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Abstract

Cellular behavior is controlled by the interplay of diverse biomolecules. Most experimental 

methods, however, can monitor only a single molecule class or reaction type at a time. We 

developed an in vitro Nuclear Magnetic Resonance spectroscopy (NMR) approach, which 

permitted dynamic quantification of an entire “heterotypic” network – simultaneously monitoring 

three distinct molecule classes (metabolites, proteins, RNA) and all elementary reaction types 

(bimolecular interactions, catalysis, unimolecular changes). Focusing on an 8-reaction co-

transcriptional RNA folding network, in a single sample we recorded over 35 time-points with 

over 170 observables each, and accurately determined 5 core reaction constants in multiplex. This 

reconstruction revealed unexpected cross-talk between the different reactions. We further observed 

dynamic phase-separation in a system of five distinct RNA binding domains in the course of the 

RNA transcription reaction. Our Systems NMR approach provides a deeper understanding of 

biological network dynamics by combining the dynamic resolution of biochemical assays and the 

multiplexing ability of “omics”.
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Introduction

The regulation of cellular behavior is complex, and emerges from the dynamic interplay of 

diverse biomolecules, including proteins, RNA and metabolites. Most experimental 

methods, however, can monitor only a single molecule class or reaction type at a time 

(catalysis, bimolecular interactions, unimolecular state changes), limiting our ability to 

measure complex cellular dynamics.

Furthermore, studies of networks often face a choice between biochemical methods – 

measuring dynamic (e.g. time-resolved) data only for a few network components, and 

"omics" methods – measuring a large number of components, but usually with little dynamic 

information in a single sample 1. This lack of dynamic data covering multiple network 

components is among the main limitations 2–4 in developing validated mechanistic, 

mathematical models for cellular networks, which are key to understand the underlying logic 

of these networks 5.

To address the above challenges, we sought to devise a Nuclear Magnetic Resonance 

spectroscopy (NMR)-based approach which would (i) allow to monitor “heterotypic” 

networks and pathways – involving different molecule or reaction types – entirely, in a 

single in vitro sample; and (ii) provide quantitative dynamic data for modeling of the 

network mechanisms. With certain limitations on molecule size and concentration (≲ 50-100 

kDa, ≳ 10-50 µM) 6,7, solution NMR can monitor any reaction type or molecular class in a 

wide range of conditions, including unfractionated cell extracts and living cells 8. The use of 

NMR to monitor reactions is common in chemistry 9, and in recent years, NMR has also 

been used to follow the dynamics of small-scale reaction networks in biology. However, 

those studies focused on individual molecule classes, i.e. metabolites 10–14, proteins 13,15,16, 

or RNA 17–19.

We sought to monitor a more complex network by NMR – that comprises a wide range of 

different molecule and reaction types. Co-transcriptional RNA folding is an important 

cellular process which simultaneously involves RNA, proteins and metabolites, and is still 

poorly understood. RNA molecules of the same sequence may form distinct folded 

structures, with distinct functions and fates, depending on the effectors present during RNA 

transcription 20,21. Insights are still limited on how the final RNA structures are influenced 

by co-transcriptional interactions of the transcribing RNA. The core reactions of the 

underlying network are RNA synthesis from metabolites, RNA folding and protein-RNA 

interactions (Fig. 1a). Our aims were (i) to design an assay to monitor all main components 

of the network simultaneously by NMR spectroscopy, using specific signatures of different 

molecules in NMR spectra; (ii) to establish a mathematical model explaining our 

observations; and (iii) to perturb the network with proteins and drug molecules to gain 

system-level insight into its dynamics. This assay revealed competitive weakening of 

specific hnRNP A1 protein-RNA interactions by unspecific nucleotide-bearing molecules, 

and exposed the dynamic phase-separation of proteins in the course of the RNA 

transcription. We termed this methodological approach "Systems NMR" – a potential 

generic name for NMR-driven reconstruction of biomolecular reaction networks.
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Monitoring a co-transcriptional RNA folding network

We first sought to investigate if the RNA binding protein UP1 (a natural fragment of hnRNP 

A1) would perturb the co-transcriptional folding of three cognate RNA hairpins of this 

protein: SMN1, SMN2 – two hairpins present in exon 7 of human SMN1 and SMN2 genes 

respectively 22, and the stem loop II (EV2) of the IRES of Enterovirus 71 23 (Fig. 1b). To 

distinguish the RNA-specific UP1 perturbations from other changes in the network 

dynamics (pH, nucleotide tri-phosphate concentrations), a fourth, “non-binding” RNA0 

(RNA zero) was designed and tested as a control (Fig. 1b and Methods).

In our experiments, the DNA template, the nucleotide tri-phosphates (NTPs), MgCl2, the 

pyrophosphatase and the RNA-binding protein are initially mixed in an NMR tube (Fig. 2a), 

and then transcription is triggered by addition of the T7 RNA Polymerase. The reaction 

network (Fig. 1a) is subsequently monitored for ~20 hours by repeating several NMR 

experiments (Fig. 2b,c,d and Supplementary Video 1): 1D (one-dimensional) 31P – to 

monitor the levels of metabolites and RNA, 1D 1H – to monitor RNA folding, and 2D (two-

dimensional) 1H-15N – to monitor protein interactions. Each set of measurements takes ~30 

minutes to record, yielding an overall dataset of ~120-160 NMR spectra with ~40 time-

points for each individual spectrum type. The combined number of resolved quantifiable 

NMR signals at each time point exceeded 170: 8 in the 31P spectrum (Fig. 2b), more than 20 

in the 1H spectrum (Fig. 2c), and over 150 protein backbone amide signals in the 2D 1H-15N 

spectrum (Fig. 2d). For quantitative modelling of the target network 10 signals were used 

(Supplementary Table 1): the 31P signals of inorganic phosphate (PO4 – referring to PO4
3– 

and its protonated forms), RNA phosphate, α, β and γ-phosphate of the NTP, α and β-

phosphate of NDP (Fig. 2b,e); the 1H imino signals of RNA uracils U5 (SMN1 and SMN2) 

or U4 (EV2) (Fig. 2f); and the 1H-15N signals of the selected UP1 residues reporting on 

RNA binding – His33 and Arg75 (Fig. 2g). In this study, these 10 signals were sufficient to 

quantify the key parameters of the target 8-reaction network. The data from remaining 

signals can still be used in subsequent studies to investigate the system in more detail. E.g. to 

analyse individual conversion rates of four NTPs, or to analyse RNA and protein 

perturbations not just via overall reaction constants, but with residue-level resolution.

Among the key features of NMR is the intrinsically quantitative nature of the observed 

signals, which permits direct determination of certain physico-chemical molecular properties 

with little or no calibrations. To quantify the metabolite and RNA concentrations, we 

measured the integrals of corresponding signals in 31P spectra (Fig. 2h). Linewidths of NMR 

signals combine information about the molecule size (tumbling rate) and dynamics (lifetime) 

of molecular states, we therefore measured the linewidths of the well-separated imino 

signals of the folded RNA in 1H spectra to quantify the RNA stability (Ura5, Ura4, Fig. 2i). 

The positions of NMR signals report on the chemical environment of the corresponding 

atoms. Therefore, to quantify the RNA binding to the protein, we measured the shifts in the 

positions of selected protein “reporter” signals, which shifted systematically in the 1H-15N 

spectra between the free and bound protein states as the more RNA was bound (His33, 

Arg75, Fig. 2j).
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In summary, a quantitative NMR assay was established with dedicated reporter signals 

(Supplementary Table 1 and Video 1) to monitor metabolite, RNA and protein dynamics in 

one sample.

Network model from NMR data

To integrate the measured data and evaluate our understanding of the network dynamics, a 

mathematical model combining ordinary differential equations (ODE) was formulated 

(Methods). The initial model consisted of 3 reactions: RNA synthesis, RNA folding and 

protein-RNA binding (Fig. 1a, reactions 1-3). Unexpectedly, a reduction in the total integral 

of 31P-containing species was observed over time (T1-relaxation-corrected), sometimes 

followed by sharp drops in the concentration of free PO4 at the end of the transcription (Fig. 

2h, first panel, blue trace). Further analysis revealed that the designed assay could also sense 

the formation of soluble MgHPO4 aggregates, which are not directly visible in solution 

NMR. Extension of the network model with the relevant reactions (Fig. 1a, reactions 4-8) 

allowed to quantify the MgHPO4 solubility, which matched the literature data (see below).

Correlating time-resolved concentrations of the synthesized RNA with the shifts of protein 

reporter signals within the same mathematical model, we could see that the established assay 

can sense the differences in UP1 protein affinity to the four tested RNAs. In particular, the 

smallest UP1 perturbations were observed in presence of the “non-binder” RNA0, 

intermediate perturbations observed with the “moderate”-affinity SMN RNAs, and strongest 

perturbations – with “high”-affinity EV2 RNA (Fig. 2g,j).

Validation of Systems NMR derived reaction constants

The behavior of a reaction network can be predicted at any concentrations of reactants if the 

constants – fundamental parameters – of all reactions are known. Deriving these 

fundamental constants from experimental data is one of the main goals of mathematical 

modeling of reaction networks. From a single NMR assay, we could determine the constants 

of 5 out of the 8 network reactions (# 1-3, 7-8, Fig. 1a), while the constants of the other 

reactions (# 4,5,6) were fixed (Methods and Supplementary Table 2). The five unconstrained 

constants were determined by fitting the mathematical model to the time-resolved NMR 

observables. For each RNA (RNA0, SMN1, SMN2, EV2) at least three NMR assay 

replicates were recorded and fitted (Supplementary Fig. 1). For validation, four out of five 

multiplex-derived Systems NMR constants – kcat, ΔG, KD, Keq,MgHPO4 – were compared 

with the constants derived by classical approaches, when a single reaction is perturbed at a 

time. Remarkably, all tested constants were in agreement with classical methods.

The equilibrium constant for the formation of soluble MgHPO4 aggregates (Keq,MgHPO4) 

showed an average value of 1.31 ± 0.06 mM, closely matching the 0.97 ± 0.05 mM value 

reported in the literature 24 (Fig. 3a).

The expected catalytic rate constant kcat = 0.26 ± 0.07 nt s–1 of T7 RNA Polymerase 25 

closely matched the average of 0.4 ± 0.12 nt s–1 for the three short RNAs in Systems NMR 

datasets (Fig. 3b). Both the literature reference and the NMR kcat constants are averaging the 

initiation and elongation phases of transcription. This is manifested in the roughly 2-fold 

Nikolaev et al. Page 4

Nat Methods. Author manuscript; available in PMC 2020 January 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



increase in the overall kcat = 0.73 ± 0.06 nt s–1 for the longer EV2 RNA (Fig. 3b), when the 

polymerase spends more time in the faster elongation phase.

Based on the measured UV-melting experiments (Supplementary Note 1), the free energy 

(ΔG) of folding of the two RNA hairpins (SMN1 and SMN2, differing by single base-pair) 

are expected to be –4.64 ± 0.15 and –6.02 ± 0.37 kcal/mol (Fig. 3c). Systems NMR 

measured –5.2 ± 0.1 and –5.6 ± 0.1 kcal/mol for the respective constants (Fig. 3c). SMN2 

stabilities thus matched within the standard deviation limits, while SMN1 stability was 

overestimated by ~0.3 kcal/mol in NMR compared to UV data. Analysis of the SMN1 U5 

imino signal peak shapes revealed partial peak doubling (Supplementary Fig. 2), suggesting 

that a more complex than a two-state model would be required for accurate analysis of 

SMN1 stability. RNA0 does not form hairpins, and the EV2 hairpin is too stable for the 

accurate UV-melting ΔG determination, therefore their stabilities were not evaluated.

Isothermal Titration Calorimetry (ITC) was used to validate the affinity constants (KD) of 

UP1 with the four different RNAs: one control (RNA0), the two hairpins of moderate-

affinity (SMN1, SMN2) and the "high"-affinity EV2 RNA. The ITC affinity constants were 

1,391 ± 331 µM for RNA0, 51.3 ± 2.5 µM for SMN1, 47.4 ± 19.7 µM for SMN2 and 5.1 

± 1.9 µM for EV2 (Fig. 3d and Supplementary Fig. 3). The corresponding constants from 

Systems NMR for the same four RNAs were 978 ± 162, 101 ± 29, 100 ± 20 and 11.1 ± 5.1 

µM, respectively, based on 3-4 replicate measurements for each RNA (Fig. 3d). Systems 

NMR appeared therefore accurate for the KD measurement of the unspecific RNA0 control, 

but showed systematically weaker binding for the three specific RNA targets. This level of 

weakening could originate from unspecific UP1 interactions with RNA aborts (2-8 nt in 

length) and with free NTPs. The ability of UP1 to bind RNA aborts is evident from its 1,391 

µM ITC-derived affinity to the “non-binding” RNA0, whose sequence matches the sequence 

of RNA aborts in all four RNAs. Affinity of UP1 to free NTPs was also experimentally 

confirmed by standard NMR titrations, measuring an overall KD,UP1-NTPs of 16,200 ± 2,100 

µM (Supplementary Fig. 4). RNA aborts increase from 0 to ~2,000 µM, and NTPs decrease 

from 20,000 to 5,000 µM during the transcription reaction (Supplementary Fig. 1), thus both 

of these can weaken the affinity of UP1 to specific RNAs under these conditions.

In summary, Systems NMR accurately quantified all core reaction constants of the target 

network in multiplex. All validated reaction constants matched the reference values with < 

2.5-fold difference.

RNA perturbations by proteins and small molecules

The reconstructed network was then perturbed by proteins and drug candidate molecules to 

gain insight into the network dynamics.

To probe the effect of protein on the folded RNA, the assays were performed under two 

conditions: “co-transcriptionally” – when the UP1 protein was added from the start and 

present during the entire period of RNA synthesis, and “post-transcriptionally” – when UP1 

protein was added only near the end of transcription. The experiments showed that UP1 

appears to (1) at least partially unwind the SMN2 hairpin; and (2) forms a 2:1 complex with 
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the EV2 RNA when UP1 is added post-transcriptionally, and only a 1:1 complex with EV2 

when UP1 is present co-transcriptionally (Supplementary Fig. 2).

To probe the effect of small molecules, the reactions with SMN2 RNA were performed in 

presence of drug candidates molecules, recently developed to correct the aberrant splicing of 

exon 7 from SMN2 gene 26. The experiments with SMN2 ESE1 suggested that under given 

co-transcriptional conditions one of the molecules may influence RNA folding, and another 

one – reduces RNA transcription rate (Supplementary Fig. 5).

Multiplexed monitoring of protein perturbations during RNA transcription

RNA binding proteins often synergize or compete for binding to the same RNA. For 

example the splicing of the SMN2 exon 7 is regulated by hnRNP A1, SRSF1, hnRNP G and 

Tra2-β1 27. To facilitate the multiplexed analysis of interactions in this system of several 

RNA-binding proteins, we devised two labeling schemes that visualized the protein-RNA 

interaction interfaces in the RNA Recognition Motifs (RRM) of these proteins in one sample 

at the same time (Fig. 4a-c and Supplementary Note 2). RNA transcription was then 

performed in the presence of five 15N-valine-labeled protein constructs mixed together (two 

independent RRMs in case of SRSF1), monitoring all valines and quantifying their 

perturbations in real time (Fig. 4d,e).

During the reaction, all observed constructs except SRSF1-RRM2 showed an unexpected bi-

modal response (Fig. 4e) – with valine signals first decreasing and then increasing their 

intensity, many without significant change in the signal positions. The samples showed 

evidence of Liquid-Liquid-Phase-Separation 28, which was confirmed by microscopy (Fig. 

4f and Supplementary Fig. 6). Notably, none of the protein constructs included disordered 

regions. The number of phase-separated droplets decreased more than 10-fold when the 

transcription was performed in presence of individual proteins at the same total 

concentration as in the mixture of five (Fig. 4g and Supplementary Fig. 6). This suggests 

that this RNA-dependent phase-separation is driven here not simply by high protein 

concentrations, but involves interactions between specific proteins.

Decrease followed by increase of protein NMR signal intensities in the absence of 

substantial change of the NMR signal positions suggests that the proteins phase-separate 

into larger assemblies at the start of transcription reaction, when RNA/protein ratio is low, 

and are partially re-dissolved later, when the RNA concentration increases. This matches the 

recently reported RNA-dependent phase-separation of hnRNP A1, TDP43 and FUS proteins 

in vitro and in vivo 29.

To evaluate whether the presented NMR setup could be implemented under physiological 

conditions, we measured nuclear concentrations of the UP1/hnRNP A1, SRSF1, hnRNP G 

and Tra2-β1 proteins in HEK293 cells, and found those to be 30, 7.6, 3.3 and 5.2 µM 

respectively (Supplementary Fig. 7). This is close to the current NMR sensitivity limits (≥ 

10-50 µM), suggesting that our setup, at least for hnRNP A1, can be tuned for observations 

under near-physiological conditions.
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Discussion

The derivation of individual catalytic 30, unimolecular 31 and bimolecular 32 reaction 

constants by NMR is not uncommon, but Systems NMR approach enables us to quantify a 

network with all elementary reaction types and main biomolecule classes in a single sample. 

Due to the non-destructive nature of NMR, each sample yields not just a snapshot of the 

network, but reveals its dynamics over time or another variable condition, thereby giving 

deeper insight into the network logic.

The different reaction constants determined from individual multiplexed NMR assays in our 

study appear accurate, showing < 2.5-fold difference with validation values (Fig. 3). The 

differences between network-based and single-reaction-based assays can reveal unaccounted 

cross-talk reactions, such as the unspecific interactions of UP1 protein with the abortive 

RNAs and free NTPs detected here. Our results correlate with the recent UP1 specificity 

screens 33 and suggest that in vivo UP1/hnRNP A1 protein affinity to specific RNA targets 

will likely be ~1000-fold weaker than the nM-range affinities anticipated from single-

reaction in vitro assays 23.

Another emergent behavior we detected was the RNA-driven in vitro phase-separation in a 

system of five protein domains (Fig. 4d), which was largely absent for individual domains 

under the same conditions. This observation suggests that Systems NMR could be used to 

probe structural perturbations of proteins in phase-separated droplets and membraneless 

organelles 29, an emerging research area with connections to various age-related disorders 
28. The method can resolve residue-level signals of multiple proteins at once, does not 

require chemical modifications of proteins and allows monitoring of enzymatic activities 

within the same assay.

NMR assay limits

One specific requirement of the assay developed here is the need to design a ~8-10 

nucleotide-long 5’ overhang RNA sequence which minimizes interference of short abortive 

RNAs with specific protein-RNA interactions and RNA folding. This sequence is designed 

algorithmically and can be used as a separate control to identify specific RNA effects from 

the other network perturbations.

More broadly, for a generic reaction network, present-day solution NMR permits the direct 

observation of rigid molecules below ~50-100 kDa in size 6,34 and at minimal concentration 

of ~10-50 µM 7,35. Under certain conditions, observation of 1 MDa complexes can be 

achieved 36, and in combination with hyperpolarization methods, molecules at sub-µM 

concentrations can be transiently observed 37,38.

For catalytic reactions, NMR permits quantification of kinetic (non-equilibrium) processes 

on the time-scales going from seconds to hours and days 39. For unimolecular reactions, 

many NMR techniques are available 31,40, potentially allowing quantification of low-

populated molecular states down to fractions of percent from the main species (~5-10 

kcal/mol in free energy difference). For bimolecular interactions, NMR currently permits 

direct quantification of dissociation constants in the low-µM to medium-mM range 32. And 
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by monitoring competitive displacement of weak-affinity ligands, also low-nM dissociation 

constants can be quantified 41.

As suggested by the selective labeling experiments shown here (Fig. 4) and the recent 

multiplexed NMR kinase assays 42, at least a few dozen of protein-focused reactions should 

be observable by NMR in one sample in parallel. The same multiplexing is also feasible for 

metabolites 43,44, but may be challenging for RNAs due to the higher degeneracy of their 

NMR signals 45.

While small molecule NMR signals can mostly be interpreted ab initio, the assignment of 

observed signals to specific molecular epitopes in macromolecules requires time. 

Nevertheless, the NMR signal assignments from ~7000 unique protein and ~600 unique 

RNA NMR structures are available in the Protein Data Bank (pdb.org), providing an already 

vast starting ground for NMR network reconstructions.

Mathematical ODE models of reaction networks can be easily formulated using Rule-Based-

Modeling 46, and computational methods exist to efficiently estimate network parameters 

and perform model selection 47–49, with virtually no limitations for moderately-large 

networks expected in NMR assays.

Applications

The generalized workflow in Systems Biology consists of four steps: experiment, modeling, 

prediction, and testing of predictions – often repeated iteratively 50. By uniquely providing 

both multiplexed and dynamic data from single samples at the first experimental stage, 

Systems NMR can accelerate the downstream development of accurate mathematical 

models, the understanding of network dynamics and the resulting predictions. Because NMR 

can dynamically monitor molecules in complex environments including living cells 10,12,13, 

the determination of true rates and constants for cellular networks in their natural context 

can generate reusable data for modeling and prediction of network dynamics.

Another advantage is that in vitro Systems NMR reconstructions provide experimental 

ground of intermediate complexity – between simplified single-reaction in vitro assays, and 

often very complex in vivo networks. Such moderate complexity may already reveal 

emergent network properties, like phase-separation of RNA binding domains observed here.

Considering specific applications, Systems NMR can give strong advance to the studies of 

"heterotypic" networks – involving different molecule and/or reaction types. For example, 

concurrent quantification of perturbations in different parts of a biochemical network like 

RNA transcription, folding and protein interactions observed here; or simultaneous 

quantification of catalysis and allosteric interactions in synthetic biology networks 51, or 

monitoring cross-talk between metabolic and signaling pathways 52,53.

In conclusion, combining the dynamic resolution of biochemical assays and the multiplexing 

ability of “omics”, we expect Systems NMR to pave the way to a deeper systems-level 

understanding of biological network dynamics both in fundamental and applied contexts.
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Online Methods

A Supplementary Protocol describing how to set up and analyze data using Systems NMR 

for the presented here network is available at Protocol Exchange (doi: 10.21203/rs.2.9160/

v1), and the most recent version at github.com/systemsnmr/ivtnmr.

RNA construct design

The sequence of the control RNA0 was designed algorithmically, using custom-built 

MATLAB scripts (github.com/systemsnmr/ivtnmr), from all possible sequences using four 

requirements: starts with G; contains no purine pairs – which are recognized specifically by 

UP1 protein; contains ≥ 30% purines – to reduce RNA Polymerase dissociation/abortion at 

initiation stage; does not form stable dimers or hairpins with itself or target SMN and EV2 

RNA sequences. This resulted in 7 variants, of which (5’-GCACCACACG-3’) was chosen, 

as it showed fewest unspecific signals in the NMR imino region during transcription. The 

hairpin RNAs included non-native single-stranded 5’ overhang matching the sequence of the 

control RNA0 – to make the abortive RNA products uniform in all constructs, and contained 

two non-native closing GC pairs to offset the instability caused by the 5’-single-stranded 

overhang.

DNA templates

For RNA transcription corresponding sequences were cloned into pTX1 vector 54 at SapI 

sites, using dsDNAs from commercial (Microsynth AG) single-stranded oligos: RNA0 

(ATAGCACCACACG, TCACGTGTGGTGC), SMN1 

(ATAGCACCACACGGGTTTCAGACAAAATCCG, 

TCACGGATTTTGTCTGAAACCCGTGTGGTGC), SMN2 

(ATAGCACCACACGGGTTTTAGACAAAATCCG, 

TCACGGATTTTGTCTAAAACCCGTGTGGTGC), EV2 

(ATAGCACCACAGGATCAATAGCAGGTGTGGCACACCAGTCATACCTTGATCC, 

TCAGGATCAAGGTATGACTGGTGTGCCACACCTGCTATTGATCCTGTGGTGC). 

Plasmids were purified using Nucleobond Xtra Midi kit (Macherey Nagel), final pellets 

washed three times with 70% ethanol, dried and linearized by BsaI (NEB) enzyme for 15 

hours at 50ºC in NEB3.1 buffer.

Proteins

All constructs and purification procedures were described earlier: UP1 55, SRSF1-RRM1 

and RRM2 56, Tra2-β1 57, hnRNP G 58. After purification proteins were transferred into 

transcription-NMR buffer (40 mM Tris-HCl, 0.01% Triton-X100, 5 mM Dithiothreitol 

(DTT), pH 7.7) by dialysis, flash-frozen and stored at –20ºC.

In vitro transcription in NMR tube

Reactions were performed at 30ºC, 40 mM Tris-HCl, 0.01% Triton-X100, 5 mM DTT, pH 

7.7 supplemented with 5 mM of each nucleotide-triphosphate (AppliChem), 24 mM MgCl2, 

1 U/ml Inorganic Pyrophosphatase from baker’s yeast (Sigma), 5% D2O, 50 µM 4,4-

dimethyl-4-silapentane-1-sulfonic acid (DSS), 280 nM T7 RNA polymerase and 33 nM 

DNA template. Proteins were 150 µM – in single-protein reactions, and 83 µM of each 
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protein – for multi-protein reactions. In multi-protein experiments 50 mM L-Arg and 50 mM 

L-Glu (AppliChem) were added to reduce protein aggregation, which have likely also 

reduced the systems’ propensity for phase-separation. T7 RNA Polymerase was purified at 

4ºC using Ni–NTA HisTrap chromatography (GE Healthcare), and stored at 70 µM 

concentration in 25 mM Tris-HCl pH 8, 50 mM NaCl, 0.5% β-mercaptoethanol (β-ME), 

50% w/v glycerol at –20ºC.

NMR experiments

Experiments were measured on Bruker AVIII-600 MHz with CPQCI cryoprobe, and 

consisted of repeating series of 1D 1H-watergate (spectral width (SW) 22 ppm; acquisition 

time (AQ) 0.62 s; D1 (interscan delay) 1 s; number of scans (NS) 128), 2D 1H-TOCSY (SW 

10 / 9 ppm; AQ 0.17 / 0.018 s; D1 0.5 s; NS 4), 1D 31P (SW 50 ppm; AQ 0.66 s; NS 256; 

carrier –8.22 ppm; D1 0.8 s), 1D 1H-SOFAST (SW 24 ppm; AQ 0.053 s; D1 0.1 s; NS 1536; 
1H excitation with Pc9 pulse, 5 ppm wide, centered at 12.9 ppm) and 2D 1H15N-SOFAST-

HMQC (H/N: SW 16 / 23.5 ppm; AQ 0.106 / 0.035 s; D1 0.2 s; NS 24; 15N carrier 117.8; 
1H excitation with Pc9 pulse, 4 ppm wide, centered at 7.95 ppm). BEST-TROSY 2D 

HN(CO) for analysis of selectively labeled proteins was provided by Frank Lohr (BMRZ, 

Goethe Universitat Frankfurt) and measured with (H/N: SW 12 / 16 ppm; AQ 0.107 / 0.090 

s; D1 0.2 s; NS 16; 15N carrier 117.8; 1H excitation with Pc9 pulse, 4.2 ppm wide, centered 

at 8.5 ppm). NMR spectra were sorted, processed and analyzed using TopSpin 3.x (Bruker), 

custom-built Python and MATLAB scripts and the rbnmr routine (Nyberg N., RBNMR, 

MATLAB Central File Exchange #40332, (2013)). Chemical shifts of protein residues in 2D 

HN spectra were traced in CARA (cara.nmr.ch).

NMR observables

For final network modelling 10 signals were used: 31P spectra – 1) PO4, 2) RNA, 3-5) 

αNTP, βNTP, γNTP, 6-7) αNDP, βNDP; 8) 1H spectra – U5 (SMN1/2) or U4 (EV2) imino 

signals; 9-10) 2D HN spectra – His33 and Arg75 residues of UP1. Populations of phosphate-

containing species were calculated stoichiometrically from 31P integrals using αNTP 

integral at time=0 as 20 mM internal calibration. Each 31P integral was T1-relaxation-

weighted using the ratios of corresponding integrals measured in the reference 31P spectra 

with 30 s and 0.8 s interscan delay at the end of the transcription reaction, i.e. [I31P, corrected 

= I31P × (I31P ref, d1=30s / I31P ref, d1=0.8s)]. NTP and NDP populations were quantified from 

αP integrals, MgHPO4 was calculated from decrease of the total T1-weighted 31P integral of 

all species. For long RNAs (>≈ 20 nt), the 1D 31P signals became too broad, preventing 

accurate quantification at a reasonable time-resolution, so RNA concentrations were 

calculated from the decay of NTP signals. Due to the NMR signal degeneracy, the fractions 

of RNA and aborts could not be quantified within the NMR assay, and were fixed to 30 and 

70%, by nucleotide mass, based on quantitative UV(260 nm)-HPLC analysis of reaction 

end-products.

The fraction of bound UP1 protein was derived from the chemical shift perturbation (CSP) 

of HN signals of His33 and Arg75. These residues were chosen as reporters for two reasons. 

Firstly, they appeared to sense the same molecular epitope in all four protein:RNA 

complexes, as they all displayed signals moving in the same direction during transcription 
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(Fig. 2g). Based on the existing UP1-RNA/DNA structures (PDB: 4YOE, 2UP1), these two 

residues are located near the RNA binding pocket, but are not directly interacting with the 

RNA, which explains how they could sense the same epitope changes independent of the 

RNA sequence. Secondly, these signals were sensitive to the differences in affinity of the 

RNA binding, as the magnitude of the 1H-15N chemical shift perturbation varied for four 

different protein:RNA complexes (Fig. 2g,j). In assays with 150 µM UP1 concentration, both 

signals appeared predominantly in fast exchange with respect to the NMR time scale, and so 

the fast exchange assumption 59 was used during modeling. The experimental HN CSPs 

were calculated using Δ HN = ( ΔH2 + ( Δ N × 0.2)2)/2) . The effect of pH change on 

histidine signal position was assumed negligible because the transcription buffer pH = 7.7 is 

far from the histidine pKa ≈ 6, and the chemical shifts of other surface-exposed UP1 

histidines did not exhibit the same perturbation effects. Calculating the fraction of the bound 

protein under the fast exchange regime requires information on protein signal positions in 

the free and fully bound states. The shifts of the bound state are usually estimated as one of 

the parameters of the KD fitting procedure, as the asymptote of the protein saturation curve. 

The 150 µM UP1 protein data did not approach this saturation under the assay conditions, 

because of the low protein:RNA ratio, since the final concentrations of specific RNAs 

reached only ~120 µM, giving only ~0.8:1 RNA:protein ratio. Addition of pure RNA to 

saturate the protein under these conditions consistently led to protein precipitation, which 

correlates with UP1’s ability to phase-separate and aggregate in presence of RNA. 

Therefore, to estimate the HN signal positions of His33 and Arg75 in the saturated protein, 

an additional set of transcription experiments was recorded using 20 and 30 µM UP1 and the 

“high-affinity” EV2 RNA. This allowed to increase protein saturation by reaching ~6:1 and 

4:1 RNA:protein ratios (~120:20 and 120:30 µM respectively) at the end of the reaction. Due 

to the poor NMR sensitivity at 20-30 µM protein concentrations, the 2D HN spectra in these 

experiments required ~10 hour acquisition time, and could only be recorded as non time-

resolved spectra at end of transcription reaction, when the system reached equilibrium. The 

combined CSP data from the datasets with high (150 µM) and low (20-30 µM) protein 

concentrations gave an imperfect fit with the single-site binding model, suggesting that UP1 

is already close to saturation in the assays with 150 µM protein concentration 

(Supplementary Fig. 8). This is likely due to additional weak UP1 binding sites in the EV2 

RNA, as suggested by Arg75 peak splitting in assays with 20-30 µM UP1 concentration. The 

chemical shifts of His33 and Arg75 residues in the fully saturated protein state for the final 

ODE modeling of the four main datasets (RNA0, SMN1, SMN2, EV2 at 150 µM UP1) were 

taken as the shifts giving best fit when simultaneously fitting the data from EV2 RNA 

datasets with 150, 30 and 20 µM UP1 protein concentration (Supplementary Fig. 8).

All above 31P and HN data was used for global parameterization of the ODE model, and 1H-

imino signals were used for lineshape analysis and RNA ΔG derivation.

Mathematical modeling

The model was built using the BioNetGen language 60 and resulted in 8 rate equations and 9 

differential equations:

Rate equations
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v1(synthesis o f RNA) = kcat, RNA ⋅ NTP

v2F, 2R(RNA f olding) = analytical solution, see below (1)

v3F(binding o f protein to RNA) = kon ⋅ protein ⋅ RNA (2)

v3R(dissociation o f protein • RNA complex) = ko f f ⋅ [protein • RNA] (3)

v4(synthesis o f aborts) = kcat, Aborts ⋅ NTP (4)

v5(hydrolysis o f pyrophosphate) = kcatPPi ⋅ PPi

v6F, 6R( f ormation o f Mg • NTP complexes) = fixed constant, see below (5)

v7F( f ormation o f MgHPO4 salt) = kprecip ⋅ PO4 (6)

v7R(dissociation o f MgHPO4 salt) = kdissolve ⋅ MgHPO4 (7)

v8(dephosphorylation o f NTPs) = kdephos . NTP ⋅ NTP (8)

Differential equations

dNTP
dt = − v1 − v4 − v8 (9)

dRNA
dt = +

v1
rna length − v3F + v3R (10)

dPO4
dt = + 2 ⋅ v5 − v7F + v7R + v8 (11)

dPPi
dt = + v1 ⋅ rna length − 1

rna length + v4 ⋅ aborts length − 1
aborts length − v5 (12)

dMgHPO4
dt = + v7F − v7R (13)
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dNDP
dt = + v8 (14)

dAborts
dt = +

v4
aborts length

(15)

dProtein
dt = − v3F + v3R (16)

d RNA . Protein
dt = + v3F − v3R (17)

At the given hairpin stability (≈ –5.5 kcal/mol) the SMN and EV2 RNAs are predominantly 

in a single state (99,99% folded). The expected rate of hairpin folding (v2F = 8-51 * 103 s–1 

for ~30 nt hairpin) 61 is three orders of magnitude faster than protein-RNA encounters at the 

unbiased diffusion rate (~105 M–1 s–1) 62. For these reasons the final ODE model treats the 

folded and unfolded RNA as a single species, and the stability of RNA is derived 

independently from imino signal lineshape analysis at each reaction time point (see below). 

Because of the sequence identity with abortive products, RNA0 length is used as a weighted 

sum of 10 nt full length RNA0 and the 4 nt average length of corresponding abortive 

products: 0.3 * 10 + (1–0.3) * 4 = 5.8 nt. The final ODE model was deposited in BioModels 
63 (MODEL1812270001).

Model fitting

The ODE model was fitted to the seven NMR-based observables employing the gradient 

based Trust-Region method, using a custom-built set of MATLAB routines (github.com/

systemsnmr/ivtnmr) based on earlier code 47. Model parameters, their boundaries and initial 

optimization conditions are given in Supplementary Table 2. The experimental errors were 

assumed to follow a Gaussian distribution and the standard deviations of individual data 

points were calculated from spectral noise for 31P integrals, and from the variance of protein 

HN chemical shifts at the end of the reaction (when the network is approaching equilibrium 

state). The values and standard deviations of the derived network parameters were obtained 

with two alternative approaches. In the first method, we calculated the standard deviation 

between estimates that were obtained in independent ODE model fits of several NMR 

replicate datasets, varying batches of the protein and/or DNA template preparations (Fig. 3 

and Supplementary Fig. 1). In the second method, parameter uncertainties were estimated 

with bootstrap analysis. Here, we generated 200 model fits using resampling of the full data 

vector with replacement. The confidence intervals obtained by bootstrapping 

(Supplementary Fig. 9) were narrower than the variability between the 3-4 experimental 

replicates, and therefore the values from the replicate analysis were chosen as the ones more 

realistically reflecting the parameter variance.
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Derivation of final constants

The enzyme (280 nM T7 RNAP) is assumed to be saturated by the substrate (4-20 mM 

NTPs) during the reaction, so the KM can be ignored and the concentration of the active 

enzyme can be defined by the limiting concentration of the DNA template (33 nM).

kcat =
kcat, RNA + kcat, Aborts

33 nM concentration o f DNA template
(18)

Because reactions # 3 and #7 (Fig. 1a, protein binding and aggregation of MgHPO4) 

equilibrate faster than the time-resolution of the current setup, only the equilibrium constants 

(Keq, KD – ratios of kinetic rates) for these reactions could be parameterized.

Keq = KD =
ko f f
kon

(19)

Pyrophosphate hydrolysis can be quantified from the specific PPi observable, but this rate 

was too rapid for meaningful quantification. Therefore, this constant was fixed based on the 

enzyme activity provided by the manufacturer (Sigma).

kcatPPi = 1 mM min−1
(20)

The formation of soluble Mg-PO4 aggregates depends on the concentration of the free Mg. 

Apart from Mg-PO4, the free Mg can also participate in Mg-NTP and Mg-RNA complexes. 

The fraction of the free Mg was estimated from the published KD,Mg.NTP = 0.3 mM 64, using 

the general bimolecular binding isotherm 67 denoted with 𝑓 in the equation below. For the 

calculation the concentration of free Mg available for Mg-PO4 salt formation was assumed 

constant during the reaction.

Mg f ree
= f Mgtotal, NTPtotal, KD, Mg . NTP = f 24, 20, 0.3 = 5.1 mM (21)

Keq, MgHPO4 =
kprecip
kdissolve

⋅ 1
Mg f ree

(22)

RNA folding ΔG from imino signal lineshape analysis

For fitting, 1D 1H-SOFAST spectra were Fourier-transformed with no apodization function. 

Imino signals were fit to a single-lorentzian function using the lorentzfit routine (Wells J., 

Lorentzfit, MATLAB Central File Exchange #33775, (2015)). The fits used 0.2 ppm fitting 

window, and assumed a baseline fixed at zero signal intensity. In the single-lorentzian fit, the 

intrinsic broadening of a signal cannot be distinguished from broadening due to overlapping 

signals, thus accurate quantification requires well-resolved signals. The fitted linewidth 

parameter (full width at half maximum) was used to derive the unfolding-driven imino 

exchange rate (kex,unfolding).
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kex = linewidth ⋅ π (23)

kex = kex, un f olding + kex, base − f lipping + R2 (24)

The contribution of B0 field inhomogeneity (R2(B0)) is considered negligible. The combined 

contribution of base-flipping (kex,base-flipping) 31 and transverse relaxation rate (R2) was 

determined from linewidths of imino signals in purified, SMN2 hairpin additionally 

stabilized by terminal GCs (13-bp, GGCGGGUUUUGGC-AGAC-GCCAAAAUCCGCC). 

In this stabilized RNA the exchange by global unfolding is suppressed (ΔG = –23 kcal/mol), 

which was confirmed by the negligible dependence of its imino integrals on temperature (not 

shown). The combined (kex,base-flipping+R2) value for imino signals in an U-A pair flanked 

by GU and UA pairs, under transcription buffer conditions, was 61.4 s–1.

Imino linewidths depended on pH (concentration of imino-exchange catalyst), indicating 

that the system is under the bimolecular exchange regime (“EX2”) 65, and hence the 

measured kex reports on the equilibrium constant of RNA unfolding/opening (Keq,unfolding = 

Kop). The intrinsic exchange rate kex,intrinsic (same as the exchange from the open state, 

kex,open) in the transcription buffer was measured to be ~106 s–1 for both UTP and GTP, 

using a protocol described elsewhere 66. The final free energy of folding was determined 

using:

Keq, un f olding =
kex, un f olding
kex, intrinsic

(25)

Δ G f olding = − Δ Gun f olding = R ⋅ T ⋅ log (Keq, un f olding) (26)

Where R is the gas constant and T is the absolute temperature.

RNA purification

RNAs for ITC and UV-melting experiments were purified by anion-exchange HPLC under 

denaturing 6 M Urea, 80ºC conditions, followed by n-butanol extraction, snap-cooling and 

lyophilization.

UV temperature-melting

For the melting experiments the RNA hairpins were produced without the single-stranded 5’ 

overhang to eliminate UV baseline distortions caused by this single-stranded region. The 

experiments used 2 µM RNAs in 10 mM Sodium-Cacodylate, pH 7.35, 5 mM MgCl2, 25 

mM L-Arg/L-Glu buffer. Details of the analysis shown in Supplementary Note 1.

ITC

Experiments used conditions approximating those at the end of transcription-NMR reaction: 

40 mM Tris-HCl, 0.01% Triton-X100, 2.5 mM β-ME, pH 7.5, 37 mM NaPO4, 2.6 mM 

NTPs, 24 mM MgCl2, 303K. DTT was replaced with β-ME due to its instability and 
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background heat changes. For each RNA an RNA-to-buffer titration was performed and 

subtracted from the RNA-to-protein data. Data from the first injection point was discarded. 

To better represent the pool of unspecific RNAs in the transcription reaction, RNA0 was 

purified as a combined pool of 2-10 nt RNAs from transcription reaction. The concentration 

of this RNA0+aborts pool was normalized by the average size of 5.8 nts based on HPLC-

UV-weighted composition of the corresponding transcription mixture (30% full length RNA 

* 10 nt + 70% aborts * 4 nt average). For RNA0, SMN1 and SMN2 RNAs the ITC data was 

fitted with the one-site interaction model using MicroCal Origin (Supplementary Fig. 3a-c). 

A one-site KD was needed for all RNAs to compare it with the one-site binding model used 

in the ODE analysis. The standard fitting protocol of MicroCal Origin encountered local 

minima when fitting the one-site model to the EV2-UP1 ITC data (likely due to the known 

bi-modal binding of UP1 to this RNA 23). Therefore for EV2-UP1, the apparent one-site KD 

constant was derived as a mean of three different fitting protocols (Supplementary Fig. 3d-

g): (1) high-affinity KD from two-site model in MicroCal Origin, (2) one-site KD fitted using 

stoichiometric 1:1 equilibrium model in Affinimeter software (affinimeter.com), and (3) one-

site KD fitted using general ligand:target equilibrium binding isotherm 67, which 

parameterizes only KD constant (without considering ΔH) and assumes N=1. All three 

fitting procedures yielded comparable KD for EV2-UP1 binding (4.8, 7.1 and 3.3 µM).

Perturbation experiments

Post-transcriptional perturbations by UP1 protein were performed by adding, 13 hours after 

transcription start, 67.5 nmol of 15N-UP1. Protein was ~1500 µM concentration, to achieve ≤ 

10% dilution of the mixture. In small-molecule perturbation experiments, the SMN2 ESE1 

transcription mixture was spiked co-transcriptionally with 200 µM of one of three molecules 

(NVS-SM1, smn-C5 and smn-C7 26 in 1% DMSO), or 1% DMSO alone. In these 

experiments SMN2 DNA template used an earlier version of the 5’-overhang sequence (5’-

GCGCCGUA-3’), before it was optimized at three positions (3,7,8) to reduce its self-

complementarity.

Imino signal broadening upon UP1 protein binding

Imino signal linewidths could be primarily influenced by the (1) changes in kex exchange 

rate of iminos due to unfolding of the stem, (2) kex changes due to base-flipping, and (3) line 

broadening due to enhanced transverse relaxation (R2) and B0 field inhomogeneity (R2(B0)). 

Thus, overall linewidth equals Δν1/2 = (kex, unfolding + kex, base-flipping + R2 + R2(B0))/π. 

Contribution of B0 field inhomogeneity is considered negligibly small. The R2 relaxation 

increase upon formation of a 1:1 RNA:UP1 protein complex was estimated to be 41/π Hz, 

given 22.25 kDa UP1 mass, at 303K, in phosphate buffer saline (0.001 kg m−1 s−1), 

assuming spherical shape of the protein with rw=2.4 Å hydration layer, and R2 = 5*τc 

(correlation time) 69.

Cell culture and nuclear extracts

Extracts were prepared using published procedures 68 from HEK293 cells grown to 

confluence.
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Mass Spectrometry for quantification of specific protein concentrations in cells

Pure recombinant uniformly 15N-labeled proteins were spiked into nuclear extracts at 

0.15-0.2 µM concentration. Resulting extracts were reduced, alkylated and digested using 

trypsin prior to peptide desalting and purification as previously described 70. Selected 

reaction monitoring (SRM) on a triple-quadrupole mass spectrometer was used for targeted 

proteomic measurements. SRM assays were generated as previously described 71 by 

selecting the 4-5 most intense transitions from samples with pure 15N-labeled recombinant 

proteins digested with the same protocol. Sum peak areas of transitions for each peptide 

were used to calculate the intensity ratio between 15N reference and 14N endogenous peptide 

signals. The mean and standard deviation of all peptides for each protein were used to find 

the concentration of endogenous proteins in nuclear extracts.

Selective labeling

Proteins were expressed in minimal M9 medium supplemented with 15N-Val and 13C-Phe, 

and with all amino acids and nucleosides in unlabeled form (Supplementary Table 3). A 

limiting amount of unlabeled Phe/Val was added for transaminase suppression. 13C/15N-

labeled amino acids were added only 10 minutes before induction. Cells were harvested 3-5 

hours post-induction.

Statistics

Statistical analyses and experiment replicate numbers, where applicable, are described in the 

corresponding figure legends and method sections. Unless otherwise indicated the derived 

values and error bars correspond to the mean ± s.d.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Molecules and reactions of the target co-transcriptional network.
(a) Organization of reactions in the reconstructed network: [1] RNA transcription, [2] RNA 

folding, [3] binding of regulator protein to RNA (dashed line indicates that protein can also 

bind to the unfolded RNA), [4] formation of RNA aborts, [5] hydrolysis of pyrophosphate 

(PPi), [6] formation of Mg NTP (nucleotide triphosphate) complexes, [7] formation of 

MgHPO4 salt aggregates, [8] dephosphorylation of NTPs to NDPs (nucleotide diphosphates. 

merged ovals indicate that NMR observables of free and Mg-bound nucleotide-phosphates, 

e.g. NTP and MgNTP, cannot be separately discriminated). PO4 refers ambiguously to 

multiple states of phosphate ion, including PO4
3– and its protonated forms. Indirectly 

observed MgHPO4 species is shown with dashed contour. Non-observable species – Mg, 

pyrophosphatase (PPase), RNA Polymerase (abbreviated with RNA Pol), DNA template – 

are shaded. Metabolites, proteins and RNA are shown in ochre, rose and grey respectively.

(b) Protein and RNA variants used in Systems NMR experiments. To make the products of 

the abortive RNA transcription uniform in all constructs (panel (a), reaction 4), the hairpin 

RNAs include a non-native single-stranded 5’ overhang matching the sequence of the 

control RNA0. The hairpins include two non-native closing GC pairs to offset the instability 

caused by the 5’-single-stranded overhang. The single C>U mutation between SMN1 and 

SMN2 RNAs is highlighted in orange. Abbreviations, ESE1 – exonic splicing enhancer 1, 

UTR - untranslated region, SL2 – stem-loop 2.
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Figure 2. NMR observables, data and mathematical model fits used for network 
parameterization.
(a) Sample composition, 450 µL NMR tube with 150 µM UP1 protein, 33 nM T7 RNA 

Polymerase, and 20 mM starting NTPs, from which 0.1-0.4 mM RNA is synthesized by the 

end of transcription. (b,c,d) Full spectra recorded in the NMR assay. (e,f,g) Selected, time-

resolved, spectra regions used for network quantification. From 1D 31P spectra (b,e) the 

PO4, RNA, PPi, NDPs and NTPs species are quantified using integrals of the corresponding 

signals. From 1D 1H spectra (c,f) the folded RNA is quantified using linewidths of imino 

proton signals. 2D 1H-15N spectra (d,g) show a “fingerprint” of all amino acid 1H-15N 

moieties in the protein, and the positions of selected reporter residues at the RNA binding 

interface are used to quantify protein-RNA interaction. Experiments were repeated at least 

three times independently, using different batches of protein and/or DNA template, with 

similar results (n = 3 (RNA0, SMN1), n = 4 (SMN2, EV2).

(h,i,j) Time-resolved quantified observables used for network parameterization (circles), and 

the resulting model fits (solid lines). (h) Integrals from 31P spectra converted into mM 

concentrations using the starting 20 mM NTPs as calibration reference. Abrupt intensity 

jumps in free PO4 and MgHPO4 are discussed in main text. (i) Linewidths of U5 imino 

signals in SMN RNAs and U4 in EV2. (j) Chemical shift perturbations of His33 and Arg75 

residues of UP1 protein plotted against time-resolved RNA concentration. Time-resolved 

animation of exemplary data is shown in Supplementary Video 1.
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Figure 3. Validation of Systems-NMR-derived constants.
Systems NMR data shown in black, validation data in grey. (a) Equilibrium formation of 

MgHPO4 salt aggregate constant (from the decrease of total 31P integral), and (b) RNA 

synthesis rate constant (from the decrease of NTP signals), compared to literature data. (c) 

Unimolecular free energy of RNA folding (from the linewidths of 1H imino signals) 

compared to experimental UV-melting data (filled grey circles) and theoretical predictions 

by RNAfold (empty grey circles). (d) Dissociation constant for protein-RNA complex 
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formation (from the chemical shifts of protein 1H-15N signals) compared to ITC 

measurements.

In Systems NMR data, the experimental parameter values (Keq, kcat, ΔG, KD) and error bars 

correspond to the means ± s.d. from independent network model fits using independent 

experimental dataset replicates (n = 3 (RNA0, SMN1), n = 4 (SMN2, EV2), with different 

batches of DNA template and/or protein). In the validation experiments, the constants (UV-

ΔG, ITC-KD) correspond to the optimized parameter ± s.d. uncertainty of data fits for the 

melting curve (UV-ΔG) and binding isotherm (ITC-KD). Individual data points, where 

available, are shown as circles next to the error bars.
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Figure 4. Monitoring multiple proteins in one NMR sample employing selective labeling.
NMR spectra of five protein constructs (in columns) with three different labeling schemes – 

uniform 15N (a), selective 15N-Val (b) and double-selective [13C-Phe, 15N-Val] (c). Protein 

structures with observable NMR signals as colored spheres are shown next to all the spectra. 

(a, b) show 2D HN spectra, (c) shows 2D HN(CO) spectra. Uniform 15N labeling reveals 

HN signals for all residues except prolines in the 2D HN experiment; 15N-Val labeling – 

only HN signals of valines, 13C-Phe,15N-Val labeling – HN signals of valines preceded by 

phenylalanines. Last column shows the spectral overlap upon combining five proteins in one 

sample.

Chemical Shift Perturbation (CSP) (d) and intensity (e) changes of HN signals in a mixture 

of five proteins during transcription of SMN2 ESE1 RNA. Traces of four valine residues, 

including the most strongly perturbed ones, for each protein are shown.

Microscope images of the RNA transcription performed with (f) 5 protein constructs and (g) 

only UP1 protein at identical 415 µM total protein concentration (in mass units 7.4 mg/ml 

for 5-protein sample, and 10.4 mg/ml for pure UP1). Five-protein transcription reactions 

were repeated twice (n = 2 independent experiments) with similar results.
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