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Atmospheric turbulence is an intrinsic factor that causes uncertainty of wind speed and its power generation by wind turbine.)e
research of atmospheric turbulence characteristics of wind farms can be used to reduce this uncertainty. In this paper, enough
measurement data getting from actual wind farms is used for information processing to quantitatively analyze the daily variation
of wind speed and its power output characteristics. Furthermore, the concept of spatiotemporal diurnal modulation charac-
teristics of atmospheric turbulence is proposed with a global scope, which is an intrinsic property of wind. Besides the daily
variation characteristics, the average hourly wind speed has a short-term modulation effect on its turbulence and provides a
modulation characteristic on wind speed uncertainty. Moreover, the long-term modulation process is affected by seasonal and
regional factors, indicating that it has spatiotemporal characteristics.)is atmospheric turbulence characteristic has similar effects
on characteristic description parameters. However, the characteristics description parameters of wind speed and wind power
variation fail to reflect such intrinsic characteristics that are not affected by the spatiotemporal diurnal modulation characteristics
of atmospheric turbulence. )is indicates that they do not have diurnal characteristics. Finally, a time-varying model combined
with the spatiotemporal diurnal modulation characteristics of wind speed and its power generation is discussed by applying on the
evaluation of frequency control in power systems. It is shown that the results obtained bymeasured data processing could improve
the power generation quality of large-scale wind power effectively.

1. Introduction

As one of the renewable resources, wind energy is being used
worldwide. Researchers from various countries have carried
out lots of work on the current status and future of wind
power in their countries [1–6]. Development of wind power
from the viewpoints of political, social, and technical issues
was analyzed in [7]. In China, wind power is the leading
energy development sector under the low-carbon develop-
ment policy, while a series of wind power development plans
were drawn up by the government [8–10].

However, the uncertainty in wind speed poses challenges
for the utilization of wind power [11–13]. In addition to

randomness and volatility, intermittency is another problem
that plagues the large-scale application of wind energy [14].
A series of strategies and paths covering the source sides,
grid sides, and load sides have been studied and explored to
use large-scale wind power safely and efficiently [2, 5, 15]. In
[16], China’s feed-in tariff mechanism for large-scale wind
power is shown. Moreover, the characteristics of Chinese
energy structure determine the developmental path of rapid
and deep peak regulation of thermal power [17, 18]. Several
novel methods were proposed for wind power to smooth the
output power of wind energy [19, 20].

Considering the uncertainty of wind energy on grid
connection, research work focuses on wind power
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prediction and how to do global dispatch planning and
design by prediction results [6, 21, 22], including data model,
physical model, and hybrid model [23–25]. )e continuous
development of artificial intelligence algorithms has further
expanded the scope of its application to new areas [26, 27].
Using data obtained from data-rich farm, high-dimensional
data features are obtained through a series of data extraction
methods and applied to newly built farm. )is transfer
learning research is attracting further attention [28].

However, prediction error cannot be avoided due to
wind speed uncertainty [29]. Further, quantitative charac-
terization of the wind speed and generated power’s per-
sistence and variation is also urgently needed [30]. In view of
the physical nature of the random fluctuation of wind speed
and the characteristic of wind power, several studies have
been carried out on their uncertainty, including instanta-
neous characteristics (power spectrum), short-period
characteristics (daily variation), and long-period statistical
characteristics.

In terms of the nature relationships of range to standard
deviation of wind fluctuations, the fluctuation variance
caused by turbulence is dependent on the mean wind speed
per hour [31]. Literature [32] tries to predict the turbulence
standard deviation of wind speed. Because of the importance
of long-period characteristics, the spatiotemporal comple-
mentarity between solar and wind power in the Iberian
Peninsula has been researched as the key problem [33, 34].
Additionally, wind speed variance is also an important
parameter to characterize wind and turbulence intensity.
Turbulence intensity can be used in fan safety design
[35–37], life analysis [38–41], and wind farm layout design
[42, 43] and, hence, has long been the focus of many
researchers.

Although characterization of the wind resource is im-
portant [44], the most significant one is the intermittency
caused by the inherent instability of atmospheric turbulence.
In [45, 46], the measurement and analysis of intermittency
for power generation and wind speed were performed based
on historical data of wind speed and wind power. Although
the intermittent characterization index of wind speed and
power has the characteristics of daily cycle, neither the
practical application of daily cycle nor the global perspective
on the summarized daily modulation has been discussed.

In fact, due to the existence of the diurnal modulation of
atmospheric turbulence, the diurnal periodic characteristics
are reflected in the average wind speed and temperature
[47, 48]. Many factors, such as atmospheric stability [49],
time scale [48], near-surface temperature, and turbulence
intensity [50], will all influence the wind characteristics.
)erefore, modeling and research on diurnal cycle char-
acteristics are also being carried out [51, 52].

In summary, the average wind speed followed by a
certain law has been deeply studied presently. Scholars have
studied several systematic algorithms on wind speed and its
generated power prediction. However, only few studies
study on turbulent wind speed due to the uncertainty caused
by turbulence, and only a few researchers have conducted
studies on turbulence intensity from the application aspects
of wind turbines’ life analysis and design of wind farm

layout. Although several researches have pointed that the
average wind speed, turbulence intensity, and temperature
show diurnal characteristics, there is no study that has
proposed the intrinsic characteristics of spatiotemporal
diurnal modulation of atmospheric turbulence from a global
perspective. Furthermore, there is also absence of a sys-
tematic analysis of the influences of diurnal modulation on
wind speed and wind turbine randomness, volatility, and
intermittency based on the essential characterization pa-
rameters of its output power.

In this paper, the spatiotemporal diurnal modulation
characteristics of atmospheric turbulence and their influence
on the indeterminacy of wind speed and power generation
are discussed. )e rest of this paper is organized as follows:
in Section 2, the spatiotemporal diurnal modulation char-
acteristics of atmospheric turbulence are proposed from a
global perspective based on the analysis of its physical
mechanism. In Section 3, the influence of spatiotemporal
diurnal modulation of atmospheric turbulence on wind
speed and its power production’s random fluctuation range
is analyzed based on their corresponding characterization
index called the variance. In Section 4, the law of the in-
fluence of spatiotemporal diurnal modulation of atmo-
spheric turbulence on the random fluctuation rate of speed is
analyzed by variation index. Furthermore, this method is
extended to analyze wind power fluctuation rate. In Section
5, the influence of wind speed and wind power intermittency
on turbulent spatiotemporal daily modulation is analyzed
based on the ramp duty ratio index. Moreover, another wind
power intermittency characterization parameter without
daily modulation is analyzed by the start/stop frequency of
the wind turbines. In Section 6, considering the fluctuation
range of wind speed and wind power as examples, the
quantitative characterization modeling of the uncertainty
and its introduction strategy in the evaluation of real-time
frequency modulation capability of power grid are used to
explore the feasibility of such spatiotemporal daily modu-
lation characteristics. )e seventh section is the conclusion
and prospection of the paper.

2. Intrinsic Properties of Spatiotemporal
Diurnal Modulation in
Atmospheric Turbulence

2.1. Diurnal Modulation and Spatiotemporal Characteristics
of Atmospheric Turbulence. Atmospheric turbulence is an
intrinsic factor of uncertainty in wind speed and the power
output of wind turbine. )is uncertainty performance in
atmospheric motion is attributed to the random fluctuation
of various sizes superimposed by its average wind speed and
wind direction. Similarly, it also applies to the power output
of wind turbines.

Turbulence is a different kind of motion that takes place
in the atmospheric boundary layer (ABL). )e factors af-
fecting its formation differ during day and night with
apparent diurnal periodic characteristics. Generally, the
turbine hub height is in the ABL. )e diurnal variation of
the sun rising in the east and setting in the west highly
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influences the convective motion of the ABL in a flat terrain
where surface roughness is uniform. )erefore, diurnal
variation can reflect the change in an underlying flat surface
in the boundary layer. However, the turbulence intensity in
the underlying surface layer of a complex mountainous
area is affected by the vortex flow around the local land-
form, leading to the formation of intense turbulence as
well, which is stronger than that caused by sunlight, where
diurnal period characteristics are submerged. )is influ-
ence, especially, is greater when the altitude closer to the
ground, leading to a greater turbulence than that at a higher
altitude. )e diurnal periods of flat areas, such as plains or
plateaus, have common features. For example, the time of
maximum turbulence intensity is similar. )erefore, the
diurnal period has spatiotemporal characteristics, which
are derived from the intrinsic characteristics of the tur-
bulence in ABL.

)e process of controlling one parameter of a signal
with another signal is defined as modulation in com-
munication systems. Based on the influence of the diurnal
period on turbulence and wind speed, this diurnal period
can be considered as the modulation of wind speed. In
other words, the diurnal period is a diurnal modulation
process of wind speed caused by a longer weather process,
and a diurnal modulation process of the atmosphere is the
physical mechanism for the existence of diurnal period
phenomenon in the turbulent part of wind speed and wind
power.)erefore, several characterization indexes of wind
speed uncertainty are affected by spatiotemporal diurnal
modulation of atmospheric turbulence, such as the av-
erage wind speed of wind farm, the output power of the
wind turbines, the random fluctuation part and internal
intermittency, and the average temperature (heat flux) of
the wind field. However, the descriptive parameters that
cannot reflect the inherent characteristics of wind speed
are not affected.

2.2. Other Recommendations. )e scheduling, control, and
planning arrangements in a power system have different
time scales.)e day-ahead prescheduling planning takes one
day as a computation period, while the real-time scheduling
and optimization control takes hours as the time scale.)ese
correspond to the 0∼24 h day-ahead forecast and 0∼4 h
ultra-short-term forecast of wind power, respectively.
)erefore, if the parameters related to wind power pre-
diction, such as the mean time value of wind speed and wind
power, wind power uncertainty, and intermittency, espe-
cially for the hourly scale statistic rules, have diurnal
modulation characteristics, it will have a guiding significance
for the day-ahead prescheduling planning and real-time
scheduling of primary and secondary frequency modulation
in the new energy power system after large-scale wind power
grid connection.

Autocorrelation analysis is a mathematical tool used to
find repeated patterns and analyze value functions or se-
quences of signal processing, such as a periodic signal
masked by noise. As for periodic sequences, the autocor-
relation sequence shows periodic change [43].

3. Influence Law of Turbulence Diurnal
Modulation on Wind Power Random
Fluctuation Range

3.1.QuantitativeCharacterization ofWindPower Fluctuation
Range. Generally, the actual wind speed can be divided into
hourly average wind speed and turbulent wind speed based
on Reynolds averaging. Research results show that the
turbulent part of the wind speed depends on the average
time strongly. A turbulence intensity model in international
IEC standard realizes the wind speed fluctuation range
(intensity). Subsequently, a universal model of turbulence
intensity was proposed [43], as given by the following
equation:

TI �
σ
]

� α · ]−β
+ c, (1)

where σ is variance of wind speed turbulence; ] is the
mean wind speed per hour; α , β, and c are constants.
Similarly, the model of single power and relative variance
for wind turbine or wind farm can be established. Ip, the
wind power fluctuation intensity, is the characteristic
parameter of power fluctuation range [40]. )e relative
variance is the unit value of the residual fluctuation
components after subtracting the mean value from the
actual wind power. Based on the wavelet algorithm, the
multiscale fluctuation intensity suitable for frequency
modulation capability evaluation can be obtained as the
minute-scale wind power fluctuation intensity Ipm and
secondary wind power fluctuation intensity Ips, shown in
equations (2) and (3), respectively.

Ipm �
σm

P
� αm × P

−βm + cm, (2)

Ips �
σs

P
� αs × P

−βs + cs, (3)

where σm is the instantaneous standard deviation of wind
power in minute-scale; σs is the instantaneous standard
deviation of secondary wind power; P is the mean wind
speed per hour; αm, βm and cm are the fitting constants of
minute-scale wind power fluctuation intensity; αs, βs, and cs

are the fitting constants of secondary wind power fluctuation
intensity.

3.2. &e Influence Law on Wind Speed Fluctuation Range.
)ere are many factors that affect the actual wind speed
fluctuation uncertainty, and the three-parameter power law
model also has a fitting error under certain conditions. )e
fitting error is defined as follows:

e � σ − α · ]−β
+ c ], (4)

where σ is the residual fluctuation standard deviation of the
actual wind speed after eliminating average.

Figure 1 shows the autocorrelation analysis of the fitting
error. It can be seen that the fitting error has strong diurnal
period characteristics, and the diurnal period change pattern
is different for the four seasons.
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)ere is an obvious diurnal periodic change pattern of
turbulence intensity combining the above analysis. Figure 2
shows the variation law of the model parameters within 24 h
obtained by fitting the data in Figure 1. It indicates that the
model parameters are variable throughout the daily cycle,
and the differences are relatively large, which cannot be
ignored.

Viewing from the perspective of wind turbine
scheduling and controlling, the average turbulence in-
tensity is defined by the effective section in the middle of
the cut-in/cut-out speed of the universal fan. As shown in

Figure 3, the average turbulence intensity in the wind
speed section, ranging from 3m/s to 25m/s, corresponds
to the hub height of the fan. )e calculation used is shown
in the following equation:

I �
1
n



n

i�1
Ii, (5)

where Ii is the turbulence intensity corresponding to the av-
erage speed range from 3m/s to 25m/s; n is the number of
samples within the average speed range from 3m/s to 25m/s.
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Figure 1: )e fitting error of the model and its diurnal period pattern. (a) Wind data in spring. (b) Wind data in summer. (c) Wind data in
autumn. (d) Wind data in winter.
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Figure 4 shows the diurnal period variation pattern of
different wind speed turbulence intensities obtained by the
fitting model. Figure 5 shows the diurnal period patterns of
different wind speed turbulence intensities obtained from
the measured data. All of them prove the existence of the
diurnal period change pattern of turbulence intensity.

Figures 6(a)–6(c) show seasonal and monthly variation
patterns of turbulence intensity in diurnal period, including
diurnal variation patterns of turbulence intensity in four
seasons and twelve months. It can be seen that the diurnal
period pattern of turbulence intensity in this region is affected
by the season and month. Generally, the average turbulence
intensity is the highest in spring and the lowest in winter. )e
maximum value of average turbulence intensity in a single
month occurs in May and September. In terms of the 24h
variation in a day, the maximum value occurs around 14 :
00∼15 : 00, and the minimum value occurs around 20 : 00 of
the same day∼08 : 00 of the next day. )e maximum value
occurs earlier in winter compared to other seasons.

All the investigated wind farms were located in typical
areas of northern China, but the diurnal cycle patterns of the
actual offshore wind farms were different. Land turbulence
intensity whose driving energy is predominantly from the
sun has a diurnal cycle variation pattern, and the difference
is mainly due to the difference in light intensity and illu-
mination time during different seasons and months. It
means that the diurnal modulation of atmospheric turbu-
lence has spatiotemporal characteristics.

To further illustrate the issue, the one-year data from
three wind farms in different regions are analyzed based on
effective average turbulence intensity parameters.
Figure 6(d) shows the diurnal characteristics of average
turbulence intensity in different regions. )e diurnal cycle
patterns of three wind farms differ with the time and lo-
cation. )e main reason for this is the wind farms located in
the different latitudes and longitudes. It means that the time
of sunrise and sunset is different, resulting in a time devi-
ation of the maximum value.

As shown in Figure 7, the influence of the sunshine on
the diurnal variation is weakened by complex topography
and varied surface roughness. Figure 8 shows the maximum
value of the average turbulence intensity corresponding to
the fan at the lowest altitude is nearly twice that of its
maximum value corresponding to the fan at the highest
altitude. )erefore, complex topography has a great influ-
ence on the average turbulence intensity. )e lower the
altitude, the greater it is affected by topography and
roughness. However, literature [43] does not elaborate on
these aspects.

3.3. &e Influence Law of Turbulence Diurnal Modulation on
Wind Power Fluctuation Range. )e diurnal cycle charac-
teristics of wind power fluctuation intensity are not men-
tioned in the existing literature. Figure 9 shows the diurnal
cycle characteristics of wind power fluctuation intensity of
the different fans in the same wind field. Due to the variance
of wind speed has diurnal cycle characteristics, the variance
of wind power also has diurnal cycle characteristics.
Moreover, the wind power fluctuation intensity corre-
sponding to different power values also has diurnal cycle
characteristics. However, after the conversion of wind speed
into energy by means of the fan, the regularity of the diurnal
cycle change of wind power fluctuation intensity is not as
apparent as that of the diurnal cycle change of wind speed
turbulence intensity.

4. Influence Law of Turbulence Diurnal
Modulation on Wind Power Random
Fluctuation Rate

4.1.QuantitativeCharacterization ofWindPower Fluctuation
Rate. Variational analysis is introduced in [41] to establish a
computing model of instantaneous wind speed variation
based on wavelet algorithm. In addition, the quantitative
characterization of wind speed fluctuation rate is realized
based on the dependence of wind speed variation on hourly
average wind speed, similar to turbulence intensity. )e
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variation of wind power also has the same characteristics.
We further defined the variable intensity of wind power χp as
the derived parameter to describe wind power variation
quantitatively, as given by the following equation:

χp �
c
∗
p(Δt) 

1/2

p
∗ � α · p

∗
( 

−β
+ c, (6)
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Figure 4: )e variation of turbulence intensities for different wind speeds within 24 h using fitting model.
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Figure 9: )e diurnal cycle of wind power variance in same wind field. (a) #19 turbine. (b) #39 turbine. (c) #69 turbine. (d) #119 turbine.
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where c∗p(Δt) is the relative variation of wind power; p∗ is
the unit value of the average hourly power; α, β, and c are
fitting constants.

4.2. Influence Law of Turbulence Diurnal Modulation on
Wind Speed Fluctuation Rate. In [41], one-month time
series data was used for autocorrelation analysis, which
adopted multitime interval variation calculation. )e results
show that the time lag of the variation function is a periodic
component in the time series, and the variation period is 1
day. )e regularity of diurnal cycle change pattern remains
constant with an increase in time interval. )e diurnal cycle
regularity becomes weaker only when the time interval
reaches a certain level. )e variation function of wind speed
has the same diurnal cycle pattern as the variance. )e time
series c(Δt), as in [41], has different time lags, and the
diurnal pattern of wind speed variation function is analyzed
in detail. c(Δt) is large from 8 a.m. to 6 p.m., especially at its
peak between 12 a.m and 4 p.m, and relatively small during
other times of the day. On the basis of [41], further analysis
reveals that diurnal cycle characteristics are not related to the
speed, and speeds at different sizes have similar daily cycle
characteristics shown in Figure 10.

4.3. &e Diurnal Period Characteristics of Wind Power
Variogram. Based on [41], the universality of the diurnal
period characteristics of wind power variogram is further
analyzed. As shown in Figure 11, the measured wind power
data of multiple Wind generators are selected. It shows that
wind power variogram is modulated by the diurnal process
and has an obvious diurnal period characteristics. However,
none of the present literature mentions the diurnal cycle
characteristics of wind power variogram. )erefore, we
extend the results of our research from characteristics of
wind speed to its producing wind power. In power grid
dispatching, the wind speed during noon has strong fluc-
tuations at a fast rate. )erefore, when the disturbance
caused by the power stroke of the grid is suppressed, it is
necessary to reasonably configure fans with different sup-
pression capacities to ensure safe and stable operation of the
grid.

5. Influence Law of Turbulence Diurnal
Modulation on Wind Power Intermittency

In [45], a quantitative descriptionmethod of intermittency is
proposed based on the duty ratio of abrupt change in wind
speed, which considers the atmospheric turbulence physical
essence. Furthermore, in [46], this kind of quantitative
description method is extended to the definition of wind
power intermittency, which is of great significance to the
power system.

In [45, 46], similar autocorrelation has been adopted to
analyze the measurement parameters of wind speed and its
generating power intermittently in detail. It was found that
the abrupt duty cycle parameters of wind power had obvious
diurnal cycle characteristics. Similar to the diurnal cycle of
wind power variance and variogram parameters, the steep

duty ratio between 8 a.m. and 8 p.m. is larger than other
times. It reaches its daily peak between 12 a.m and 4 p.m.
With similar statistical analyze methods, the results calcu-
lated on sufficient data from this farm but other months and
other wind farms are identical. A study on the daily-cycle
characteristic of the abrupt duty cycle of wind speed at
different time intervals showed that the diurnal cycle phe-
nomenon of the abrupt duty cycle of wind speed still exists.
)is proves the universality of the diurnal cycle phenom-
enon. )e abrupt change in the diurnal cycle phenomenon
of wind speed in duty cycle indicates that the wind power
intermittency is stronger during the day than during night.
Wind power intermittency reaches its daily peak between 12
a.m and 4 p.m. )erefore, the intermittent characterization
index reflects the intrinsic characteristics of wind power
uncertainty.

Although several parameters are used to characterize
wind power intermittency, these parameters that cannot
describe the nature of the intermittent wind speed and at-
mospheric turbulence also have no modulation effect.

6. Applications

6.1. Improved Wind Power Uncertainty Model Considering
the Diurnal Modulation Characteristics of Atmospheric
Turbulence. )e study of the diurnal modulation charac-
teristics of atmospheric turbulence on wind power uncer-
tainty has the following practical significances for the
utilization of wind power:

(1) )e diurnal period characteristics indicate that some
factors of turbulence will affect the parameters of
wind power variance and variogram model. )ere-
fore, the region, topography, seasons, and weather
patterns (such as sunny and rainy weather) will
influence atmospheric turbulence.

(2) )e diurnal period of wind speed variance is a re-
flection of the random fluctuation of wind speed.
)erefore, wind speed fluctuation range should be
larger when turbulence intensity is higher, instead of
a fluctuation range of equal widths.

(3) According to the diurnal period of the wind speed
variogram, the wind power change rate is unstable at
different times during a day, which means that
system operators must change their strategies in
different states. More specifically, complementary
power and control strategies that respond faster must
be provided to ensure the safe and efficient operation
of the new energy power system when the light
intensity is stronger.

(4) In addition, the diurnal cycle characteristics of wind
speed variance and variogram also have reference
value of the electricity price bidding for wind farm.
)e diurnal cycle characteristics of intermittency
indexes have a similar significance for the operation
of wind farms [53].

)e diurnal cycle characteristics of wind power have a
great impact on the precision of qualitative model fitting.
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According to the fitting effect of time-sharing model in [43],
we can further optimize the variation and intermittency
models. Taking the variance model as an example, the model
considering time-varying parameters has the higher fitting
accuracy [54]. )e time-varying parameter model is shown
in the following equation:

σ(t)

](t)
� α(t) · ](t)

−β(t)
+ c(t), (7)

where σ(t) is the variance of actual measurement wind
speed; ](t) is the mean actual wind speed per hour; α(t),
β(t), and c(t) are a group of constants obtained by data
fitting and time-sharing modeling.

As shown in Figure 12, the fitting error of this model
considers the characteristics of diurnal cycle. Compared
with Figure 1, the results show that this model has a great
fitting accuracy rather than the original one (equation (1)).

)e following four indicators of quantitative fitting effect
are statistically analyzed.

MNRE �
1
n



n

i�1

yri − yfi 

yri




,

MNSE �
1
n



n

i�1

yri − yfi 
2

y
2
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,

HASL � k ρk>0.6( ),

MAC �
1
n



n

k�1
ρk − min ρk( 


,

(8)

where MNRE andMNSE are mean normalized relative error
and mean normalized square error, respectively. yri and yfi

are the actual variance values calculated by using wind speed

data and obtained by using model fitting, respectively. HASL
andMAC are the mean of the highly autocorrelated step size
and autocorrelation coefficient, respectively. ρk is the au-
tocorrelation coefficient. k(ρk>0.6) is the step size corre-
sponding to ρk > 0.6.

Table 1 shows a comparison of the results. It can be seen
that the fitting-effect of the time-varying parameter model is
better than that of the original model.

6.2. Example Analysis of Frequency Modulation Capability
Estimation Considering the Diurnal Characteristic of Wind
PowerFluctuation Intensity. According to [40], the fluctuation
range measurement of wind power can be analyzed combined
with the primary frequency modulation (PFM) and secondary
frequency modulation (SFM) characteristics of thermal power
units. )e units for frequency modulation can be rationally
configured to meet the analysis requirements of frequency
modulation. )e fluctuation intensity of minute and second
wind power in a wind farm during a day was fitted, and the
corresponding fluctuation time series were calculated as follows:

(1) When curve fitting is carried out at all time periods,
the corresponding single-fitting parameter in
equation (2) can be obtained. Based on the fitting
model, wind power fluctuations in different time
scales are estimated. )e allocation scheme 1 is as
follows: the proportion of primary FM unit is 80%.
)e inequality of turbine generator unit δiA� 0.05.
)e proportion of secondary FM unit is 40%, and the
integral gain KA of secondary FM channel is 0.25. At
this time, formula 20 in reference [40] (DFPRA) of
the primary frequency modulation capability of the
system increases from 7.9523 to 15.9045, and for-
mula 21 in reference [40] (DSPR) of the secondary
frequency modulation capability increases from
11.9636 to 23.9273.
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Figure 10:)e diurnal cycle of different wind speed variation. (a) Wind speed: 3m/s, 6m/s, 10m/s. (b) Wind speed: 13m/s, 17m/s, 20m/s.
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Figure 11: )e diurnal cycle of different wind turbine power variogram in wind field. (a) #19 turbine. (b) #39 turbine. (c) #69 turbine. (d)
#119 turbine.
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Figure 12: Continued.
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(2) According to the diurnal modulation characteristics,
the data are fitted during a day. )e corresponding
power law model of wind power fluctuation in this
period is obtained subsequently. Based on the law
model of time-sharing wind power fluctuation, the
wind power fluctuation during this period can be

estimated accurately. So, scheme 2 is as follows: the
primary FM unit of share A is increased from 40% to
50%. )e range of turbo-generator set rate δiA is
reduced from 0.05 to 0.025. )e secondary FM unit
share is increased from 20% to 40%. )e integrator
gain KA is increased from 0.25 to 0.5. Such a system
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Figure 12: )e fitting error of time variant model considering daily cycle model. (a) Wind data in spring. (b) Wind data in summer.
(c) Wind data in autumn. (d) Wind data in winter.

Table 1: Statistical analysis of the fitting error.

Dataset
Original model Time-varied model

MNRE(%) MNSE(%) HASL MAC MNRE(%) MNSE(%) HASL MAC
1 47.53 13.90 8 0.1222 38.78 9.56 3 0.1091
2 36.12 15.21 8 0.2661 28.40 10.44 2 0.0943
3 27.73 7.68 2 0.1181 25.11 6.73 1 0.0658
4 33.41 10.87 5 0.1493 27.71 7.88 2 0.0853
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Figure 13: Comparison of simulation results of two different schemes.
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has the primary frequency capacity DFPRA in-
creasing from 7.9523 to 19.9004, and secondary
frequency modulation capacity DSPRA increased
from 11.9636 to 60.0533. )e system’s frequency
deviation after adopting the two schemes is shown in
Figure 13. It can be seen that the standard deviation
of the frequency fluctuation of the system
σ � 0.00003416 when scheme 1 is used in region A
being reduced to σ � 0.00002698 when scheme 2 is
used. )erefore, the time-sharing modeling method,
considering the daily modulation characteristics, can
achieve accurate estimation of wind power fluctua-
tions, realize the optimal allocation of FM units, and
provide a reference for the power grid dispatchers to
rationally allocate FM units.

7. Conclusion

Considering the physical nature of atmospheric motion, the
wind power uncertainty is studied in the present research.
)e influence of the diurnal cycle characteristic of atmo-
spheric turbulence on the fluctuation of wind speed and
wind power is studied in this paper. )e results show that
this characteristic itself is affected by season, latitude, lon-
gitude, and topography. However, its influence on wind
power fluctuation is weakened after the energy conversion
process. )en, we analyze the influence of the diurnal cycle
characteristic on the random fluctuation rate of wind power,
and wind power intermittency. )e results show that this
parameter has no influence on the wind speed and the
proportion of wind speed steepness but affects the duty ratio
of abrupt change in wind speed.

Based on this research, we propose a time-varying model
considering the diurnal cycle characteristic, and the fitting
error of wind speed and its power generation fluctuation
models are all smaller compared with the original models. At
the same time, the wind power fluctuation is estimated based
on the law model of time-sharing wind power fluctuation. In
the two simulation schemes, the standard deviation of the
system frequency fluctuation is reduced to 0.00003416 and
0.00002698, respectively, which verifies the validity of the
model.

)is paper presented the spatiotemporal diurnal mod-
ulation characteristics of atmospheric turbulence from the
perspective of real-time scheduling and optimal control of
power systems. )is is of practical significance for power
grid dispatchers to adjust the frequency modulation re-
sources in real time and ensure the safety and reliability of
system frequency.
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