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Abstract

To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak
of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates
that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A.
hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-
associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference
isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral
gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands,
metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions
were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted
pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was
evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A.
hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and
the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel
O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11
sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted
in the emergence of recent epidemic A. hydrophila strains.
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Introduction

Aeromonas hydrophila is the causative agent of motile
Aeromonad septicemia (MAS) of catfish [1]. MAS was not a
disease of major concern for the catfish industry in the
Southeastern United States until 2009 [2], when several
commercial catfish operations in western Alabama experienced
outbreaks of MAS resulting in industry-wide losses of food-
sized catfish totaling over 8 million pounds [3]. Since 2009 this

MAS epidemic has spread within the Southeastern United
States, and cases have now been identified in Mississippi and
Arkansas [2]. Experimental disease challenges have
demonstrated that epidemic virulent A. hydrophila (VAh)
isolates obtained from recent epidemic outbreaks in catfish are
highly virulent to channel catfish compared to reference
isolates of A. hydrophila (RAh) obtained from diseased fish
from previous non-epidemic outbreaks [4].
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Virulence factors of A. hydrophila including pili [5], hemolysin
[6], serine protease [6,7], metalloprotease [8], cytotoxic
enterotoxin [9,10], S-layer [11,12], and the type III secretion
system [8] have been shown to be important for fish disease.
Virulence factors of A. hydrophila are multifactorial and the
concerted action of several factors are required to cause
disease in fish, at least for previously described isolates [8,10].
Though a large number of A. hydrophila virulence factors
involved in different fish diseases have been reported, most of
their mechanisms of pathogenesis have yet to be studied, and
no studies have evaluated the specific virulence factors within
VAh strains. A PCR-based subtractive genomic hybridization
approach has been used to identify epidemic-associated genes
within VAh isolates [13]. However, this study did not provide
comprehensive information on the genomic regions and
virulence factors associated with VAh strains.

The emergence of infectious agents is frequently driven by
the plasticity of bacterial genomes due to the loss and
acquisition of foreign genetic elements [14]. Lateral gene
transfer (LGT) by means of prophages [15,16], integrating
conjugative elements [17] and plasmids [18] play significant
roles in bacterial virulence. Prophages are well known for their
ability to induce lysogenic conversion by introducing virulence
genes [16] and changing the genome architecture by
introducing genetic elements that increase fitness [15]. The
rapid onset of the recent epidemic in catfish is suggestive of an
emerging strain of A. hydrophila that has acquired new genetic
elements via LGT.

Until now, none of the A. hydrophila strains obtained from
fish have been subjected to whole genome sequencing. The
complete genome sequence of A. hydrophila ATCC 7966
(obtained from a milk sample) has been determined, yet the
nature of the pathogenicity of this strain has not been studied in
fish [19]. Phylogenetic analysis and virulence studies have
demonstrated differences between the VAh and RAh strains,
with the VAh strains being at least 200 times more virulent than
a RAh isolate obtained from a diseased catfish in 1998 [4]. This
study was initiated to compare the genomes of highly virulent
VAh isolates with that of RAh isolates and identify epidemic-
associated genetic elements to reveal mechanisms fostering

the hyper-virulence of these VAh strains. The molecular
characterization of epidemic strains will provide the framework
for the development of vaccines, therapeutics, and rapid
diagnostics to facilitate the control of this emerging catfish
pathogen.

In this study we have sequenced the genome of 11 A.
hydrophila isolates including 6 epidemic and 5 reference
isolates using next-generation sequencing technology.
Comparative analysis of these A. hydrophila genomes
demonstrated that recent epidemic isolates are clonal and
carry a large number of epidemic-associated unique genetic
regions missing in reference isolates. This study provides
detailed insight into the molecular evolutionary changes that
have occurred in A. hydrophila epidemic isolates and suggests
that the acquisition of novel genetic elements via LGT may
have played a role in the emergence of this pathogenic strain.

Materials and Methods

Ethics statement
All experiments conducted with vertebrate animals (catfish)

were approved by the Institutional Animal Care and Use
Committee (IACUC) review board at Auburn University in
accordance with the animal welfare guidelines specified in the
United States.

Bacterial isolates
Based on the biochemical and molecular phylogenetic data,

a collection of 11 A. hydrophila isolates ((n=6 epidemic A.
hydrophila (VAh); n=5 historical "reference" A. hydrophila
isolates (RAh)) were selected for sequencing (Table 1). All of
the A. hydrophila isolates were identified by standard
biochemical tests [20,21] and confirmed by sequencing of the
B-subunit of the DNA gyrase (gyrB) gene [22]. Biochemical
tests included Gram stain, motility, cytochrome oxidase,
glucose utilization, resistance to 0/129, sucrose utilization,
esculin hydrolysis, Voges-Proskauer, ornithine decarboxylase,
DL-lactate utilization and urocanic acid utilization.

Table 1. Summary of draft genome sequences from 11 different A. hydrophila isolates obtained from diseased fish.

Strains Source of isolates Year of isolation Typea Contigs >200bp N50 contig size (bp) %G+C Total bp in assembly GenBank Accession no.
AL97-91 Diseased Tilapia 1997 RAh 111 159,889 61.2 4826834 SRX157795
TN97-08 Diseased Blue Gill 1997 RAh 94 144,878 60.8 5197004 SRX157873
MN98-04 Diseased Tilapia 1998 RAh 98 140,863 61.1 4863171 SRX157796
AL06-01 Diseased catfish 2006 RAh 122 120,531 61.3 4750603 SRX157912
AL06-06 Diseased Goldfish 2006 RAh 133 104,809 61.4 4844135 SRX157794
AL09-79 Diseased Catfish 2009 VAh 91 111,260 60.9 4975016 SRX157791
ML09-119 Diseased Catfish 2009 VAh 100 167,870 60.9 5003533 SRX157759
ML09-121 Diseased Catfish 2009 VAh 93 182,452 60.9 4998164 SRX157784
ML09-122 Diseased Catfish 2009 VAh 156 89,294 60.9 4979378 SRX157790
AL10-121 Diseased Catfish 2010 VAh 98 167,914 60.9 5010737 SRX157792
PB10-118 Diseased catfish 2010 VAh 100 143,368 60.9 5060794 SRX157793

Note:a VAh and RAh stand for virulent Aeromonas hydrophila and reference Aeromonas hydrophila, respectively.
doi: 10.1371/journal.pone.0080943.t001
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Koch’s Postulates
To determine the etiologic agent of the recent epidemic

outbreak of MAS in channel catfish, A. hydrophila ML09-119
isolated from kidney tissue of a diseased channel catfish was
used for experimental challenge of catfish fingerlings in
aquaria. A. hydrophila AL06-06 is a RAh strain obtained from a
diseased fish but without any association with an epidemic
outbreak was also used for challenging channel catfish. Catfish
fingerlings were acclimated for 15 days prior to challenge with
A. hydrophila ML09-119, AL06-06 or sham treatment. For each
treatment, a group of ten fish was placed in a 52-liter tank with
de-chlorinated water and for each treatment three different
tanks were randomly assigned. Each of the fish received more
than 1.0×106 CFU of A. hydrophila, since catfish
intraperitoneally infected with a similar dose usually kill more
than 95% of challenged fish [4]. Each of the sham-injected fish
received 100 µl of tryptic soy broth (TSB). Dead fish from each
treatment group were subjected to necropsy and bacteria were
isolated from liver tissues by plating them onto a tryptic soy
agar (TSA) plate. Bacterial pure cultures were subjected to
biochemical tests and used for a subsequent challenge
experiment as described previously. Following challenge
experiments, dead fish were necropsied and bacterial strains
were re-isolated to confirm their identity.

Phylogenetic analysis
Evolutionary relationships of 107 A. hydrophila gyrB gene

sequences were determined by the construction of an unrooted
phylogenetic tree using MEGA5 [23]. The evolutionary history
was inferred using the Maximum Parsimony method [24].
Results from a maximum parsimony analysis of all 107 strain
gyrB sequences were used to remove clades that were more
distantly related to the VAh strains, while retaining all RAh
strains, and 37 strains were re-analyzed by maximum
parsimony analysis. The percentage of replicate trees in which
the associated taxa clustered together in the bootstrap test
(1000 replicates) is shown next to the branches. All positions
containing gaps and missing data were eliminated from the
dataset (Complete Deletion option). There were a total of 929
positions in the final dataset. The MP tree was obtained using
the Close-Neighbor-Interchange algorithm with search level 3
in which the initial trees were obtained with the random addition
of sequences (10 replicates). The codon positions included
were 1st+2nd+3rd+Noncoding. All positions containing gaps
and missing data were eliminated from the dataset (Complete
Deletion option).

Sequencing, assembly and annotation
Barcoded Illumina libraries were prepared from each strain

using a Nextera DNA Sample Prep Kit (Epicentre, Madison,
WI). Equal amounts of library products were pooled, and paired
sequences were obtained from an Illumina GAIIx sequencer
using 150 bp read lengths (Illumina, Inc., San Diego, CA).
Sequences from each library were de-convoluted and
assembled de novo using ABySS v1.2.6 [25] on the Amazon
Elastic Compute Cloud. A minimum of 10 paired reads was
required to join unitigs into contigs. Multiple assemblies were
produced per isolate using varied kmer settings, and 200 bp or

larger contigs from the most contiguous assembly was further
analyzed. In addition to Illumina sequencing, the VAh type
strain ML09-119 was subjected to 454 pyrosequencing. A bar-
coded phage DNA sublibrary was prepared at the Lucigen
Corporation (Middleton, WI) and sequencing was conducted at
Engencore (Univ. of South Carolina). The methods for the
determination of prophage sequences are described in the SI
methods. The reads from Illumina and 454 were de novo
assembled using CLCBio Genomics Workbench (version 4.9).
Gene prediction and annotation were carried out using
GeneMark [26] and the RAST annotation server [27],
respectively.

Identification of unique regions within the genome of
ML09-119

In silico genomes for each of the reference isolates including
AL06-01, AL06-06, AL097-91, MN98-04 and TN97-08 were
constructed by force-joining each of their respective contigs.
Each of the genomes were greater than 4.8 Mbp which was
presumed as a near complete genome since the size of the
only sequenced A. hydrophila ATCC 7966 is about 4.7 Mbp
[19]. The in silico genome of AL06-06 was used as a scaffold to
assemble trimmed, paired-end sequence reads of epidemic
isolate ML09-119 using CLC Bio Genomic Workbench (v 4.9).
The parameters that were used for each reference mapping
was as follows: mismatch cost =2, insertion cost =3, deletion
cost =3, length fraction =0.5 and similarity =0.9. The un-
mapped (paired) reads of ML09-119 sequences from this
reference mapping were then reference mapped against the
force-joined contigs of AL97-91, and this process was repeated
with the RAh strains AL06-01, MN98-04, TN97-08, and ATCC
7966. The un-mapped ML09-119 sequence reads that did not
match with any of the five RAh strains or ATCC 7966 strain
were considered as ML09-119-associated sequences that were
uniquely present in strain ML09-119. To identify the distribution
of those un-mapped reads in the genome of ML09-119, we
conducted reference mapping of the un-mapped sequence
reads to the de novo assembled genome of ML09-119 which
was about 5.0 Mbp. The regions of the ML09-119 genome that
were aligned with ML09-119 un-mapped reads were
considered as ML09-119-associated unique regions. Those
ML09-119-specific sequences were extracted manually for
further analysis. Since later analyses determined that all of the
genomic regions that were ML09-119-specific were also
present within each of the other VAh strains, these regions are
subsequently referred to as VAh-associated genomic regions.
Each of the VAh-associated genomic regions was compared to
a set of contigs available in GenBank for ML09-119 (Accession
no. NC_021290) [28].

Defining the Pan and Core genome
Conserved gene families within the genome of A. hydrophila

isolates were identified according to the methods described as
[29] that used ‘50/50’ rule for defining conserved protein
families [30]. According to this rule two sequences are
considered as a member of the single family if alignment
between two proteins is 50% in a single span and contained at
least 50% identities. The conserved gene families in the
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collection of A. hydrophila genomes were found by using the
BLASTp algorithm for all of the proteins of each proteome
against all the proteins of the query proteome using the
microbial pan-genomics tool [31] kindly provided by David W.
Ussery, at The Technical University of Denmark, Lyngby,
Denmark.

BLAST Matrix
The BLAST matrix algorithm was used for the pairwise

comparison of the proteomes of each of the 12 A. hydrophila
isolates to another according to the methods described by Friis
et al [29]. This algorithm determines the percent similarities
between two isolates by measuring the ratio of the number of
conserved gene families shared between isolates to the total
number of gene families in the isolates. The distribution of the
conserved gene families within the genome of 12 A. hydrophila
isolates was presented in a triangle-shaped matrix.

Prediction of Genomic Islands
The epidemic A. hydrophila strain ML09-119 genome

sequences were subjected to genomic island prediction using
IslandViewer [32], a computational tool that integrates three
different genomic island prediction methods including
IslandPick, IslandPath-DIMOB, and SIGI-HMM [32]. The
concatenated contigs of ML09-119 strain consisted of ~ 5.0
Mbp nucleotides that were converted to GenBank format using
the Sequin program (version 11.9). The GenBank formatted
sequence file was uploaded to the IslandViewer web based
tools for scanning the ML09-119 genome for the presence of
genomic Islands. IslandViewer used three different Aeromonas
species such as A. hydrophila strain ATCC 7966, A.
salmonicida and A. caviae for the comparison of query
sequences of ML09-119 provided for GIs prediction. To identify
the epidemic-associated unique GIs, the nucleotide sequences
of all the GIs in the ML09-119 strain predicted with
IslandViewer tools were forced joined and used as a reference
sequence to conduct a reference mapping against trimmed
pair-end reads of all five RAh strains. The concatenated GI
sequences that did not map with the sequence reads of RAh
strains were considered as VAh-associated unique GIs.

Electron Microscopy
Concentrated phage particles obtained from a mitomycin C-

treated A. hydrophila ML09-119 culture were negatively stain
with 2% phosphotungstic acid (pH 6.5) after placing on 300
mesh formvar- and carbon-coated copper grids (Electron
Microscopy Services, PA) for 15 minutes. The grids were
examined at different magnifications to determine the size and
morphology of phages using a Zeiss EM10 Transmission
Electron Microscope (Zeiss, Germany).

454 pyrosequencing of induced prophage genome
Phage genomic DNA was extracted from concentrated

phage lysates obtained from mitomycin C-treated A. hydrophila
ML09-119 strain as previously described [33]. A bar-coded
phage DNA sublibrary was prepared at the Lucigen
Corporation (Middleton, WI) compatible with 454 titanium

chemistry. A 1/8 plate sequencing run of the 454
pyrosequencer was conducted at Engencore (Univ. of South
Carolina) that yielded 25,873,898 bp from 96,898 reads (267
bp average length) from the phage DNA library.

Prediction of virulence factors in the epidemic-
associated unique genomic regions

Virulence factors were predicted within the unique VAh-
associated genome sequences using the Virulence Factors
Database (VFDB) [34] which contains 2,353 proteins from
different pathogenic bacteria as of March 2012. All of the
proteins from the VFDB were retrieved and a local database
was created in the CLC Bio Genomic Workbench. Predicted
proteins encoded by genes within the unique regions were
subjected to BLASTp analysis against the virulence factors
database using CLC Bio Genomics Workbench to identify the
occurrence of virulence factors associated with epidemic
strains. An E-value threshold of 10-10 was selected to exclude
proteins of distant homologs.

Screening of A. hydrophila strains for VAh-associated
genes by PCR

A PCR assay was used to test for the presence of VAh-
associated genes within the genome of A. hydrophila cultured
isolates. A VAh-associated gene whose presence was
confirmed on the complete genome sequence of all six VAh
strains, and had no significant BLAST hit against the GenBank
nr/nt database was used for PCR screening of A. hydrophila
cultured isolates obtained from diseased catfish, pond
sediments, and fish samples taken from a processing plant. A
multiplex PCR was carried out using primer pairs specific to the
VAh-specific region C13R2 [35] and the gyrB gene. The gyrB-
specific primers were used in the multiplex PCR to provide an
internal control. Amplicons present for both pairs of primers
were considered as positive for VAh specific isolates. On the
contrary, amplicons present for gyrB-specific primers but
absent for C13R2-specific primers indicated that this was an
RAh isolate. Genomic DNA was extracted from A. hydrophila
isolates according to the methods described previously [36].
One hundred ng of genomic DNA per 25 µl PCR reaction was
used as a template for PCR amplification of VAh-associated
genes using the following thermal cycling parameters: 94°C for
2 min, then 35 cycles of 94°C for 30 sec, 50°C for 30 sec, 72°C
for 1 min, and a final extension at 72°C for 5 min. Type strain
A. hydrophila ATCC 7966 was used as a negative control
whose genome sequence does not possess any epidemic-
associated genes [19].

Evaluating the growth response of A. hydrophila
strains for using myo-inositol as a sole carbon source

An isolated colony from a pure culture of an A. hydrophila
isolate was used to inoculate a 2 ml TSB culture and was
grown at 28°C overnight with shaking at 200 rpm. The cell
suspension was pelleted by centrifugation at 10,000 × g for 10
min and then the cells were washed twice with 1× PBS buffer
and re-suspended in M9 minimal medium supplemented with
5.5 mM of myo-inositol (M9I) to an OD600 of 0.5. The cell
suspension was then serially diluted 1:100 in M9I and 100 µl of
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the 1:100 diluted cell suspension was used to inoculate 1.9 ml
of M9I. Bacterial cultures were then grown for up to 144 hours
and the OD600 was recorded at 24 hour intervals to determine
the ability of each strain to use myo-inositol as a sole carbon
source. A. hydrophila isolates ML09-119 and AL06-06 were
used as positive and negative control, respectively, for the
myo-inositol utilization assay.

Nucleotide Sequence Accession Numbers
The gyrB gene sequences were deposited within the

GenBank nr/nt database under the accession numbers
JX275833 to JX275847. Illumina sequence reads were
submitted to the NCBI Sequence Reads Archive (SRA) under
the accession numbers SRX157795, SRX157873,
SRX157796, SRX157912, SRX157794, SRX157791,
SRX157759, SRX157784, SRX157790, SRX157792, and
SRX157793.

Results

A. hydrophila ML09-119 isolate is the etiologic agent for
the epidemic outbreak of MAS in channel catfish

To determine whether A. hydrophila ML09-119 was highly
virulent in channel catfish, catfish fingerlings were
intraperitoneally inoculated with more than 5.0×106 CFU/fish.
Fish were also challenged with A. hydrophila AL06-06, a
reference strain obtained from disease fish but not from an
epidemic outbreak. A. hydrophila ML09-119 killed
approximately 80% of the fish within 24 hours, whereas 20% of
the fish were killed by A. hydrophila AL06-06 by one week
post-inoculation, and this was a statistically significant
difference in mortality (P < 0.05) (data not shown). All of the
dead catfish demonstrated clinical signs of disease caused by
A. hydrophila and groups of fish that were injected with a sham
treatment did not have any evident disease (data not shown).
Bacteria were re-isolated from the dead fish after necropsy and
their identity was confirmed as A. hydrophila as ML09-119 and
AL06-06, respectively. The re-isolated bacteria were used for
infecting new populations of catfish fingerlings. We observed a
similar mortality rate and clinical symptoms specific to MAS
caused by A. hydrophila in dead fish similar to the first
challenge experiment (data not shown). Biochemical tests
confirmed the identity of the re-isolated bacteria as A.
hydrophila. These results demonstrated that A. hydrophila
ML09-119 isolate fulfills Koch’s Postulates and is highly virulent
in channel catfish.

Phylogenetic analysis of A. hydrophila isolates
Phylogenetic analysis based on 16S rRNA gene sequences

of epidemic A. hydrophila isolates demonstrated they are 100%
identical to previously reported A. hydrophila strains (data not
shown). Phylogenetic analysis based on gyrB gene sequences
of representative A. hydrophila isolates demonstrated sufficient
resolution to separate VAh and RAh isolates. A maximum
parsimony (MP) tree generated from the alignment of VAh and
RAh gyrB nucleotide sequences revealed that all of the VAh
strains consistently grouped together as a single clade with

strong bootstrap support (Figure 1). Although the VAh isolates
formed a coherent clade based on gyrB gene sequences, there
were not sufficient phylogenetically informative nucleotide
positions within the gyrB gene sequence to develop a VAh-
specific primer set.

A. hydrophila genome sequencing, assembly and
annotation

Summary statistics for each of the A. hydrophila genome
sequences and their assemblies are provided in Table 1. The
average number of contigs obtained per genome was 114. The
nucleotide sequences for strain ML09-119 contigs are provided
in the Dataset S1. After trimming, the quality Illumina sequence
reads totaled 9510.8 Mb, with an average coverage of >160-
fold per genome. The 454 pyrosequencing of an induced
prophage from strain ML09-119 (see below) provided a total of
96,598 high-quality sequences with an average read length of
268 bp. The average genome size of the VAh and RAh isolates
were 5.0 Mb and 4.8 Mb, respectively. The %G+C content of
the 11 strains ranged from 60.5% to 61.5% (Table 1) which
was consistent with the previously reported %G+C content of
61.5 % for A. hydrophila ATCC 7966 [19]. Protein sequences
from all of the predicted open reading frames (ORFs) of A.
hydrophila VAh strain ML09-119 and all RAh strain genomes
are listed in Dataset S2.

Identification of unique genomic regions associated
with VAh isolates

The VAh strain ML09-119, originally cultured from the kidney
tissue of a diseased channel catfish demonstrating
characteristic MAS symptoms, has been typed as an A.
hydrophila strain by biochemistry and 16S rRNA gene
sequencing and is highly virulent in channel catfish, and was
used as a type strain for all further analyses in this study. We
found that the ML09-119 genome contains 55 unique regions
(Dataset S3) that are missing in all five RAh isolates (AL06-01,
AL06-06, AL97-91, MN98-04 and TN97-08) and A. hydrophila
ATCC 7966. These 55 unique regions are also present in all
five of the other sequenced VAh isolates (AL09-79, AL10-121,
ML09-121, ML09-122, and PB10-118). These epidemic-
associated regions contain 336,469 bp, accounting for 6.7% of
the ML09-119 genome. A total of 313 ORFs are encoded by
these unique regions (Datasets S4 and S5). Region C2R1 is
the smallest region with one predicted ORF, whereas C15R7 is
the largest region (33,402 bp) predicted to encode 36 different
proteins. More than 252,453 bp of these unique sequences are
part of 16 predicted genomic islands (GIs; see below for
detailed description of these GIs). About 51% (160 out of 313)
of the VAh-associated genes are predicted to encode proteins
with unknown functions (Dataset S6). The average %G+C
content of these unique regions is 47.0%, whereas the %G+C
content of the ML09-119 genome is 60.9%. The %G+C content
bias of the VAh-associated regions supports the hypothesis
that novel genomic segments were acquired through LGT.

Determining the Pan and Core-genome of A. hydrophila
A total of 6,856 pan-gene families comprising full sets of non-

orthologous genes families were found within the genome of
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Figure 1.  Evolutionary relationships of 37 A. hydrophila taxa based on gyrB gene sequences (out of a larger dataset of 107
A. hydrophila gyrB sequences).  The evolutionary history was inferred using the Maximum Parsimony method. Tree #1 out of 67
most parsimonious trees (length = 218) is shown. The percentage of replicate trees in which the associated taxa clustered together
in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths calculated
using the average pathway method and are in the units of the number of changes over the whole sequence.
doi: 10.1371/journal.pone.0080943.g001
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the 11 A. hydrophila isolates. We found 3,511 conserved core
gene families within these 11 A. hydrophila genomes. Based
on these estimates the number of pan-genes is approximately
twice the number of core-genes in A. hydrophila. Considering
the 4,765 average number of gene families present in each of
the A. hydrophila isolates sequenced in this study, it was
observed that 74% of the predicted genes were core genes

that are shared among all of the A. hydrophila isolates. From a
plot of pan- and core-genomes it was observed that the
number of genes in the pan-genomes reached its maximum
among the VAh strains (Figure 2). There was a negligible
increase in the number of new gene families among the VAh
genomes, supporting the conclusion that the six epidemic A.
hydrophila genomes are highly similar.

Figure 2.  Pan and core-genome plot of 11 different A. hydrophila isolates.  The red and blue lines indicated the number of
genes within the core and pan-genomes, respectively. The A. hydrophila core genome contained 3,511 core genes whereas the A.
hydrophila pan-genome contained 6,856 genes. Note that the addition of other VAh strains after A. hydrophila ML09-119 did not
significantly increase the number of new gene families, which was in agreement with the highly clonal nature of VAh strains.
doi: 10.1371/journal.pone.0080943.g002
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Pairwise proteome comparison of A. hydrophila
genomes

A pairwise BLAST Matrix was generated to determine the
similarity in each of the conserved protein families present
within the A. hydrophila genomes. The proteome comparison
revealed that the average protein family similarity between any
two A. hydrophila genomes ranges from 68.4-99.9% while the
intra-proteome homology among protein families within each
isolates is less than 5.6% (Figure 3). The pairwise comparison
of proteomes showed that the six VAh strains share a very high
degree of homology (>99%) (Figure 3, highlighted with
triangle). In contrast, the pairwise proteome comparison
between the VAh and RAh strains and among RAh strains
including A. hydrophila ATCC 7966 revealed a range from 68.4
to 94.7% homology. These results demonstrated that VAh
strains are genomically distinct from RAh strains and that there
is a highly coherent VAh genome. The BLAST matrix results
also indicated that RAh proteomes are diverse, with an
average 72.91% sequence identity. One exception was the
95% sequence identity between the AL97-91 and MN98-04
proteomes. Since these two strains had been isolated from
Tilapia, this may reflect their isolation from a common host fish.
These results suggest there was significant diversity among
RAh strains sampled in this study, especially in contrast to VAh
strain genomic homogeneity.

Novel O-antigen biosynthesis gene cluster in VAh
isolates

The significant role of O-antigen, the most variable surface
structure in terms of its composition, in bacterial virulence [37]
prompted us to analyze the O-antigen biosynthesis gene
cluster of A. hydrophila isolates. We found that all of the VAh
isolates and one RAh isolate TN97-08 shared a 26.5 kb novel
O-antigen biosynthesis gene cluster predicted to encode 25
different ORFs (Tables 2 and 3, Figure 4). Though the
proteomic comparison of the TN97-08 and VAh isolates
showed about 73% similarities (Figure 3), the sharing of an
entire O-antigen biosynthesis cluster suggests possible LGT
events. None of the O-antigen biosynthesis gene clusters of
RAh isolates, except for strain TN98-04, shared homology with
that of the VAh isolates and five of the RAh isolates possess
four unique O-antigen biosynthesis clusters (Figure 4). Among
the five RAh isolates, only AL97-91 and MN98-04 isolates
shared homology in their O-antigen cluster (Figure 4), which is
in agreement with their overall proteomic homology (Figure 3).
The O-antigen biosynthesis cluster of 11 sequenced A.
hydrophila isolates are quite different than the previously
published A. hydrophila ATCC 7966 [19], PPD134/91 [38],
JCM3980 [38] and AH-3 [39] O-antigen biosynthesis clusters
(Figure 4).

Figure 3.  BLAST MATRIX of 12 different A. hydrophila isolates.  The proteomes of each of the A. hydrophila strains were
compared using all-against-all BLASTp according to the methods described previously [29]. This matrix showed the output from
pairwise comparison of conserved protein families of each of the isolates to each other. The green color represents the % homology
between proteomes and the red color represents % homology within proteomes. This matrix showed that all the epidemic A.
hydrophila isolates are similar to each other but substantially different to reference isolates. All of the reference isolates, except for
MN98-04 and AL97-91 that were highly similar to each other, possessed substantial amount of diversity in their protein families.
doi: 10.1371/journal.pone.0080943.g003
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The analysis of gene content within the VAh O-antigen
cluster suggests that VAh strains express a previously
uncharacterized O-antigen among A. hydrophila strains. The
comparison of the VAh O-antigen biosynthesis cluster with that
of strains PPD134/91 and AH-3 revealed that the VAh O-
antigen gene cluster (26.5 kb) is larger than the 19 kb clusters
contained in both PPD134/91 and AH-3. The analysis of the
VAh O-antigen gene cluster revealed 25 ORFs and the
annotation of each ORF demonstrated that this O-antigen gene

cluster contains predicted gene products required for the
synthesis of activated nucleotide sugars, transport of those
sugars to the growing O-antigen chain, and the processing of
the O-antigen (Table 2). The VAh O-antigen biosynthesis
cluster contains genes putatively required for the synthesis of
nucleotide activated sugars D-rhamnose, D-mannose, GDP-L-
Fucose and 3-acetamido-3, 6-dideoxy-d-galactose (D-
Fucp3NAc). The rmlA, rmlB, rmlC and rmlD genes are usually
clustered together [40] and products of those genes are

Table 2. Summary of ORFs encoded by the O-antigen biosynthesis gene cluster of VAh strain ML09-119.

ORF ID

Nucleotide positions
in Accession no.
KC999973 Predicted Function Gene Nearest Neighbor % Identity Accession number

ORFu 1.672 lipoprotein YmcC ymcC Edwardsiella tarda ATCC 23685 43 ZP_06715179.1

ORF1 1114.1842 O-antigen length determinant protein wzzA Ferrimonas balearica DSM 9799 59 YP_003912353.1

ORF2 2160..4784
periplasmic protein involved in
polysaccharide export

wza Marinomonas sp. MWYL1 45 YP_001339663.1

ORF3 4930.6012 O-antigen chain length determinant protein wzzB Aeromonas veronii B565 80 YP_004393425.1

ORF4 6067.6606 dTDP-4-dehydrorhamnose 3,5-epimerase rmlC Halomonas sp. TD01 58 ZP_08635572.1

ORF5 6620.7561 glucose-1-phosphate thymidylyltransferase rmlA Lutiella nitroferrum 2002 61 ZP_03699710.1

ORF6 7561.8445 rmlD gene product rmlD gamma proteobacterium HdN1 54 YP_003809930.1

ORF7 8432.9493
undecaprenyl-phosphate N-
acetylglucosaminyl 1-phosphate transferase

wecA
Photobacterium damselae subsp. damselae

CIP 102761
57 ZP_06154788.1

ORF8 9544.10776 phosphomannomutase manB Vibrio nigripulchritudo ATCC 27043 69 ZP_08734182.1

ORF9 10965.11717
Colanic acid biosynthesis glycosyl
transferase

wcaE Shigella dysenteriae 1012 67 ZP_03065870.1

ORF10 11717.13018 mannose-1-phosphate guanylyltransferase manC Photobacterium profundum 3TCK 71 ZP_01218698.1

ORF11 13128.13610 GDP-mannose mannosyl hydrolase gmm Tolumonas auensis DSM 9187 63 YP_002893236.1

ORF12 13594.14574 GDP-fucose synthetase fcl Yersinia pestis KIM 10 84 NP_668408.1

ORF13 14578.15684 GDP-mannose 4,6-dehydratase gmd Vibrio angustum S14 86 ZP_01235027.1

ORF14 15705.16940 group 1 glycosyl transferase wbxH
Pectobacterium carotovorum subsp.
carotovorum WPP14

49 ZP_03830724.1

ORF15 16937.17986 group 1 glycosyl transferase wbxH
Pectobacterium carotovorum subsp.
carotovorum PC1

52 YP_003016893

ORF16 17986.19167 glycosyl transferase group 1 wbxI Methylobacter tundripaludum SV96 52 ZP_08780763.1

ORF17 19164.19655 acetyltransferase wcaF Methylobacter tundripaludum SV96 59 ZP_08780764.1

ORF18 19648.20826 O-antigen polymerase wzyE Bacteroides sp. 2_1_7 29 ZP_05287114.1

ORF19 20877.21968 group 1 glycosyl transferase protein wbxU Dysgonomonas gadei ATCC BAA-286 42 ZP_08475479.1

ORF20 22444.23694 O-antigen flippase wzxB Shewanella baltica OS625 81 EHC06312.1

ORF21 23691.24794 aminotransferase fdtB Shewanella baltica OS195 81 YP_001555451.1

ORF22 24796.25233 dTDP-D-Fucp3N acetyltransferase fdtC Shewanella baltica OS195 85 YP_001555452.1

ORF23 25235.25657 dTDP-6-deoxy-3,4-keto-hexulose isomerase fdtA Shewanella putrefaciens 200 72 ADV52549.1

ORF24 25668.26534 glucose-1-phosphate thymidylyltransferase rmlA Shewanella putrefaciens 200 79 NP_718742

ORF25 26531.27619 dTDP-glucose-4-6-dehydratase rmlB Aeromonas hydrophila 93 AAM22544.1

ORFd 28234.31383 AcrB protein acrB
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
99 YP_857414.1

doi: 10.1371/journal.pone.0080943.t002
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required for the synthesis of dTDP-rhamnose. Each of the VAh
and RAh strains possess rmlA, rmlB, rmlC and rmlD genes in
their O-antigen gene cluster. Though each of the unique O-
antigen cluster types described in this study contain genes
required for D-rhamnose biosynthesis, the homology and
organization of those genes varied substantially (Tables 2-6).
Those genes are also present within the antigen clusters of A.
hydrophila ATCC 7966, PPD134/91, JCM3980 and AH-3.
These collective observations indicate that D-rhamnose is the

most common sugar component present within the O-antigen
of A. hydrophila. The presence of all five of the genes required
for D-Fucp3NAc synthesis in the VAh O-antigen cluster
suggests that this sugar is also a major component of the VAh
O-antigen. In contrast, the O-antigen clusters of all RAh and
previously sequenced A. hydrophila strains do not contain the
fdtA, fdtB or fdtC genes required for D-Fucp3NAc synthesis.

The VAh O-antigen gene cluster was predicted to contain
five different genes, namely gmd, fcl, gmm, manC, and manB

Table 3. Summary of ORFs encoded by the O-antigen biosynthesis gene cluster of RAh strain TN97-08.

ORF ID

Nucleotide positions
in Accession no.
KC999968 Predicted Function Gene Nearest Neighbor % Identity Accession number

ORFu 1.672 lipoprotein YmcC ymcC Edwardsiella tarda ATCC 23685 43 ZP_06715179.1

ORF1 1114.1842 O-antigen length determinant protein wzz Ferrimonas balearica DSM 9799 59 YP_003912353

ORF2 2160..4784
periplasmic protein involved in
polysaccharide export

otnA Marinomonas sp. MWYL1 45 YP_001339663

ORF3 4930.6012 O-antigen chain length determinant protein wzz Aeromonas veronii B565 80 YP_004393425

ORF4 6067.6606 dTDP-4-dehydrorhamnose 3,5-epimerase rmlC Halomonas sp. TD01 58 ZP_08635572

ORF5 6620.7561 glucose-1-phosphate thymidylyltransferase rmlA Lutiella nitroferrum 2002 61 YP_005093462

ORF6 7561.8445 rmlD gene product rmlD gamma proteobacterium HdN1 54 YP_003809930

ORF7 8432.9493
undecaprenyl-phosphate N-
acetylglucosaminyl 1-phosphate transferase

wecA
Photobacterium damselae subsp. damselae

CIP 102761
57 ZP_06154788

ORF8 9544.10776 phosphomannomutase manB Vibrio nigripulchritudo ATCC 27043 69 YP_005021705

ORF9 10965.11717
Colanic acid biosynthesis glycosyl
transferase

wcaE Shigella dysenteriae 1012 67 ZP_03065870

ORF10 11717.13018 mannose-1-phosphate guanylyltransferase manC Photobacterium profundum 3TCK 71 ZP_01218698

ORF11 13128.13610 GDP-mannose mannosyl hydrolase gmm Tolumonas auensis DSM 9187 63 YP_002893236

ORF12 13594.14574 GDP-fucose synthetase fcl Yersinia pestis KIM 10 84 NP_668408

ORF13 14578.15684 GDP-mannose 4,6-dehydratase gmd Vibrio angustum S14 86 ZP_01235027

ORF14 15705.16940 group 1 glycosyl transferase wbxH
Pectobacterium carotovorum subsp.
carotovorum WPP14

49 ZP_03830724

ORF15 16937.17986 group 1 glycosyl transferase wbxH
Pectobacterium carotovorum subsp.
carotovorum PC1

52 YP_003016893

ORF16 17986.19167 glycosyl transferase group 1 wbxI Methylobacter tundripaludum SV96 52 ZP_08780763

ORF17 19164.19655 acetyltransferase wcaF Methylobacter tundripaludum SV96 59 ZP_08780764

ORF18 19648.20826 O-antigen polymerase wzyE Bacteroides sp. 2_1_7 29 ZP_05287114

ORF19 20877.21968 group 1 glycosyl transferase protein wdaN Dysgonomonas gadei ATCC BAA-286 42 ZP_08475479

ORF20 22444.23694 O-antigen flippase wzxB Shewanella baltica OS625 81 EHC06312

ORF21 23691.24794 aminotransferase fdtB Shewanella baltica OS195 81 YP_001555451

ORF22 24796.25233 dTDP-D-Fucp3N acetyltransferase fdtC Shewanella baltica OS195 85 YP_001555452

ORF23 25235.25657 dTDP-6-deoxy-3,4-keto-hexulose isomerase fdtA Shewanella putrefaciens 200 72 ADV52549

ORF24 25668.26534 glucose-1-phosphate thymidylyltransferase rmlA Shewanella putrefaciens 200 79 ADV52548

ORF25 26531.27619 dTDP-glucose-4-6-dehydratase rmlB Aeromonas hydrophila 93 AAM22544

ORFd 28234.31383 AcrB protein acrB
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
99 YP_857414.1

doi: 10.1371/journal.pone.0080943.t003
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Figure 4.  Mauve Alignment of the O-antigen cluster from 16 different A. hydrophila isolates.  Segments with a similar color
indicate homologous regions. The alignment is on scale based on the size of the O-antigen cluster of A. hydrophila ATCC 7966
which is 44 kb in length. All of the EAh strains including RAh strain TN97-08 shared the ML09-119-type O-antigen biosynthesis
gene cluster.
doi: 10.1371/journal.pone.0080943.g004
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 required for the synthesis of GDP-mannose and GDP-L-fucose
from fructose-6-phosphate (Table 2). ManA, ManB, and ManC
are required for the synthesis of GDP-mannose from
fructose-6-phosphate. Typically, the genes manB and manC
are located within the O-antigen cluster, whereas manA is
found outside the O-antigen cluster elsewhere within the
genome [38,39,41] and this was also observed for the VAh O-
antigen cluster. The genes gmd and fcl encode GDP-mannose
4, 6-dehydratase and GDP-L-fucose synthetase, respectively,
which synthesize GDP-L-fucose using GDP-mannose as a
precursor. None of the previously sequenced O-antigen
biosynthesis gene clusters of A. hydrophila contained gmd or
fcl genes. The fdtA, fdtC and fdtB genes are predicted to
encode the enzymes dTDP-6-deoxy-3,4-keto-hexulose
isomerase (FdtA), dTDP-D-Fucp3N acetyltransferase (FdtC),
and aminotransferase (FdtB), respectively, required for the
synthesis of the dTDP-sugar 3-acetamido-3,6-dideoxy-D-
galactose (dTDP-D-Fucp3NAc) [42], an activated nucleotide
sugar that could be incorporated into the VAh O-antigen. In
addition to these enzymes, D-glucose-1-phosphate
thymidyltransferase (RmlA) and dTDP-D-glucose-4,6-
dehydratase (RmlB) encoded by the rmlA and rmlB genes,

respectively, are predicted within the VAh O-antigen cluster
and are required for the biosynthesis of the nucleotide sugar
dTDP-D-Fucp3NAc [42].

The VAh O-antigen cluster contained five different
glycosyltransferase genes and one acetyltranferase gene
(Table 2). A series of glycosyltransferases work consecutively
to assemble the nucleotide sugar repeat on the membrane lipid
undecaprenol pyrophosphate (Und-PP). The VAh O-antigen
gene clusters were predicted to contain the wecA gene that
encodes a undecaprenyl-phosphate alpha-N-
acetylglucosaminyl 1-phosphate transferase required for the
transfer of the GlcNAc-1-phosphate moiety from UDP-GlcNAc
onto the carrier lipid undecaprenyl phosphate. The single
polysaccharide repeat bound to Und-PP is flipped to the
periplasmic side which is catalyzed by O-antigen flippase [43]
and polymerized by the Wzy-dependent pathway [44]. The VAh
strains were also found to possess an O-antigen flippase
(wzxB) and O-antigen polymerase (wzyE) within their O-
antigen gene cluster. These findings suggest the presence of
smooth LPS on each of the VAh strains.

Table 5. Summary of ORFs encoded by the O-antigen biosynthesis gene cluster of RAh strain AL06-06.

ORF ID

Nucleotide positions
in Accession no.
KC999971 Predicted function Gene Nearest Neighbor %Identity Accession Number

ORFu 1..1719 lipid A core - O-antigen ligase waaL
Aeromonas hydrophila subsp.
hydrophila ATCC 7966

97 YP_857377

ORF1 1814..2875 O-antigen chain length determinant protein wzzC Aeromonas caviae Ae398 69 ZP_08521419

ORF2 2948..3487 dTDP-4-dehydrorhamnose 3,5-epimerase rmlC Halomonas sp. TD01 57 ZP_08635572

ORF3 3592..4479 glucose-1-phosphate thymidylyltransferase 1 rmlA Aeromonas veronii B565 92 YP_004392190

ORF4 4591..5478 dTDP-4-dehydrorhamnose reductase rmlD
Aeromonas hydrophila subsp.
hydrophila ATCC 7966

97 YP_857411

ORF5 5478..6566 dTDP-glucose-4, 6-dehydratase rmlB Aeromonas hydrophila 98 AAM22544

ORF6 6761..8722 epimerase/dehydratase family WbfY-like protein wbgZ Aeromonas caviae Ae398 96 ZP_08521420

ORF7 8781..9335 lipid carrier : UDP-N-acetylgalactosaminyltransferase wbtB Aeromonas veronii B565 96 YP_004393428

ORF8 9338..10078 UDP-glucose 4-epimerase galE Vibrio metschnikovii CIP 69.14 77 ZP_05883342

ORF9 10301..11422 glycosyl transferase, group 1 family protein wbxK Shewanella oneidensis MR-1 59 NP_718730

ORF10 11419..13353 asparagine synthetase, glutamine-hydrolyzing asnD Shewanella oneidensis MR-1 74 NP_718731

ORF11 13380..14491 glycosyl transferase, group 1 wbxL Vibrio ichthyoenteri ATCC 700023 46 ZP_08744363

ORF12 14505..15575 group 1 glycosyl transferase wbxM
Achromobacter piechaudii ATCC
43553

35 ZP_06689986

ORF13 15572..16861 virulence factor MVIN family protein mviN Burkholderia ubonensis Bu 39 ZP_02383242

ORF14 16858..18057 Cna B domain-containing protein cnaB Flavobacterium sp. F52 33 ZP_10479786

ORF15 18286..19314 UDP-GlcNAc 4-epimerase wbgU Shewanella oneidensis MR-1 81 NP_718745

ORF16 19417..20697 UDP-glucose dehydrogenase wbpO Vibrio vulnificus MO6-24/O 88 YP_004190001

ORF17 21479..21766 dTDP-D-glucose-4,6-dehydratase rmlB Aeromonas hydrophila 90 AAM74474

ORFd 22510..23925 outer membrane protein OprM oprM Aeromonas hydrophila 99 AAM22559

doi: 10.1371/journal.pone.0080943.t005
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Comparative analysis of O-antigen biosynthesis gene
clusters in RAh strains

The predicted O-antigen clusters in the RAh strains AL06-01
and AL06-06 are unique. The O-antigen biosynthesis gene
cluster of AL06-01 and AL06-06 are 29 kb and 18.86 kb in
length that encode 25 and 17 ORFs, respectively. The gene
content and organization of O-antigen clusters of AL06-01 and
AL06-06 varied substantially with those of the other VAh and
RAh strains used in this study (Tables 2-6 and Figure 5). The
AL06-01 strain contains all 4 genes (rmlA, rmlB, rmlC and
rmlD) required for the biosynthesis of dTDP-rhamnose from
glucose-1-phosphate. It also contains gene that encode UDP-
glucose 6-dehydrogenase required for the biosynthesis of
UDP-D-glucuronic acid from UDP-glucose. These findings
suggest the presence of D-rhamnose and D-glucuronic acid on
the O-antigen of strain AL06-01. The unique O-antigen cluster
of RAh strains AL06-01 and AL06-06 do not contain any genes
required for the synthesis of D-mannose or D-L-fucose (Tables
4 and 5). Instead, the AL06-06 O-antigen cluster is predicted to
encode UDP-N-acetyl-D-galactosamine dehydrogenase and an
epimerase/dehydratase family WbfY-like protein. Those two
enzymes are required for the biosynthesis of UDP-GalNAcA
which is a common O-antigen sugar for many Gram-negative
bacteria.

The O-antigen gene cluster of AL06-01 and AL06-06 contain
six and four different glycosyltransferase genes, respectively,
that are required for the assembly of nucleotide sugar repeat
on the membrane lipid undecaprenol pyrophosphate (Und-PP)
(Tables 4 and 5). AL06-06 O-antigen clusters, unlike the VAh
O-antigen cluster, was predicted to contain the wbtB gene that
encodes undecaprenyl-phosphate alpha-N-
acetylgalactosaminyl 1-phosphate transferase required for the
transfer of the GalNAc-1-phosphate moiety from UDP-GalNAc
onto the carrier lipid undecaprenyl phosphate (Figure 5). In
contrast, the O-antigen cluster of AL06-01, like the VAh O-
antigen cluster, contains the wecA gene that encodes
undecaprenyl-phosphate alpha-N-acetylglucosaminyl 1-
phosphate transferase required for the transfer of the
GlcNAc-1-phosphate moiety from UDP-GlcNAc onto the carrier
lipid undecaprenyl phosphate (Figure 5).

A genome-wide comparison of the RAh isolates AL97-91 and
MN98-04 using BLAST matrix showed that they are highly
similar (>94%) in terms of their conserved gene families (Figure
3). Both the isolates were predicted to contain an O-antigen
biosynthesis gene cluster that was highly similar to each other
in terms of gene content, relative organization of the genes and
the percent identity of their predicted gene products (Table 6
and Figure 5). The O-antigen biosynthesis gene clusters of
RAh isolates AL97-91 and MN98-04 contain 15 ORFs
predicted to be involved in O-antigen biosynthesis, including
gene products predicted to be required for the biosynthesis of
dTDP-rhamnose and D-glucose (Table 6). They contain six
different glycosyltransferase genes and one acetyl transferase
gene in their O-antigen clusters (Table 6). Additionally, they
contain the wecA gene required for the transfer of the
GlcNAc-1-phosphate moiety from UDP-GlcNAc onto the carrier
lipid undecaprenyl phosphate. The absence of an O-antigen
polymerase gene within those clusters suggests these two

isolates may produce a semi-rough O-antigen. The analysis of
the O-antigen biosynthesis gene cluster of strains AL97-91 and
MN98-04 demonstrated that these two strains contain two
additional cluster of genes required for S-layer protein
synthesis and type II secretion in their O-antigen clusters
(Table 6 and Figure 5). These results suggest the O-antigen of
these two strains anchor the S-layers and most probably the S-
layers of A. hydrophila isolates AL97-91 and MN98-04 are
secreted by a type II secretion system, unlike in Caulobacter
crescentus that secretes S-layer proteins via a type I secretion
system [45].

All together we have identified four unique O-antigen
biosynthesis clusters among the 11 sequenced A. hydrophila
strains (Figure 5) and this increases the number of known
types of O-antigen biosynthesis clusters in A. hydrophila to a
total of 7 (Figure 4). The diversity of O-antigen biosynthesis
clusters in A. hydrophila isolates also suggests the possible
contribution of LGT events. The nucleotide sequences of O-
antigen biosynthesis gene clusters from 11 A. hydrophila
strains sequenced in this study are deposited in GenBank with
accession nos. KC999966 and KC999968 to KC999977.

Epidemic-associated genomic islands (GIs)
Since genomic islands contribute to lateral gene transfer and

bacterial evolution [46], we analyzed the epidemic A.
hydrophila isolates for the presence of genomic islands. We
identified 16 GIs, ranging from 8 kb to 30 kb and comprised of
252.45 kb that encode 255 ORFs (Dataset S8), within the
genomes of VAh isolates (Figure 6). Nine of the GIs were
considered as epidemic-associated GIs since they were
absence from the RAh isolates (Table 7). The nucleotide
sequences for each of the GIs found within the genome of VAh
type strain ML09-119 are provided in Dataset S7. The GI 2
region contains a cluster of genes involved in myo-inositol
catabolism. GI 3, largest among the nine epidemic-associated
unique GIs with 25 ORFs, includes genes coding hypothetical
proteins, proteins involved in thiamine and cobyric acid
biosynthesis and RNA metabolism. GI 12 includes a type I
restriction modification system, DNA helicase, DNA repair
protein, anticodon nuclease, as well as transposases (T7 like)
and regulatory proteins along with hypothetical proteins of
unknown function (Dataset S8). This GI is predicted to be
generated in VAh isolates after T7 transposition since a GI with
these fitness-enhancing features is generated after integrating
at an attTn7 site within a bacterial genome [47]. GI 13 encodes
a CS5 pilus biogenesis cluster (Table 8) which is similar to that
of the enterotoxigenic E. coli O115:H40 [48]. GI 16 of VAh
isolates is also predicted to contain a cluster of genes required
for pilus biogenesis.

Virulence factors in epidemic-associated unique
regions

The highly virulent nature of the recent epidemic A.
hydrophila isolates [4] and the presence of most of the
predicted virulence factors within genomic islands [49]
prompted us to search for virulence factors within the epidemic-
associated genomic regions of epidemic A. hydrophila. We
found 34 predicted virulence factors within the epidemic-

Comparative Genomics of Epidemic A. hydrophila

PLOS ONE | www.plosone.org 14 November 2013 | Volume 8 | Issue 11 | e80943



Table 6. Summary of ORFs encoded by the O-antigen biosynthesis gene cluster of RAh strain AL97-91.

ORF ID

Nucleotide
positions in
Accession no.
KC999966 Predicted function Gene Nearest Neighbor % Identity Accession Number

ORFu 1.1710 lipid A core - O-antigen ligase waaL
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
97 YP_857377

ORF1 1715..2740 UDP-glucose lipid carrier transferase wecA
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
73 ABX39510

ORF2 3008.4144 glycosyltransferase wbxR
Aeromonas salmonicida subsp. salmonicida

A449
75 YP_001141302

ORF3 4141.5235 glycosyltransferase, group 2 family protein wbxR
Aeromonas salmonicida subsp. salmonicida

A449
70 YP_001141301

ORF4 5237.6016 glycosyltransferase, group 2 family protein wbxS Escherichia coli 48 ACH97156

ORF5 6013.7269
integral membrane protein AefA/O-antigen
flippase

wzx Salmonella bongori NCTC 12419 70 YP_004730750

ORF6 7300.9282
epimerase/dehydratase family WbfY-like
protein

wbgZ
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
94 YP_857395

ORF7 9279.10157 glycosyl transferase, group 4 family protein wbxT
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
91 YP_857396

ORF8 10304.11260 UDP-glucose 4-epimerase galE
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
92 YP_857397

ORF9 11260.12066 Glycosyltransferase, family 2 wbxR
Aeromonas salmonicida subsp. salmonicida

A449
65 YP_001141293

ORF10 12068.12787 acyltransferase family protein wbxG Flavobacteria bacterium BAL38 30 ZP_01733088

ORF11 13147.16497 putative N-acetyl glucosaminyl transferase murG Serratia odorifera 4Rx13 50 ZP_06189367

ORF12 16515.17831 transporter rfbE Serratia odorifera 4Rx13 73 ZP_06189366

ORF13 17821.18639 ABC-2 type transporter rfbD Thermosinus carboxydivorans Nor1 65 ZP_01665322

ORF14 18841.20259 surface layer protein vapA Aeromonas hydrophila 100 ACV89427

ORF15 21019.23250 S-protein secretion D gspD Aeromonas hydrophila 100 AAA79322

ORF16 23254.23754 ORF2 ORF2 Aeromonas hydrophila 100 AAA79321

ORF17 23751.24347 ORF1 ORF1 Aeromonas hydrophila 100 AAA79320

ORF18 24344.25090 ORFJ, partial ORFJ Aeromonas hydrophila 99 AAA79319

ORF19 25284.26306 general secretion pathway protein K gspK Pseudomonas stutzeri DSM 4166 49 YP_002798801

ORF20 26306.26911 type II secretion system protein gspJ2 Azotobacter vinelandii DJ 48 YP_002798802

ORF21 26908.27312 type II secretion system protein gspJ1 Pseudomonas stutzeri DSM 4166 58 AEA85764

ORF22 27306.27677 type II secretion system protein gspG2 Pseudomonas stutzeri DSM 4166 48 AEA85763

ORF23 27680.28114 General secretion pathway protein G gspG1 Pseudomonas stutzeri DSM 4166 84 AEA85762

ORF24 28133.29332 type II secretion system protein gspF Azotobacter vinelandii DJ 60 YP_002798806

ORF25 29332.30987 type II secretion system protein E gspE Azotobacter vinelandii DJ 76 YP_002798807

ORF26 31755.32303 dTDP-4-dehydrorhamnose 3,5-epimerase rmlC Escherichia sp. TW09308 81 ZP_09461002

ORF27 32368.33246 glucose-1-phosphate thymidylyltransferase rmlA
Aeromonas salmonicida subsp. salmonicida

A449
94 YP_001141271

ORF28 33359.34246 dTDP-4-dehydrorhamnose reductase rmlD
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
98 YP_857411

ORF29 34246.35331 dTDP-glucose 4,6-dehydratase rmlB
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
97 YP_857412
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associated unique regions of VAh isolates (Table 9). The
average percent identity of those proteins to their homologous
virulence factors was 38 %. We found that 35% (12 out of 34)
of the virulence factors were located within the GIs, which is in
agreement with the common occurrence of virulence factors
within genomic islands [49]. Genes predicted to encode a
fimbrial major subunit and fimbrial usher, and fimbrial chaperon
were found within GI 13 and GI 16, respectively. Two putative
TonB-dependent receptor coding genes were identified within
the epidemic-associated unique regions of VAh isolates, with
one showing 41% homology to a TonB-dependent receptor in
Neisseria meningitidis MC58 (serogroup B) and the other with
26% homology to a Yersinia bactin receptor protein of Yersinia
pestis CO92 (Table 9). Three genes (iolG, rbsA and iolA)
located within the myo-inositol utilization cluster (Figure 7),
which is also part of GI 2, were predicted to encode virulence-
related proteins (Table 9). In GI 12, we found hsdR and hsdM
of a putative type I restriction modification system that share
25% and 24% identity to their homologs in Vibrio cholerae
N1696, respectively (Table 9). Guanylate cyclases, involved in
bacterial cell division, motility, biofilm formation and
pathogenesis [50], were predicted within the epidemic-

associated unique regions C32R2 and C27R1. Putative
virulence factors found within the epidemic-associated regions
could potentially contribute to enhance pathogenicity of VAh
strains.

VAh strains contain a myo-inositol utilization pathway
The comparative analysis of A. hydrophila genomes revealed

that a 17.5 kb genomic region predicted to be involved in myo-
inositol catabolism is present in all VAh isolates and is part of
the epidemic-associated region in VAh isolates (Dataset S6).
Consistent with this finding, it was observed that all VAh
isolates were able to use myo-inositol as a sole carbon source.
Neither the five RAh strains nor the ATCC 7966 reference
proteome [19] was predicted to contain genetic regions
involved in myo-inositol catabolism. These findings were
supported by the inability of any RAh isolate to use myo-inositol
as a sole carbon source. The 17.5 kb myo-inositol catabolism
cluster (iol) contains 11 ORFs that are predicted to be involved
in myo-inositol transport and catabolism (Figure 7). In VAh
strains, like Bacillus subtilis [51], myo-inositol catabolism and
transport genes are clustered together within a single region

Table 6 (continued).

ORF ID

Nucleotide
positions in
Accession no.
KC999966 Predicted function Gene Nearest Neighbor % Identity Accession Number

ORFd 36022.37437 outer membrane protein OprM oprM
Aeromonas hydrophila subsp. hydrophila

ATCC 7966
98 YP_857413

doi: 10.1371/journal.pone.0080943.t006

Figure 5.  Schematic organization of the four different types of O-antigen biosynthesis gene cluster present within the
genome of the 11 A. hydrophila isolates sequenced in this study.  All of the genes on the cluster are transcribed in the same
direction. All VAh strains along with RAh strain TN97-08 shared the ML09-119-type O-antigen biosynthesis gene cluster. This
cluster encodes proteins predicted to be involved in the biosynthesis of the nucleotide sugars D-rhamnose, D-mannose, D-Fucose,
and 3-acetamido-3, 6-dideoxy-d-galactose (D-Fucp3NAc). The AL97-91-type cluster (that was also shared with MN98-04) encodes
genes predicted to be required for S-layer biosynthesis and transport in addition to O-antigen biosynthesis. Genes that encode
conserved proteins with similar functions are marked with the same color. The number displayed next to the maps indicates the
nucleotide positions on the respective contig from each strain. The designation of each of the genes presented on the schematic
map of the AL06-01, ML09-119, AL06-06 and AL97-91 O-antigen clusters are found in Tables 2, 4, 5 and 6, respectively.
doi: 10.1371/journal.pone.0080943.g005
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whereas in some bacteria, including Corynebacterium
glutamicum [52] and Caulobacter crescentus [53], these genes
are split into two or more clusters and dispersed across the
chromosome. The comparison of the iol cluster of VAh isolates
with that of Bacillus subtilis [54,55] and Klebsiella (Aerobacter)
aerogenes [56] revealed that the VAh myo-inositol catabolism
pathway cluster encodes all of the enzymes necessary for
myo-inositol utilization with the exception of 2-deoxy-5-keto-D-
gluconic acid 6-phosphate aldolase, which is required for the
degradation of myo-inositol to acetyl-CoA (Figure 7). However,
a search in the ML09-119 genome did reveal a gene predicted
to encode a homolog of 2-deoxy-5-keto-D-gluconic acid 6-
phosphate aldolase, with 98% similarity to its nearest BLASTx
hit within the genome of A. hydrophila ATCC 7966.

The low %G+C content of the region encoding the iol cluster
was 56.2% compared to the average 60.9 %G+C content of the
entire genome and the presence of a transposase flanking the
iol cluster suggest that the genetic region encoding the myo-
inositol catabolism genes has been introduced into the VAh
genome via a LGT event(s) (Figure 7). It is noteworthy to
mention that ORF1 to ORF11 of the myo-inositol catabolism
gene cluster is part of GI 2 present in an epidemic-associated
region (Dataset S6).

Establishment of genotypic and phenotypic tests to
identify epidemic A. hydrophila strains

The clonal nature of sequenced VAh isolates prompted us to
develop a VAh-specific PCR, and to compare results from the
PCR-based detection of VAh strains with the ability of each
strain to use myo-inositol as a sole carbon source. A multiplex
PCR was carried out with the gyrB gene as an internal positive
control and the VAh-associated C13R2-specific primers to
screen 68 A. hydrophila isolates obtained from diseased catfish
as well as other presumably RAh isolates from pond sediment
or fish cloaca with no evidence of MAS. RAh isolates and A.
hydrophila ATCC 7966, which also served as a negative
control, did not produce any amplicon specific to C13R2 region
while the gyrB gene specific PCR was positive. Among 68 A.
hydrophila isolates tested, 47 isolates (69%) were positive for
the C13R2-specific PCR and all were positive for the gyrB
gene specific PCR.

The presence of genetic loci involved in myo-inositol
catabolism in all sequenced VAh isolates prompted us to
determine the ability of A. hydrophila isolates to use myo-
inositol as a sole carbon source. We tested the same 68 A.
hydrophila isolates (evaluated above for C13R2 region-specific
PCR) for their growth in M9 minimal medium containing myo-
inositol. Of the 68 isolates, the same 47 isolates that were

Figure 6.  Predicted genomic islands (GIs) within the genome of A. hydrophila ML09-119.  GIs were predicted using the
IslandViewer tool [32]. The black line indicates the %G+C content. All of the predicted GIs showed a %G+C content bias much
lower than the average %G+C content of A. hydrophila (61.0%).
doi: 10.1371/journal.pone.0080943.g006
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positive by C13R2-specific PCR were also capable of using
myo-inositol as a sole carbon source. Taken together, these
results demonstrated that 100% of the isolates showed a
correlation between the growth on myo-inositol and the
presence of an epidemic-associated region.

Predicted prophages within the genome of A.
hydrophila isolates

Prophages contribute significantly to the evolution of their
bacterial hosts [57]. We predicted 5 prophages (AH1, AH2,
AH3, AH4 and AH5) within the genome of VAh isolates and the
distribution of these prophages in A. hydrophila genomes
sequenced in this study are presented in Table 10. Among the
five prophages predicted in all VAh isolates, prophage AH1 and
AH5 were uniquely present in all VAh isolates and absent from
all other RAh isolates (Table 10).

The putative prophage AH1, found only in VAh isolates,
showed the highest number of protein similarities to Fels 1
prophage of Salmonella. This prophage is 17.5 kb in size and
encodes a total of 16 different predicted ORFs. This prophage
is predicted as a questionable prophage due to the deficiency
of some structural proteins. Prophage AH1 encodes two
different transferrin-binding proteins and these proteins might
help epidemic VAh strains to acquire iron, an essential cofactor
for diverse biochemical reactions, from carrier protein
transferrin. Two transferrin-binding proteins located within the

AH1 prophage correspond to ORF7 and ORF8 of the epidemic-
associate unique region C39R1 (Dataset S6). Prophage AH1
also is predicted to encode a methyl-accepting chemotaxis
protein. In Pseudomonas aeruginosa, it has been shown that
the methyl-accepting chemotaxis protein plays a significant role
in the regulation of virulence and antibiotic tolerance [58].

The putative prophage AH2, present in all VAh strains and all
RAh except AL06-01, shares significant homology with
phiO18P of A. media [59] and phiO18P-like prophages of A.
caviae Ae398 [60] and A. salmonicida subsp. salmonicida
A449 [61]. AH2 was found to be integrated into the tRNA-Leu
gene at an attL site on the VAh genome. The sequence
analysis demonstrated that this 35 kb putative prophage is
flanked by 50-bp direct repeats, predicted as attachment sites
attL and attR. The analysis of CDSs from prophage AH2
indicated that most of them have significant homology with that
of prophage phiO18P, a UV-induced phage from A. media
isolate O18 [59]. The attL site of prophage AH2 is located
within the tRNA-Leu gene like many other prophages inserted
within bacterial genomes [62]. Similarly, the disruption of a
tRNA-Leu gene with a phiO18P-like prophage was also
observed in A. caviae Ae398. The %G+C content of the AH2
prophage is 58.0%. A prophage database compiled by Zhou et
al. [61] demonstrated that A. salmonicida subsp. salmonicida
A449 contained two putative prophages similar to phiO18P with
a 58% G+C content. A comparative genome sequence analysis

Table 7. The distribution of 16 different VAh-specific genomic islands in different A. hydrophila isolates used in this study.

GI # Nucleotide positions Size (kb) Number of ORFs %G+C A. hydrophila isolates
Epidemic-associated
GIs

GI 1 8728.22581 13,853 12 44.0 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 2 30195.41895 11,700 13 57.8 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 3 71487.98770 27,283 28 41.3 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 4 263720.284778 21,058 32 54.0
ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, AL97-91,
MN98-04, TN97-08, AL06-01

-

GI 5 76843.95300 18,457 22 51.5
ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, AL97-91,
MN98-04, TN97-08, AL06-01

-

GI 6 95365.107861 12,496 12 48.1 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 7 123898.133969 10,071 12 44.5
ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, TN97-08,
AL06-01

-

GI 8 277559.288667 11,108 13 54.2
ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, AL97-91,
MN98-04

-

GI 9 91274.118831 27,557 36 51.1 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, TN97-08 -

GI 10 119893.134877 14,984 20 57.4 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, TN97-08 -

GI 11 21645.43624 21,979 33 42.3 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 12 25686.46472 20,787 19 49.9 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 13 1.8099 8,098 12 35.2 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 14 51060.60399 9,339 12 63.6 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

GI 15 60579.71065 10,486 13 43.6 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118, TN97-08, -

GI 16 351791.364972 13,182 18 56.4 ML09-119, ML09-122, ML09-121, AL09-79, AL10-121, PB10-118 Unique

doi: 10.1371/journal.pone.0080943.t007

Comparative Genomics of Epidemic A. hydrophila

PLOS ONE | www.plosone.org 18 November 2013 | Volume 8 | Issue 11 | e80943



Ta
bl

e 
8.

 S
um

m
ar

y 
of

 O
R

Fs
 e

nc
od

ed
 w

ith
in

 G
I 1

3 
of

 E
Ah

 is
ol

at
e 

M
L0

9-
11

9 
in

vo
lv

ed
 in

 C
S5

 p
ilu

s 
bi

og
en

es
is

.

O
R

F 
ID

N
uc

le
ot

id
e 

po
si

tio
ns

 in
 c

on
tig

 2
7

Pu
ta

tiv
e 

fu
nc

tio
n

G
en

e
To

p 
B

LA
ST

x 
hi

t
%

 Id
en

tit
y

E-
va

lu
e

%
 Id

en
tit

y 
to

 E
. c

ol
i (

A
cc

es
si

on
 n

o)
 [4

8]

O
R

F1
10

6.
45

6
Ex

tra
ce

llu
la

r s
ol

ut
e-

bi
nd

in
g 

pr
ot

ei
n 

fa
m

ily
 3

-
Pa

en
ib

ac
illu

s 
la

ct
is

 1
54

48
2.

27
91

7
-

O
R

F2
90

9.
14

90
C

S5
 fi

m
br

ia
l m

aj
or

 p
ilin

 s
ub

un
it

hs
fA

Es
ch

er
ic

hi
a 

co
li

38
2E

-2
4

38
 (C

AA
11

82
0)

O
R

F3
15

55
..2

24
7

25
.9

 k
D

a 
pr

ot
ei

n 
in

 C
S5

 3
' r

eg
io

n 
pr

ec
ur

so
r

hs
fB

Ed
w

ar
ds

ie
lla

 ic
ta

lu
ri 

93
-1

46
36

3.
82

E-
30

28
 (C

AA
11

82
1)

O
R

F4
23

03
.3

64
3

P 
pi

lu
s 

as
se

m
bl

y 
pr

ot
ei

n 
po

rin
 P

ap
C

-li
ke

 p
ro

te
in

hs
fC

Ed
w

ar
ds

ie
lla

 ic
ta

lu
ri 

93
-1

46
29

9.
65

E-
45

25
 (C

AA
11

82
2)

O
R

F5
39

45
.4

67
9

P 
pi

lu
s 

as
se

m
bl

y 
pr

ot
ei

n 
po

rin
 P

ap
C

-li
ke

 p
ro

te
in

hs
fC

Ed
w

ar
ds

ie
lla

 ic
ta

lu
ri 

93
-1

46
28

6.
78

E-
19

22
 (C

AA
11

82
2)

O
R

F6
46

69
.5

24
4

H
yp

ot
he

tic
al

 p
ro

te
in

hs
fE

Es
ch

er
ic

hi
a 

co
li

26
4.

91
E-

08
26

 (C
AA

11
82

3)

O
R

F7
52

05
.6

02
3

C
S5

 fi
m

br
ia

l m
in

or
 p

ilin
 s

ub
un

it
hs

fD
Es

ch
er

ic
hi

a 
co

li
35

2.
56

E-
19

35
 (C

AA
11

82
5)

O
R

F8
63

69
.7

12
7

EA
L 

do
m

ai
n 

pr
ot

ei
n

-
Vi

br
io

 p
ar

ah
ae

m
ol

yt
ic

us
 A

N
-5

03
4

45
1.

92
E-

56
-

O
R

F9
72

58
.8

03
4

Al
ph

a/
be

ta
 h

yd
ro

la
se

, p
ut

at
iv

e
-

Vi
br

io
 c

ho
le

ra
e 

M
ZO

-3
49

3.
35

E-
64

-

do
i: 

10
.1

37
1/

jo
ur

na
l.p

on
e.

00
80

94
3.

t0
08

from prophage AH2, phiO18P [59], and two prophages from A.
salmonicida subsp. salmonicida A449 demonstrated a high
degree of sequence homology among these prophages (data
not shown).

The putative prophage AH3 has many proteins that are
homologous with those from prophage Salmonella RE-2010
and is located within the genome of all VAh strains. This
prophage was absent in all other RAh strains except AL06-06.
The AH3-like prophage of RAh strain AL06-06 is 35.7 kb in size
and encodes a total of 58 ORFs whereas the prophage AH3 of
VAh strains is 7.8 kb in length with 12 predicted ORFs. The
47.93% G+C content of this prophage is much lower than the
%G+C content of Aeromonas species. The smaller size of this
incomplete prophage and its lower %G+C content as compared
to that of the RAh strain AL06-06 suggests that this prophage
might have undergone several LGT events.

Prophage AH4 (46.9 kb in size with 53 ORFs) was observed
within the genome of all VAh isolates and showed significant
homology to the Mu-like prophage D108 of Escherichia coli
origin [63]. The 57.3% G+C content of this prophage is similar
to that of Aeromonas salmonicida subsp. salmonicida A449
[64]. None of the ORFs from this prophage has any known
affiliation with any previously described A. hydrophila phage.
The M and S subunits of a type I restriction modification system
and secretion activator proteins encoded in this AH4 prophage
could be potential virulence factors in A. hydrophila. The
analysis of predicted prophages within the 6 RAh A. hydrophila
isolates sequenced in this study demonstrated that isolates
AL97-91 and MN98-04 contain AH4-like prophages with
significant homology to Mu-like prophage D108 of Escherichia
coli origin [63]. The sizes of the AH4-like prophages from
AL97-91 and MN98-04 isolates are 37.5 kb, unlike AH4
prophages of VAh isolates which is 46.9 kb. The comparison of
the AH4 prophage from VAh strains with the AH4-like
prophages of MN98-04 and AL97-91 demonstrated that AH4
from VAh strains contains at least 10.6 kb of additional
sequences that are absent in AH4-like prophages of MN98-04
and AL97-91 (Figure 8A). An additional sequence present in
the AH4 prophage encodes 10 different ORFs and two of them
are present in epidemic-associated regions (ORFs 1 from
C18R3 and C18R4, Dataset S6). This prophage also contains
two additional epidemic-associated regions (C18R5 and
C18R6, Dataset S6) that are clearly evident from the mauve
alignment of this prophage region from VAh isolates and the
AH4-like prophage from the RAh strains MN98-04 and AL97-91
isolates (Figure 8A).

Prophage AH5, found within the VAh isolates but absent
from RAh isolates, shows the highest number of protein
similarities to Enterobacterial phage mEp390. This epidemic-
associated prophage is 33.1 kb in length and encodes 40
predicted ORFs. The %G+C content of this prophage is
52.19% which is much lower than the average %G+C content
(61%) of A. hydrophila isolates. AH5 is predicted to encode a
N6-methyltransferase and this could potentially contribute to A.
hydrophila virulence in catfish due to the virulence properties of
this protein in many bacteria including A. hydrophila [65,66].
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Identification of induced prophage by 454
pyrosequencing

Phage DNA was recovered from the cell-free supernatant of
a mitomycin C-induced ML09-119 culture, and the phage DNA
was isolated to determine which of the prophage(s), out of the

five predicted prophages, were induced after mitomycin C
treatment. Purified prophage DNAs visualized by pulsed field
agarose gel electrophoresis revealed only a single DNA band
(data not shown). This observation suggested that only one
prophage was induced from A. hydrophila ML09-119 after

Table 9. Predicted genes that have homology to putative virulence factors and are present within VAh-associated genomic
regions.

Unique region ID VFDB ID GIs Gene Putative functions Organisms % Identity E-value

C8R1 VFG1693 GI 1 int Prophage P4 integrase Escherichia coli CFT073 33 1.1E-45

C10R1 VFG0893 - papA_2 PapA protein Escherichia coli CFT073 33 2.1E-16

C10R1 VFG0075 - InlA Internalin A Listeria monocytogenes (serovar 1/2a) EGD-e 30 1.4E-16

C13R2 VFG0783 - intL
Putative integrase for prophage 933L and
the LEE pathogenicity island

Escherichia coli O157:H7 EDL933 27 1.3E-16

C15R4 VFG0038 GI 2 bplA probable oxidoreductase Bordetella pertussis Tohama I 28 2.3E-19

C15R4 VFG0344 GI 2 hitC iron(III) ABC transporter, ATP Haemophilus influenzae Rd 33 6.7E-23

C15R5 VFG0082 - aldA aldehyde dehydrogenase Vibrio cholerae N16961 31 1.2E-47

C15R6 VFG0598 - intC Sai integrase Shigella flexneri (serotype 2a) 301 47 4.9E-93

C18R3 VFG0672 GI 6 int integrase Shigella flexneri (serotype 2a) 66 5E-162

C20R4 VFG1124 - VC1791 conserved hypothetical protein Vibrio cholerae N16961 41 4.2E-39

C20R7 VFG0925 - fepC Ferric enterobactin transport ATP Escherichia coli CFT073 33 2.3E-23

C20R7 VFG0922 - chuU
Putative permease of iron compound ABC
transport system

Escherichia coli CFT073 39 3.8E-29

C20R8 VFG0358 - fyuA/psn yersiniabactin receptor protein Yersinia pestis CO92 26 1.4E-34

C20R8 VFG0167 - pchR transcriptional regulator PchR Pseudomonas aeruginosa PAO1 41 1.1E-26

C26R1 VFG1102 GI 12 hsdM DNA methylase HsdM Vibrio cholerae N16961 25 4.6E-17

C26R1 VFG1098 GI 12 hsdR type I restriction enzyme HsdR Vibrio cholerae N16961 24 1.3E-21

C26R2 VFG2417 - ecpE hypothetical protein Escherichia coli O157:H7 EDL933 47 5.7E-41

C26R2 VFG2416 - ecpD putative receptor Escherichia coli O157:H7 EDL933 56 1.2E-108

C26R2 VFG2415 - ecpC putative enzyme Escherichia coli O157:H7 EDL933 55 8.5E-142

C26R2 VFG2412 - ecpB hypothetical protein Escherichia coli O157:H7 EDL933 48 1.1E-50

C26R2 VFG2414 - ecpA hypothetical protein Escherichia coli O157:H7 EDL933 57 7.2E-44

C26R2 VFG2044 - bvgA Virulence factors transcription regulator Bordetella pertussis Tohama I 47 7.7E-53

C27R1 VFG1433 GI 13 csvA CS7 fimbria major subunit CsvA precursor Escherichia coli 39 6.8E-22

C27R1 VFG0584 GI 13 yjcC putative diguanylate cyclase Salmonella enterica (serovar typhimurium) LT2 29 4.8E-28

C32R1 VFG1584 GI 14 orf50 hypothetical protein Escherichia coli 536 26 1.9E-13

C32R1 VFG1584 GI 14 orf50 hypothetical protein Escherichia coli 536 26 4.7E-18

C32R2 VFG1888 - letS sensory box histidine kinase Legionella pneumophila Philadelphia 1 39 1.1E-41

C32R2 VFG0584 - yjcC putative diguanylate cyclase Salmonella enterica (serovar typhimurium) LT2 32 6.9E-32

C36R3 VFG1092 GI 16 int3 integrase, phage family Vibrio cholerae N16961 26 9.3E-15

C36R3 VFG1443 GI 16 ompA outer membrane protein A Escherichia coli 38 1.8E-54

C36R3 VFG1548 GI 16 prfC PrfC protein Escherichia coli 536 39 1E-164

C36R3 VFG1547 GI 16 prfD PrfD protein Escherichia coli 536 51 2.7E-61

C39R1 VFG0266 - hmbR hemoglobin receptor Neisseria meningitidis MC58 (serogroup B) 31 1.4E-45

C39R1 VFG0266 - hmbR hemoglobin receptor Neisseria meningitidis MC58 (serogroup B) 36 6.5E-34

doi: 10.1371/journal.pone.0080943.t009
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mitomycin C treatment. Induction of VAh isolate ML09-119
followed by sequencing of phage DNA and reference mapping
of the phage sequences against the ML09-119 genome
suggests that AH4 is the only inducible prophage in VAh
isolates (Figure 8B). This prophage was predicted as prophage
AH4 with significant similarity to Escherichia_phage_D108
(Table 10). Induced phage particles were visualized with
electron microscopy revealing a phage morphology with an
icosahedral head and a contractile tail. These results strongly
suggest that A. hydrophila ML09-119, and presumably all other
VAh strains, contain a lysogenic phage. The sequence
coverage that mapped to prophage AH4 was greater than 50×
on average (Figure 8B). This reference assembly data
indicated the presence of a single inducible prophage, which
was in agreement with the previous observation of a single
DNA band observed by pulsed field gel electrophoresis. In
addition, there were 4 ORFs (two upstream and two within the
prophage) associated with the AH4 prophage that were only
present in sequenced VAh strains, and the upstream ORFs
were not induced by mitomycin C as strongly as the prophage
region. The two upstream epidemic-associated ORFs were
predicted to encode an Abi family protein and a Cro/CI family
transcriptional regulator (Figure 8A), with the putative Cro/CI
transcriptional regulator located very close to the induced

region of the prophage. The two epidemic-associated ORFs
within the induced prophage were both predicted to encode

Table 10. Distribution of five prophages in different A.
hydrophila isolates used in this study.

A. hydrophila isolates AH1 AH2 AH3 AH4 AH5
AL06-06 Absent Partial Present Absent Absent
AL06-01 Absent Absent Absent Absent Absent
AL97-91 Absent Partial Partial Partial Absent
TN97-08 Absent Partial Partial Absent Absenta

MN98-04 Absent Present Partial Partial Absent
ML09-119 Present Present Present Present Present
ML09-121 Present Present Present Present Present
ML09-122 Present Present Present Present Present
AL09-79 Present Present Present Present Present
AL10-121 Present Present Present Present Present
PB10-118 Present Present Present Present Present

a. The reference mapping of TN97-08 against the prophage AH5 found that some
reads from TN97-08 matched with this prophage genome but none of them
encoded complete ORFs.
doi: 10.1371/journal.pone.0080943.t010

Figure 7.  Genetic elements involved in myo-inositol utilization in VAh strains.  The schematic organization depicts the cluster
of genes involved in myo-inositol utilization in epidemic A. hydrophila ML09-119. The presence of a functional myo-inositol utilization
pathway in VAh strains was confirmed by their ability to grow on myo-inositol as a sole carbon source.
doi: 10.1371/journal.pone.0080943.g007
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hypothetical proteins of unknown function. Given the well
described contribution of transduced loci to bacterial
pathogenesis in V. cholera and other pathogens, it is
conceivable that these AH4 prophage-associated genes are
involved in lysogenic conversion of VAh strains into a more
virulent phenotype. Further studies will be necessary to
determine the specific contribution of these genetic loci, and
other VAh-associated loci, to the pathogenesis of these A.
hydrophila strains responsible for epidemic outbreaks in farmed
catfish.

Discussion

This study identified specific genetic loci present within A.
hydrophila isolates responsible for an epidemic of disease in
catfish. Comparative genomics of 11 A. hydrophila isolates
demonstrated that recent epidemic isolates are highly clonal
while a great deal of diversity was observed among A.
hydrophila isolates obtained from diseased fish prior to any
epidemic outbreak. Recent VAh isolates have considerable
genomic differences with RAh strains that may contribute to

their emergence as highly pathogenic strains in aquaculture
farmed catfish.

The recent epidemic outbreak of MAS caused by highly
virulent A. hydrophila is unique since the catfish farming
operations in the Southeastern United States have never
experienced a large-scale outbreak of MAS previously [3].
Moreover, experimental disease challenges in aquaria models
indicate that the A. hydrophila isolates responsible for recent
epidemic outbreaks are highly virulent as compared to the RAh
isolates that were historically regarded as an opportunistic
bacterial pathogen isolated from stressed fish [4]. Since after
introduction into catfish farming in western Alabama in 2009,
this unprecedented epidemic has expanded its geographic
territory and caused frequent outbreaks in the summer months,
resulting in millions of pounds of losses in Alabama, Mississippi
and Arkansas.

Epidemic isolates used in our study were obtained as pure
cultures from tissues (kidney or brain) taken from diseased
catfish in ponds experiencing an outbreak of MAS. Our
comparative genomics data distinguishes these contemporary
epidemic isolates (VAh strains) from reference isolates (RAh
strains) based on the presence of specific genetic

Figure 8.  Identification of a VAh-specific genetic region associated with prophage AH4 that is induced after mitomycin C
treatment.  (Panel A) Mauve multiple genome alignment of the prophage A4 region from AH strains MN98-04 and AL97-91 with
VAh strain ML09-119, depicting the two upstream ORFs (in red) and two within-prophage regions (shown by lack of Mauve
alignment) that are VAh-associated. (Panel B) Induced phage DNAs were subjected to 454 pyrosequencing and were reference
mapped against the AH4 prophage region of the A. hydrophila Ml09-119 genome. Each predicted ORF is indicated as an arrow, and
the four VAH-associated ORFs are depicted in red.
doi: 10.1371/journal.pone.0080943.g008
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polymorphisms. Our findings suggest that those epidemic-
associated genetic markers have been acquired during the
course of evolution of highly virulent strains. Our comparative
genomic analysis demonstrated that all of the VAh isolates
contain a large number of unique regions within their genomes
that are completely absent in the genomes of RAh isolates. A
total of 55 regions comprising 336,469 bp were identified as
epidemic-associated regions in VAh isolates. These VAh-
associated genomic regions all together encode 313 ORFs that
are predicted to be involved in different functions. A large
fraction of these VAh-associated genomic regions (252 kb out
of 336 kb in total) are contained within genomic islands,
suggesting their possible acquisition through lateral transfer. A
total of 34 predicted genes that had significant similarity with
proteins in a virulence factor database were predicted within
these VAh-associated regions. Further experiments will be
required to determine the specific contribution of each genetic
locus to VAh virulence in catfish.

A cluster of genes (iol) involved in myo-inositol catabolism
and transport were consistently present in all sequenced VAh
isolates, and were not identified in any other A. hydrophila
genome. This is the first identification of an iol cluster, which
encodes all of the proteins required for the transport and
catabolic degradation of myo-inositol to acetyl-CoA, within any
Aeromonas species. The existence of a functional myo-inositol
catabolism pathway in epidemic-associated A. hydrophila
isolates was formally demonstrated by the ability of these
strains to grow in a minimal medium in the presence of myo-
inositol as a sole carbon source. In 1989, Burtle and Lovell [67]
suggested that the liver and intestine of catfish (Ictalurus
punctutus) synthesize myo-inositol de novo and hence dietary
supplementation is unnecessary. Inositol acquisition by
Cryptococcus neoformans is perquisite for the successful
development of brain infection in animal model [68,69]. The
inositol utilization by Cryptococcus is considered as most likely
factor for the emergence of this pathogen from an environment
reservoir [70]. These myo-inositol pathways, like L-fucose
utilization pathways in Campylobacter jejuni [71], could provide
a competitive advantage for A. hydrophila strains expressing
an iol cluster to grow in liver, intestine or other fish tissue and
could be responsible for enhanced virulence in catfish.
Alternatively, the abundance of myo-inositol in soil and pond
sediments could facilitate growth and survival of A. hydrophila
isolates, providing a competitive advantage over other bacterial
taxa that lack the capacity to utilize myo-inositol. Alternatively,
the iolR transcriptional regulator present within the iol cluster
may regulate the expression of known A. hydrophila virulence
factors such as aerolysin [72,73], potentially resulting in myo-
inositol-dependent expression of multiple VAh genetic loci.

This study, by sequencing a large number of epidemic and
reference A. hydrophila isolates followed by the identification of
epidemic-associated genomic regions, has provided valuable
tools for studying the molecular epidemiology of the ongoing
MAS epidemic in the southeastern United States. In this study
we found a 100% correlation between presumptive VAh
isolates with the presence of specific genomic regions and the
ability to use myo-inositol as their sole carbon source. In the
future, epidemic outbreaks of MAS may be investigated using a

genotypic and/or phenotypic assay based on the presence of
epidemic-associated genetic loci in epidemic isolates and/or
the ability to use myo-inositol as a sole carbon source. In
addition to routine diagnostics, these assays will also help to
track the geographic distribution of the current epidemic A.
hydrophila strains affecting catfish farming.

In this study another objective was to attempt to ascertain
the origin of this highly virulent genotype. The comparative
genomic analysis of VAh and RAh strains identified, in addition
to epidemic-associated genomic regions, several other
genomic regions that could help trace the emergence of this
virulent A. hydrophila strain. The lateral transfer of an O-
antigen biosynthesis gene cluster is widely considered as a
prominent way to generate novel serotypes with highly virulent
attributes [74]. In this comparative genomics study we have
identified four different novel O-antigen biosynthesis gene
clusters among 11 different isolates. These novel O-antigen
clusters varied substantially based on their nucleotide
sequences, gene content and their relative genetic organization
within the clusters. The VAh-type O-antigen cluster, which is
present in all sequenced epidemic isolates and one reference
isolate TN97-08, is predicted to include the five sugars D-
rhamnose, D-mannose, D-Fucose, and 3-acetamido-3, 6-
dideoxy-d-galactose (D-Fucp3NAc). Although the genome-wide
pairwise comparison between the conserved gene families of
ML09-119 and TN97-08 demonstrated that they are less than
75% homologous, it is intriguing to discover that the 26.5 kb O-
antigen gene cluster of strain TN97-08, obtained in 1998 from a
diseased fish in Tennessee, was 100% identical to that of the
recent epidemic A. hydrophila isolates. Future experiments will
be required to determine whether the novel O-antigen cluster
present in epidemic isolates provides any direct role in the
virulence of VAh strains in catfish.

Within the VAh genomes we identified five prophages, four of
which were unique to the epidemic strains. Prophage induction
using mitomycin C resulted in the maturation of a phage with
an icosahedral head and a contractile tail. We isolated DNA
from the induced phage and generated phage genome
sequences via pyrosequencing. Mapping of the phage genome
to the VAh strain ML09-119 genome clearly indicated that
prophage AH4 was induced by mitomycin C treatment.
Interestingly, we found three putative genes located adjacent to
the AH4 prophage that were VAh-associated but not mitomycin
C-induced. Their potential role in mediating lysogenic
conversion in VAh strains is unknown, and warrants further
investigation.

The expansion of MAS in catfish aquaculture caused by
highly pathogenic A. hydrophila is threatening the catfish
farming industry in the southeastern United States. Currently,
there is no effective vaccine or therapeutic agent demonstrated
to be effective for the prevention and/or control of MAS in
catfish aquaculture ponds. It is our goal to use the molecular
insights gained from this comparative genomic analysis to
design improved diagnostic and therapeutic approaches for
control of epidemic MAS caused by A. hydrophila.
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