.go.v7.4.symbols.gmt” were downloaded from the
Molecular Signatures Database (MSigDB) and used as
background gene set data.

2.5. PPI network construction and
submodule analysis

The online database STRING [29] was applied to con-
struct a PPI network of the DEGs. In addition to explor-
ing the relationships among the DEGs, a confidence
score >0.7 was set as significant. Cytoscape software
[30] was then employed to analyze the interactive rela-
tionships of the candidate proteins and visualize the
PPI network. A novel Cytoscape plugin cytoHubba [31]
ranked nodes in a network by their network features,
and the maximal clique centrality (MCC) algorithm was
applied to identify the hub genes in this study.

Plug-in MCODE [32] was utilized to identify the hub
modules of the PPI network, with the criteria of degree
cutoff ¼ 2, node score cutoff ¼ 0.2, k-core ¼ 2, max
depth ¼ 100 and the minimum number of genes �4 to
recognize the main clustering modules as well as the
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most prominent clustering modules. Then, functional
analysis of the hub nodes involved in the submodule
was performed by ClusterProfiler.

2.6. Construction of the LASSO model and SVM-
RFE of candidate gene biomarkers in FSGS

Based on the DEGs, the present study utilized two
machine learning algorithms to screen characteristic
genes and construct diagnostic classifiers to mine the
genes associated with FSGS. LASSO regression [33] uses
regularization to improve the prediction accuracy and
was carried out with the “glmnet” package of R, for
which we set the response type as “binomal” and alpha
as “1.” SVM-RFE analysis [34] is a powerful tool for ana-
lyzing data with varieties calculators roughly equal to
or greater than the number of observations, especially
in the RFE-pseudo samples, which can be carried out
accurately for the analysis of biomedical data. The SVM
classifier was performed using the “e1071,” “kernlab”
and “caret” packages of R. Duplicated genes were iden-
tified from the two machine learning algorithms, repre-
senting candidate gene biomarkers in the renal tubules
of FSGS.

2.7. Value of gene biomarkers in FSGS

ROC curve analyses [35] were used to investigate the
logistic regression model and finally validated by an
external dataset GSE125779, which contained 8 FSGS
samples and 8 healthy subjects and was annotated by
GPL17586. The area under the ROC curve (AUC) synthe-
sized the predictive capacities of each variable, which
was applied to evaluate the gene biomarker effective-
ness in that subset range to discriminate FSGS from
control samples.

2.8. Analysis of immune cell infiltration in FSGS

CIBERSORT is a calculation method for the quantifica-
tion of the cell composition of complex tissues from
their gene expression profiles and should enable large-
scale analysis of RNA mixtures for cellular biomarkers
and therapeutic targets [36]. In the present verification,
the immune infiltration of FSGS tissues was calculated
by CIBERSORT. The “CIBERSORT” package of R was used
to quantify the relative proportion of 22 infiltrating
immune cells. Meanwhile, the “corrplot” package of R
was applied to conduct the correlation analysis of the
immune correlation between the gene biomarkers and
immune cells, while the “vioplot” software package was

applied to visualize the differences between FSGS
patients and controls.

2.9. Analysis of the correlation between DEGs and
immune cell infiltration

The relationship between the genetic biomarkers we
identified and immune cell infiltration was examined by
Pearson correlation analysis. The “ggplot2” software
package of R was used to visualize the results of the
correlation analysis.

3. Statistical analysis

According to the data type and characteristics, compari-
sons were made using the Mann–Whitney U test for
categorical variables and Student’s t-test for continuous
variables. R (version 4.1.1) was used to perform all stat-
istical analyses. All statistical analyses accepted p< 0.05
for two-sided tests as statistically significant.

4. Results

4.1. Acquisition of gene expression data files

According to the results of a comprehensive bioinfor-
matics analysis, we acquired 179 DEGs, which included
79 downregulated (44.1%) and 100 upregulated genes
(55.9%) in tubulointerstitial tissues from FSGS patients
compared to control samples (Table 1). Moreover, these
DEGs were visualized by a heatmap and volcano plot
(Figure 1).

4.2. DEG disease ontology pathway enrichment
analysis in FSGS

DO pathway enrichment analysis aimed to search for
related diseases by investigating the function of DEGs
via statistical R-software, and there was a significant
correlation with arteriosclerosis, kidney disease and
arteriosclerotic cardiovascular disease (Table 2).
Meanwhile, these major enrichment diseases were
visualized through a barplot (Figure 2) showing the top
10 significantly associated diseases.

4.3. DEGs gene set enrichment analysis in FSGS

GSEA was applied to perform DEG-related GO and
KEGG enrichment analyses. GO enrichment analysis was
carried out for three functional groups: biological proc-
esses group (BP), cellular components group (CC) and
molecular functions group (MF). Specifically, the gene-
set ontology results were significantly enriched in BP,
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such as activation of immune response and adaptive
immune response based on somatic recombination of
immune receptors that were active in tubular cells from
the FSGS group (Figure 3). KEGG signaling pathway
enrichment analysis showed that allograft rejection,
asthma, adhesion molecules cams, chemokine signaling
pathway, and cytokine receptor interaction signaling
pathways were mainly enriched in tubular cells from
the FSGS group (Figure 4).

4.4. PPI network construction and
submodule analysis

As illustrated in Table 1, the PPI network of 179 DEGs
was constructed using the STRING database to study
the interactions among the robust DEGs. With confi-
dence >0.7 and after hiding the disconnected nodes, a
total of 143 nodes and 108 edges were involved in the
PPI network. Then, the PPI data were imported into
Cytoscape software (Figure 5a). The MCC algorithm in
the Cytoscape plugin cytoHubba was applied to select
the top fifteen hub genes (Figure 5b). The results indi-
cate that early growth response 1 (EGR1), fos proto-
oncogene (FOS), fibronectin 1 (FN1), complement C1s
(C1S), cathepsin s (CTSS), complement c2 (C2), fosB
proto-oncogene (FOSB), complement c1r (C1R), cd2
molecule (CD2), transmembrane immune signaling
adaptor TYROBP (TYROBP), complement c1q c chain
(C1QC), complement c3 (C3), cd48 molecule (CD48),
NR4A1 and DUSP1 were contributing to FSGS. GO
enrichment of the hub genes is displayed in Figure 5c.
The top ten elements were significantly enriched in GO
categories. The BP group in the hub genes was signifi-
cantly enriched in regulation of immune effector pro-
cess, regulation of complement activation and
regulation of humoral immune response, in addition to
blood microparticles in the CC group and endopeptid-
ase activity in the MF group.

In addition, three key modules with a score � 3 and
genes � 4 were screened from the whole network by
MCODE (Figure 6a–c). In the robust DEGs in module 1
with a score of 3.778, CD48, CD52, CD53, C1QC, CD2,
C3, CTSS, C1R, C1S and C2 were hub nodes; in module
2 with a score of 3.333, DUSP1, NR4A1, FOS and FOSB
were hub nodes; and in module 3 with a score of 3.333,
hematopoietic prostaglandin D synthase (HPGDS), cyto-
chrome P450 family 2 subfamily B member 6 (CYP2B6),
cytochrome P450 family 3 subfamily A member 5
(CYP3A5) and cytochrome P450 family 4 subfamily A
member 22 (CYP4A22) were hub nodes. The enrich-
ment pathways of the three modules are displayed in
Figure 6d–e. The pathways in module 1 were mainly
enriched in pertussis, complement and coagulation cas-
cades, and the staphylococcus aureus infection path-
way; those in module 2 were mainly enriched in the
MAPK signaling pathway, amphetamine addiction and
the IL � 17 signaling pathway; and those in module 3
were mainly enriched in drug metabolism-cytochrome
P450, metabolism of xenobiotics by cytochrome P450
and the arachidonic acid metabolism pathway.

4.5. Construction of a LASSO model and SVM-RFE
for candidate gene biomarkers in FSGS

The present study utilized two machine learning algo-
rithms, the LASSO model and SVM-RFE, to mine the
gene biomarkers associated with FSGS from DEGS. By
LASSO regression, we extracted nineteen genes, which
narrowed the range of DEGs (Figure 7a). While using
the SVM-RFE algorithm, we mined six characteristic
genes in FSGS (Figure 7b). Meanwhile, two duplicate
genes between the machine learning algorithms were
identified, namely, DUSP1 and NR4A1, which were also
selected as hub genes by the MCC algorithm in
cytoHubba, as well as hub nodes involved in the sub-
module by the MCODE algorithm (Figure 7c). To valid-
ate the two identified genes, the diagnostic model was

Table 1. The differentially expressed genes in tubular cells between FSGS and normal controls.
DEGS Genes name

Down-regulated CYP4A22, FOS, ERRFI1, EGF, KLK1, CYP4Z1, PDK4, ALB, SNORD14E, MIR612, MT1A, DNAJB3, IFIT1B, SNORA11,NR4A1, TRPM6,
ZBTB16, SNORD59A, SNORA14A, SCN3A,FKBP5, MIR221, SCARNA4, MRO, SNORD104, IP6K3, NDNF,DUSP1, CYP3A5, MTNR1A,
RGS1, MT1E, ESM1, SNORD82,TIPARP, LOC644090, NR4A3, EGR1, PCOLCE2, LINC00853,LINC00473, APOH, PTPRQ, TUBGCP3,
FNDC9, DEPDC1B, SLC12A3, SLC25A33, SNORD59B ,FAM24B,TMEM207, RGS2, SLED1, GGACT, SORCS1, ZBTB20-AS1,GADD45B,
HRG, SNORD71, ZMAT1, KLHL3, CYP2B6,NUGGC, CYP27B1, GABARAPL1, SNORA79, PTPRO, AFM,SNORD67, N4BP2L2-IT2,
CHI3L1, DPY19L2, LEFTY1, CEL, FOSB, SNORA81,CCNL1, SNORA31, CLCNKA

Up-regulated CAPN6, CST6, LRRN4, APOBEC3G, CPA3, MPEG1, RNASE6,CD40, PLP2, LCP2, FN1, FLT3, FHL3, CD2, CD48, LCP1, C2, OAS3, CD53,
CD180, SPIN2B, IFITM1, SLAMF7, APOBEC3F,UCP2, FXYD5, TLR7, IFI6, ZYX, WFDC2, EMP3, LGALS1,HLA-DQA1, C1R, IGLV4-69,
ARPC1B, PXDN, TIMP1, TNC,TOP2A, IGHV3-15, SLC43A3, TMEM54, GPX8, PLTP, BGN,IFNAR2, HSPB6, CCL11, THBS2, SFRP2,
IGLV3-25, CD37, MFAP4, HPGDS,TRBV29-1, HAVCR1, FCER1G, TYROBP,COL6A3, IL2RG, C1S, LAPTM5, GZMA, CTSS,
APOC1,CYBB,COL3A1,TGM2,CCL5,C1QC,IGLV2-18, IGHV3-33,SLC34A2,IGKC, MOXD1, LCN2, LTF, IGHG4, SAA1, IGKV1-27,
CCL21,C3, MMP7, CCL19, CD52, IGLC7, IGKV1-17, HBB, HBA2,IGHM, IGKV2D-24, VCAN, IGKV4-1, SLPI, IGHA1, IGKV3-11, HBA1,
LYZ, REG1A
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Figure 1. DEGs in tubular cells between FSGS and normal controls. (a) The heatmap shows significant DEGs between FSGS and
normal controls. The X-axis represents the sample type, and the Y-axis represents the DEGs. (b) Volcano plot exhibiting DEGs
between FSGS and normal controls, downregulated genes and upregulated genes. The X-axis represents the logFC, and the Y-
axis represents the -log10 (adj. P.Val). P values < 0.05 indicate statistical significance. DEGs: differentially expressed genes.
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Table 2. The related diseases of the differentially expressed genes.
Term Genes Count q Value

DOID:2349-Arteriosclerosis LYZ,HBA1,EGF,CD40,LGALS1,FN1,CHI3L1,KLK1,CCL5,TNC,PLTP,CTSS,
UCP2,ALB,APOH,APOC1,SAA1

17 0.0007

DOID:557-Kidney disease DUSP1,FOS,COL3A1,MT1A,CYP3A5,EGF,CD40,RGS2,TIMP1,FN1,CHI3L1,
KLK1,CCL5,PTPRO,HLA-DQA1,C3,ALB,HAVCR1,LCN2

19 0.0007

DOID:2348-Arteriosclerotic cardiovascular disease LYZ,HBA1,EGF,CD40,LGALS1,FN1,CHI3L1,CCL5,TNC,PLTP,CTSS,UCP2,
ALB,APOH,APOC1,SAA1

16 0.0007

DOID:18-urinary system disease DUSP1,FOS,COL3A1,MT1A,CYP3A5,EGF,CD40,RGS2,TIMP1,FN1,CHI3L1,
KLK1,CCL5,PTPRO,HLA-DQA1,C3,ALB,HAVCR1,LCN2PTPRO,HLA-DQA1,
C3,ALB,HAVCR1,LCN2

19 0.0007

DOID:120-female reproductive organ cancer DUSP1,CCNL1,TGM2,FOS,EGF,VCAN,CD40,TIMP1,CHI3L1,KLK1,IFITM1,MMP7,
HLA-DQA1,TOP2A,SLPI,CCL11,LCN2,WFDC2

18 0.001

DOID:1936-atherosclerosis HBA1,EGF,CD40,LGALS1,FN1,CHI3L1,CCL5,TNC,PLTP,CTSS,UCP2,ALB,
APOH,APOC1,SAA1

15 0.0016

DOID:10952-nephritis DUSP1,COL3A1,MT1A,CD40,KLK1,CCL5,PTPRO,HLA-DQA1,LCN2 9 0.005
DOID:2916-hypersensitivity reaction type IV disease COL3A1,TIMP1,CHI3L1,TNC,HLA-DQA1,HAVCR1,IGKC 7 0.0054
DOID:1037-lymphoblastic leukemia MIR221,BGN,CYP3A5,CD40,PTPRO,CD52,MMP7,TOP2A,TLR7,CCL21,ALB,

CCL11,CCL19,IGHM,CD2,FLT3
16 0.0054

DOID:2394-ovarian cancer DUSP1,TGM2,FOS,EGF,VCAN,TIMP1,CHI3L1,KLK1,MMP7,HLA-DQA1,
CCL11,LCN2,WFDC2

13 0.0054

Figure 2. DO enrichment analysis revealed the relationship between DEGs and associated diseases. The significantly associated
diseases were visualized through a barplot. The X-axis represents the number of genes enriched in each disease, and the Y-axis
represents the disease name. p values < 0.05 indicate statistical significance. DO: disease ontology; DEGS: differentially
expressed genes.
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Figure 3. GSEA was used to perform DEG-related GO enrichment analyses. The results of GO analyses revealed the biological
functional pathways significantly enriched in tubular cells from the FSGS group (a) and the control group (b), especially in BP
annotation. The X-axis represents the rank in the ordered dataset, and the Y-axis represents the running enrichment score. p val-
ues < 0.05 indicate statistical significance. GSEA: gene set enrichment analysis; GO: gene ontology; BP: biological process.
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Figure 4. GSEA was used to perform DEG-related KEGG enrichment analyses. The results of the KEGG analyses revealed the sig-
naling pathways significantly enriched in tubular cells from the FSGS group (a) and the control group (b). The X-axis represents
the rank in the ordered dataset, and the Y-axis represents the running enrichment score. P values < 0.05 indicate statistical sig-
nificance. GSEA: gene set enrichment analysis; KEGG: kyoto encyclopedia of genes and genomes.
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Figure 5. PPI network construction and hub gene GO analysis. (a) The protein-protein interaction network of 179 DEGs were con-
structed with the STRING database. There were a total of 143 nodes, and 108 edges were involved in the PPI network. (b) The
cytoHubba plugin identified the top fifteen genes as hub genes in FSGS by the MCC method. (c) The top ten elements were sig-
nificantly enriched in GO categories: BP, CC and MF. The X-axis represents the gene ratio, and the Y-axis represents the GO cat-
egory name. p values < 0.05 indicate statistical significance. PPI: protein-protein interaction; GO: gene ontology; DEGS:
differentially expressed genes; STRING: a search tool for the retrieval of interacting genes; MCC: maximum correlation criteria; BP:
biological processes group; CC: cellular components group; MF: molecular functions group.
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Figure 5. Continued.
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established by a logistic regression algorithm (Figure 8).
The GSE125779 Series Matrix File was utilized to valid-
ate the expression levels of DUSP1 and NR4A1, which
were significantly lower in FSGS tubular samples than
in control samples.

4.6. Value of gene biomarkers in FSGS

The present study also utilized ROC curve analyses to
investigate the logistic regression model. Based on the
previous calculations, the candidate gene markers of
the FSGS renal tubules are useful for diagnosing FSGS.
The AUC was 0.952 (95% CI: 0.898–0.988) for DUSP1
and 0.953 (95% CI: 0.891–0.994) for NR4A1 (Figure 9).
Meanwhile, we validated the logistic regression model
with the external dataset GSE125779, and the results
demonstrated powerful predictive capabilities. The AUC
was 1.000 (95% CI: 1.000–1.000) for DUSP1 and 1.000
(95% CI: 1.000–1.000) for NR4A1 (Figure 10).

4.7. Analysis of immune cell infiltration in FSGS

The immune infiltration in FSGS was calculated via the
CIBERSORT algorithm. We contrasted the immune cell
components between the FSGS samples and control
samples. The results indicated that activated mast cells
(p< 0.001) and naive CD4 T cells (p¼ 0.0019) in the
FSGS group were remarkably lower than those in the
control group, while gamma delta T cells (p¼ 0.0026) in
the FSGS group were remarkably higher than those in
the control group (Figure 11a,b). The interaction
between immune cells is visualized in Figure 11c. The
results demonstrated that activated mast cells had a
significant negative correlation with resting mast cells
(r¼�0.22), while they had a significant positive correl-
ation with M1 macrophages (r¼ 0.25). CD4 naive T cells
had a significant negative correlation with CD8 T cells
(r¼�0.19) but a significant positive correlation with
M0 macrophages (r¼ 0.26). Gamma delta T cells had a

Figure 6. Submodule construction and KEGG pathway enrichment analysis of submodules. The three key modules screened from
the PPI network using the MCODE method with a score � 3 and genes � 4 were identified as submodules. (a) shows module 1
with an MCODE score of 3.778, (b) shows module 2 with an MCODE score of 3.333, and (c) shows module 3 with an MCODE
score of 3.333. (d–f) show the top 7 functional pathways associated with the genes in modules 1–3 through KEGG pathway
enrichment analysis. The X-axis represents the gene ratio, and the Y-axis represents the significantly enriched KEGG pathways of
the module. p values < 0.05 indicate statistical significance. KEGG: kyoto encyclopedia of genes and genomes; PPI: protein-pro-
tein interaction; MCODE: molecular complex detection.
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significant negative correlation with monocytes
(r¼�0.38) but a significant positive correlation with
M1 macrophages (r¼ 0.24).

4.8. Correlation Analysis between the identified
genes and immune cell infiltration

Pearson correlation analysis was applied to examine the
relationship between the two selected genes and infil-
trating immune cells. The results indicated that DUSP1
had a significant negative correlation with M1 macro-
phages (r¼�0.211, p¼ 0.014), while it had a significant
positive correlation with activated mast cells (r¼ 0.256,
p¼ 0.003) (Figure 12a). NR4A1 had a significant nega-
tive correlation with neutrophils (r¼�0.243, p¼ 0.005)
but had a significant positive correlation with plasma
cells (r¼ 0.266, p¼ 0.002), activated mast cells
(r¼ 0.235, p¼ 0.006), and naive CD4 T cells (r¼ 0.226,
p¼ 0.008) (Figure 12b).

5. Discussion

FSGS is a syndrome with a severe economic burden, a
low cure rate and many complications, and its occur-
rence and development are closely related to the
immune response. The tubule injury is closely corre-
lated with progressive loss of kidney function. The pro-
gression of segmental sclerosis in a single nephron to
global sclerosis, and the progression from glomerular
lesions to focal tubular atrophy and renal interstitial
fibrosis are important links in the progression and wor-
sening of FSGS to ESRD, this is why patients with FSGS
often have severe tubulointerstitial pathology.

The activation of the intrarenal complement system
is involved in the progression of renal disease, and the
proximal tubule is a central target of the activated com-
plement cascade and is the site where abnormally fil-
tered plasma proteins and complement factors bind
and promote injury [37]. In the present study, three
gene chips, GSE108112, GSE133288 and GSE121211,

Figure 7. LASSO model and SVM-RFE were used to mine the gene biomarkers of FSGS. (a) Nineteen genes were extracted as
gene biomarkers of FSGS via LASSO regression. (b) Six genes were extracted as gene biomarkers of FSGS using the SVM-RFE algo-
rithm. (c) A total of 2 overlapping genes between LASSO regression and the SVM-RFE algorithm were identified. LASSO: least
absolute shrinkage and selection operator; SVM-RFE: support vector machine recursive feature elimination.
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were downloaded from GEO datasets, and a follow-up
comprehensive bioinformatics analysis was conducted.
The GSEA results showed that the immune processes
and immune pathways were mostly associated with
FSGS. Based on the functional analysis of the hub genes
and hub nodes involved in the submodule, the results
strongly suggest that the immune response is also
closely related to the occurrence and development
of FSGS.

The complement system is a proteolytic cascade in
blood plasma and a mediator of innate immunity, one
of the main consequences of complement activation is
the recruitment of inflammatory and immunocompe-
tent cells. Inflammatory immune responses require
leukocyte recruitment to inflammatory sites by exogen-
ous inflammation. In order to carry out the important
immune functions in the inflammatory site, the blood
circulation of T lymphocytes must be arrested, adhered,

Figure 8. The present study utilized the GSE125779 Series Matrix File to validate the levels of expression of the two characteris-
tics, renal tubular samples of the control group and renal tubular samples of the FSGS group. (a) DUSP1 (b) NR4A1. The X-axis
represents the sample grouping, and the Y-axis represents the target gene expression. p values < 0.05 indicate statistical signifi-
cance. DUSP1: dual specificity phosphatase 1; NR4A1: nuclear receptor subfamily 4 group A member 1.

Figure 9. ROC curve analyses were used to investigate the logistic regression model. (a) DUSP1 (b) NR4A1. The X-axis represents
the (1-specificity), and the Y-axis represents the sensitivity. P values < 0.05 indicate statistical significance. ROC: Receiver operat-
ing characteristic; DUSP1: dual specificity phosphatase 1; NR4A1: nuclear receptor subfamily 4 group A member 1.
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migrated and transmigrated on the endothelial surface
and coordinate the progress of steps is coordinated by
cellular adhesion molecules, chemokines and selectins
presented on the endothelium [38]. These are consist-
ent with the functional enrichment confirmed in
this study.

Proteinuria is an indicator of the prognosis of pro-
gressive nephropathy. Abnormally filtered bioactive
macromolecules interact with PTECs, leading to the
development of proteinuric nephropathy [39]. Previous
studies have shown that albumin may stimulate prox-
imal tubular cells to secrete chemokines; if activated,
normal T cells are expressed and secreted, and the
macrophage migration inhibitory factor enters the basal
lateral culture medium. The polarized secretion of these
chemoattractants in vivo is intended to promote the
recruitment of monocytes and lymphocytes into the
renal intersection [40]. The mitogen-activated protein
kinase (MAPK) cascade is involved in the cellular func-
tions of cell migration, and it is well established that
activation of the extracellular signal-regulated kinase
(ERK) and p38 MAPK signal transduction pathways play
an important role in the inflammatory response [40].
Meanwhile, the p38 MAPK pathway is involved in TGF-
b1-induced epithelial-mesenchymal transition in renal
tubular epithelial cells [41], which may be implicated in
chronic kidney disease associated with proteinuria and
progressive tubulointerstitial injury.

Two specific genes were identified by the LASSO
model and SVM-RFE, DUSP1 and NR4A1, and they were
validated by an external dataset. DUSP1 is also called
MKP1, and the protein encoded by this gene can
dephosphorylate MAPK1/ERK2. DUSP1 has a decisive
effect on the inflammatory reaction, appears to be a
central mediator for resolving inflammation, and over-
expression of DUSP1 has been proposed as a significant
mechanism involved in GC actions [42]. Sheng J et al.
showed that DUSP1 reduced mitochondrial damage
caused by hyperglycemia, while a decrease in DUSP1
expression was related to glucose metabolism disor-
ders, renal dysfunction, renal fibrosis and glomerular
apoptosis [43]. Lu C et al. also showed that DUSP1 was
decreased in HK-2 cells under hyperglycemic condi-
tions, but in HG-treated HK-2 cells, overexpression of
DUSP1 fractionally regenerated the autophagic flux and
optimized the mitochondrial function. Meanwhile, by
increasing parkin expression, the production of reactive
oxygen species and cell apoptosis were decreased [44].

NR4A1, also called NUR77, is a regulator of tissue
responses and is associated with fundamental cellular
processes involving inflammation, proliferation, differ-
entiation, and survival [45], especially leukocyte infiltra-
tion and the release of cytokines in response to injury.
NR4A1 has been identified as an endogenous inhibitor
of the conversion of TGF-b signaling, which is a promis-
ing target for the recovery of mesenchymal

Figure 10. The GSE125779 Series Matrix File was used to validate the logistic regression model via ROC. (a) DUSP1 (b) NR4A1.
The X-axis represents the (1-specificity), and the Y-axis represents the sensitivity. P values < 0.05 indicate statistical significance.
ROC: Receiver operating characteristic; DUSP1: dual specificity phosphatase 1; NR4A1: nuclear receptor subfamily 4 group A mem-
ber 1.
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homeostasis and the treatment of fibrosis [46]. Zeng X
et al. showed that the loss of NR4A1 stimulated fibro-
genesis in mice with endometriosis by increasing TGF-
b-dependent elevated expression [47]. NR4A1 is
expressed in mouse kidney cells and cultured renal cell
lines [48]. Westbrook L et al. indicated that the severity
of tubular atrophy, tubular casts, and interstitial fibrosis

increased observably in NR4A1-deficient mice and was
coupled with a significant increase in immune cell infil-
tration, mainly macrophages and, to a lesser extent, T
cells and B cells, thereby increasing kidney damage and
renal dysfunction [49]. Wang S et al. showed that
JMJD1A/NR4A1 signaling could regulate the progres-
sion of renal tubular epithelial interstitial fibrosis in HK-

Figure 11. Correlation analysis of infiltrating immune cells. (a) The contrast of immune cell components between the control
group and the FSGS group. The X-axis represents the immune cells, and the Y-axis represents the fraction. (b) The differences in
immune cell infiltration between the control group and the FSGS group. The X-axis represents the sample type, and the Y-axis
represents the relative percent. (c) The correlation of the infiltration of innate immune cells. The X-axis and the Y-axis represent
the classification of immune cells. p values < 0.05 indicate statistical significance.
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2 cells [50], and maintenance of NR4A1 may be an
effective strategy for blocking renal tubulointerstitial
fibrosis and improving renal function in elderly individ-
uals [51].

Pharmacological and genetic studies indicate that
immune cell infiltration into the kidney amplifies the
disease process [52], so it is significant to calculate
immune infiltration by the CIBERSORT algorithm to find
multiple immune subtypes which were closely related
to crucial FSGS biological processes. Increased infiltra-
tion of gamma delta T cells and decreased infiltration
of activated mast cells and naive CD4 T cells may be
related to the development of FSGS through tubular
injury and tubulointerstitial inflammation.

In the correlation analysis, the gene biomarkers
DUSP1 and NR4A1 were both significantly correlated
with infiltrating immune cells and activated mast cells.
Mast cells (MCs) regulate inflammatory reactions as well
as tissue repair in human diseases and they increase
considerably in various renal diseases. Activation of
MCs regulates innate immunity and adaptive effector
responses, and several chemokines, cytokines, and pro-
teases released by MCs have been independently
observed in various kidney diseases. The MC-specific
protease tryptase is able to activate the GPCR protease
PAR-2, which is widely expressed in the kidney, espe-
cially in tubular epithelial cells, and its activation trig-
gers strong inflammatory and fibrotic reactions [53].

Figure 11. Continued.

982 J. BAI ET AL.



Figure 12. The relationship between the two selected genes and infiltrating immune cells. (a) DUSP1. (b) NR4A1. The X-axis rep-
resents the correlation coefficient, and the Y-axis represents the immune cells. p values < 0.05 indicate statistical significance.
DUSP1: dual specificity phosphatase 1; NR4A1: nuclear receptor subfamily 4 group A member 1.
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In contrast, there are contradictory reports on the
role of MCs in the pathogenesis of various renal dis-
eases. Miyazawa S et al. demonstrated that MCs play a
protective role in interstitial fibrosis with puromycin
aminonucleoside nephrosis by inhibiting heparin’s pro-
duction of TGF-b [54]. Kim DH et al. found that MC-defi-
cient mice had higher levels of renal tubular injury and
more interstitial fibrosis [55]. It was also demonstrated
that DUSP1 could inhibit the phosphorylation of MAPK
in MCs [56], while NR4A1 can function as a proinflam-
matory mediator in activated immune cells that regu-
late mucosal MC activation [57], the above are the
possible mechanisms how DUSP1 and NR4A1 acti-
vate MC.

Consistent with the previous evidence, our study
results show that activated infiltrating immune cells,
especially MCs, play a crucial role in FSGS, strongly indi-
cating that the immune response is an important factor
in its pathology, which should be the focus of
future research.

Due to the limited number of samples in this retro-
spective study, the functions of the two identified
genes and immune cell infiltration in FSGS were
deduced by bioinformatics analysis; hence, further
in vitro and in vivo experiments are required to validate
novel biomarkers in the future.

6. Conclusion

In this study, DUSP1 and NR4A1 were identified as sen-
sitive potential renal tubular biomarkers in FSGS diag-
nosis. Activated MCs have a significant effect on the
occurrence and development of FSGS and are expected
to become therapeutic targets.
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