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Abstract

In this paper we introduce a system of partial differential equations that is capable of model-

ing a variety of dynamic processes in soft tissue cellular populations and their microenviron-

ments. The model is designed to be general enough to simulate such processes as tissue

regeneration, tumor growth, immune response, and many more. It also has built-in flexibility

to include multiple chemical fields and/or sub-populations of cells, interstitial fluid and/or

extracellular matrix. The model is derived from the conservation laws for mass and linear

momentum and therefore can be classified as a continuum multi-phase model. A careful

choice of state variables provides stability in solving the system of discretized equations

defining advective flux terms. A concept of deviation from normal allows us to use simplified

constitutive relations for stresses. We also present an algorithm for computing numerical

approximations to the solutions of the system and discuss properties of these approxima-

tions. We demonstrate several examples of applications of the model. Numerical simula-

tions show a significant potential of the model for simulating a variety of processes in soft

tissues.

Introduction

Numerous mathematical models and computational frameworks have been designed to repre-

sent complex dynamics in soft tissue with a significant portion of research revolving around

modeling various processes in tumor development [1–11]. These models can also be used to

simulate scenarios ranging from tissue oxygenation [12–18] to invasion [19–22] to tumor

encapsulation [23, 24].

Most biological processes are interconnected, and complex relationships between them are

often hard to understand and untangle, let alone quantify. Experimental investigations can be

very time-consuming, expensive, and limited in scope. Experiments typically focus on a single
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point while keeping the other conditions fixed, making it hard to study systems level and

dynamical behaviors. From this point of view, computational studies, in general, can be very

advantageous, and computational models, in particular, can be used to elucidate various

aspects of complex biological interactions and test the feasibility of different hypotheses on

multiple levels.

The current work has the goal of creating a flexible computational framework that allows

modelers to capture elements of mechanical and chemical process dynamics typical for spa-

tially heterogeneous soft biological tissues, in which interactions between different types of

cells and the micro-environment can be specified in variable detail (including interstitial fluid

with various chemical agents, vascular networks, and extracellular matrix components). Target

applications can include study of tissue regeneration, tumorigenesis, and cancer therapy, and

others that share above mentioned characteristics.

Computational approaches to tumor growth modeling can be broadly subdivided into two

main categories: discrete cells and continuum models (as well as the combination of both—

hybrid models) [2, 5]. In the former, each individual cell is modeled as a discrete particle, rep-

resented by some computational entity (e.g., an object, or an agent), that can exhibit individual

properties and reactions. In the latter, the cells are approximated as a continuous fluid, and

partial-differential equations (PDEs) are used to describe their dynamics.

The discrete-cell approach allows integration of various properties into individual cells and

observation of their dynamics separately. The approach is very flexible because it allows, at

least theoretically, each individual cell to exhibit a unique phenotypical behavior. It can also

allow incorporation of various biochemical processes within individual cells. This, of course,

comes at a steep computational price—the more individual properties each cell can exhibit,

the more computational power and time is needed. For a large system simulation, these

computational issues can become prohibitively “expensive” [2].

Besides computational concerns, the discrete-cell approach may have some issues from a

purely modeling point of view. A great number of details are needed to describe individual

cells and their interactions with other cells and their environment, (for example, shapes and

mechanical properties of cells, cell-cell and cell-ECM adhesion and interactions, details on cell

motility and so on) while, at the same time, the biology related to these details is largely unclear

or completely unknown. This means that modelers often have to fill in those knowledge gaps

with guesses (although often biophysically driven) and simplifying assumptions, and this can

often render the model unrealistic, thus devaluing the extra flexibility offered by the discrete-

cell approach.

The continuum approach, in contrast, does not have individual cells and, instead, treats the

tissue as a continuous deformable mass, utilizing the continuum mechanics tool set [5]. Rather

than capturing characteristics of individual cells, these models introduce averaged cellular

attributes. This allows handling larger systems and is, generally, less demanding on the compu-

tational resources. One of the trade-offs is a sharply decreased number of options for the con-

trol of heterogeneous properties of tumor cells. Not only is the individuality of cells within the

model lost, but even the number of different types of cells (e.g., different mutated clones)

becomes an “expensive” option—each new type has to be modeled by a separate PDE.

Since the continuum approach does not have a concept of individual cells, instead of count-

ing the number of cells, the concept of volume fraction is often utilized for each cell type mod-

eled by the system [5]. For most models, mass balance equations are used to formulate partial

differential equations governing movement of these continuous fields of cells [25]. These equa-

tions may account for cell movement due to mechanical forces exerted on them by other com-

ponents, random motility of cells (diffusion terms), and cell movement along existing

gradients (chemotaxis and haptotaxis terms) [26].
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In general, continuum models can be further subdivided into two categories: single phase

and multiphase [5]. Single phase models treat tumor mass as a homogeneous component,

sharply defined by its boundary. As a result, the equations describing the dynamics of the

tumor’s growth are the equations for the boundary of the tumor. This approach does not pro-

vide framework for including the interactions of the multiple cell types and the extracellular

matrix (ECM) into the model.

We chose a continuum multiphase approach, utilizing the concept of volume fraction for

each of the multiple cell types modelled by the system [5]. In this approach, the governing

equations apply to the entire domain and not just to the boundary, as opposed to the single

phase models. This, in turn, allows for modeling interactions between different phases (com-

ponents), including the ECM and interstitial fluid, which is why we ultimately settle on this

strategy.

For the continuum based model, formulation begins with the set of advection equations,

which can be derived directly from the mass balance principle. These equations contain drift
velocities for each cell type, and the most difficult part is connecting these velocities to volume

fractions and nutrient concentrations [25]. The process of completing the system of equations

with additional relationships between the components, that will allow the system to become

solvable, is often referred to as the closure of the system. Depending on the approach used to

close the system, the models can acquire various characteristics in terms of the details they can

capture, or the accuracy of their predictions.

We picked an approach that uses the momentum balance equations with constitutive rela-

tions, where the closure is based on the fundamental principle of conservation of linear

momentum. (Two other commonly used approaches are using potential flow models and

introducing an “action” function [25]). The resulting partial differential equations relate exter-

nal forces acting on components to their stresses [5]. Particular forms of stresses vary from

material to material, and several forms have been used in tissue modeling [23, 24, 27]. The

external forces commonly include drag forces which are directly related to the relative veloci-

ties of the components. If one wishes to include such processes as random motility and/or che-

motaxis, it is a straightforward task to incorporate additional force terms that give rise to these

phenomena within the model.

Thus, we close the set of advection equations with momentum balance equations using

drag forces and pressure to connect to components’ momentum transfers. Since we also aim

to quantitatively take into account nutrient transport and signaling within tissue, the addition

of the diffusion equations to model nutrients and microenvironment completes the set of dif-

ferential equations defining the model.

The elements of our model pertaining to cell motion are closely related to the models pre-

sented in [23, 24]. There are, however, some important differences. We avoid making several

simplifying assumptions included in these works. One of the most important ones is that we

allow different components in our model to have different drag coefficients. Additionally, we

avoid assuming spherical symmetry and solve the equations on a 2-dimensional grid, allowing

more freedom of movement for the components in the model. For example, non-uniformity

of the ECM and/or the spacing of the capillary sources in the domain may very well lead to the

tumor shape variations reflecting local differences in micro environment and/or mechanical

properties of the tissue, which can be captured by our model. We also slightly modify excess

pressure functions and introduce an additional control over the ECM’s “active” response to

changes in soft tissue. The approach developed in [23, 24] allows for multiple cell types

(though the authors work with only three components, which suits their needs), and we take

advantage of this by introducing multiple cell subpopulations. We also couple the equations

governing growth and decay of the components with chemical fields.
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Lastly, in order to translate our mathematical framework to computer simulation models,

we develop a numerical treatment scheme that tries to balance accuracy with complexity and

stability. Using a rectangular mesh we discretize space and time and apply a predictor-correc-

tor method [28] to evolve the system. At every time step we solve the diffusion equations for

chemical fields and momentum balance equations for system components to advance the

mass conservation equations in time.

Some of the computational ideas are in line with the methods described by [9]. For exam-

ple, we adapt the use of half-index locations, though we use a different time-dependent

scheme. While the model in [9] assumes that at a given location all components of the system

move with the same velocities, in contrast, we also allow each component to move at its own

velocity, determined from the linear momentum balance equations. Additionally, we include

interstitial fluid and the ECM components to represent more realistic interactions between the

cells and the micro-environment.

From a computational point of view, one of the distinguishing characteristics of our

approach is choosing advective flux terms as state variables, instead of velocities. This approach

allows us to ensure that the linear system of equations resulting from the balance of linear

momentum is invertable.

The paper is organized as follows: the mathematical formulation of the model is developed

in Mathematical Model Development. Simulations and Experimental Results is devoted to sev-

eral numerical examples demonstrating the capacity of the model to simulate soft tissue pro-

cesses. We summarized the key characteristics of the model in Conclusions. The details of the

numerical methods used to compute the approximations to the solutions of the model are pre-

sented in S1–S4 Appendices.

Mathematical Model Development

The development of this model can be conceptually subdivided into three parts:

• A mathematical model of the population birth/death and movement dynamics for all of the

components of the system.

• A mathematical model of the chemical species dynamics within the interstitial fluid (coupled

with the first part)—the micro-environment.

• A numerical scheme that would translate/approximate the two previous parts into a form

suitable for computer simulations.

The first two are addressed in the following subsections, while the bulk of the details for the

numerical schema is presented in S1–S4 Appendices.

System components dynamics

Consider a biological system, which is a sample of soft tissue, consisting of cells, interstitial

fluid, and the extracellular matrix (ECM). We’ll refer to the different types of cells, together

with the ECM and interstitial fluid as components of the system, and use ui to denote a volume

fraction of the i-th component, i = 0, � � �, n + 1. (By volume fraction ui, we mean the fraction of

the infinitesimal volume element occupied by the i-th component.) For convenience, we

reserve index 0 for interstitial fluid and index n + 1 for the extracellular matrix, when present.

The system of partial differential equations governing our computational model is built

upon several fundamental assumptions and concepts stemming from continuum mechanics

and used by many researchers from the tumor dynamics modeling community (see, for exam-

ple, [5, 9, 23–25, 29]):
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1. Due to the conservation of mass, the volume fractions of the system’s components, ui-s,

i = 0, � � �, n + 1, each obey the advection equation

@ui

@t
þr � ðuiviÞ ¼ gi; ð1Þ

where vi denotes the components’ velocity and gi is its net production rate. The second

term on the left-hand side of the equation,r � (ui vi), essentially means mass transport.

2. No net volume change occurs (i.e., everything is produced from something already in the

system) and thus

Xnþ1

i¼0

gi ¼ 0; ð2Þ

3. There are no voids in the system (or we can think of it as if all voids are filled with intersti-

tial fluid) and thus

Xnþ1

i¼0

ui ¼ 1; ð3Þ

4. Ignoring inertial effects (which is reasonable with a very slowly moving mass) and external

forces (such as gravity), conservation of linear momentum implies that each component of

the system obeys

r�ðuiσiÞ þ Fi ¼ 0; ð4Þ

where σi denotes the Cauchy stress of the component i and Fi is a superposition of forces

that other components exert on the component i, i = 0, � � �, n + 1. (One can think of stress

as an internal force acting on the component as a reaction to an external force. It is a reflec-

tion of the mechanical properties of a component.).

Eqs (2) and (3), applied to the sum of the Eqs in (1), lead to the incompressibility condition

r �
Xnþ1

i¼0

uivi

 !

¼ 0; ð5Þ

which is used to complement Eq (4). This equation has a stabilizing effect on the model: at

every moment of time and at every location of the domain it allows us to insist on a zero net

mass transfer.

While some modelers restrict their attention to cellular components only [9], others include

interstitial fluid, as well as the extracellular matrix [23, 24]. The net production rates of the

components may depend on volume fractions of other components, as well as various chemi-

cal concentrations when such are included and coupled with the above mentioned equations.

Defining these rates does not usually present a challenge, and solving Eq (1) can be easily

accomplished with a variety of numerical methods, as long as the velocities vi of the compo-

nents are available.

If we use the conservation of the linear momentum, the equations for obtaining the veloci-

ties vi depend on the choices of constitutive relations defining the Cauchy stresses and the

interactions between various components of the system captured by the model’s force terms in

(4). The superposition of forces acting on the component i consists of the net static pressure,

prui, exerted on the component i, with p denoting so-called interphase pressure and the
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frictional drag due to the relative motion of the components [23, 24, 29]:

Fi ¼ prui þ
Xnþ1

j¼0;j6¼i

â ijuiujðvj � viÞ; i ¼ 0; � � � ; nþ 1; ð6Þ

where â ij is the drag coefficient for the frictional force between the components i and j. (Alter-

natively, one can use an approach where the velocities are computed as proportional to the

gradient of pressure [9]. This simplifies the model but the components lose the ability to move

independently—they all end up moving in the same direction.).

Back in (4), the Cauchy stress σi varies from model to model and is defined based on the

assumptions of mechanical properties of the corresponding component i. For example [23,

29], assume that components in their models behave as incompressible isotropic Newtonian

fluids with constant viscosity across the domain, and as such obey

σi ¼ � qiIþ litrðEiÞIþ 2miEi; i ¼ 0; � � � ; n: ð7Þ

Here, Ei ¼ 1=2ðrvi þrvTi Þ is the rate of strain tensor of component i, I is the identity tensor,

qi is the macroscopic intra-phase pressure in the component i, μi is the sheer viscosity of the

component, and λi is a coefficient characterizing the dilation viscosity of the component i.
In [23], the following form of stress-strain relationship is proposed for all components

(phases):

σi ¼ ð� p � CiÞI; ð8Þ

whereCi represents an additional isotropic pressure that distinguishes the component i from

other components, and C0 = 0.

We propose to define the Cauchy stress by

σi ¼ � pI � Ψi ð9Þ

for all of our components, where Ψi is a general tensor meant to capture distinguishing

mechanical characteristics of the component i. We also assume that Ψ0 = 0. This formulation

combines the notions of Cauchy stress given in (7) and (8). It also allows us to carry out the

derivation of the final equations for the model without specifying the stress-strain constitutive

relationships just yet. This way the constitutive stress-strain relations are decided on when one

is ready to apply the model to a particular biological problem at hand.

Using (6) and (9) in (4) we obtain

� uirp � r � ðuiΨiÞ þ
Xnþ1

j¼0;j6¼i

â ijuiujðvj � viÞ ¼ 0; i ¼ 0; :::; nþ 1: ð10Þ

Suppose now that the tensors Ψi are defined in terms of other variables or known quantities in

our model and that we know the volume fractions ui, i = 0, � � �, n + 1 at some moment of time

t. We plan to use the n + 2 vector Eq (10) together with a scalar incompressibility condition (5)

to compute the velocities vi, i = 0, � � �, n + 1 and the interphase pressure p. However, while for-

mally the number of equations is equal to the number of unknowns, our system is not well

defined. This is due to the fact that the gradient of the interphase pressure can be excluded

from the system of Eq (10), as we show below, in which case we end up needing additional

restrictions to find a unique solution.
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Indeed, consider adding Eq (10) for all i = 0, � � �, n + 1. As drag forces cancel out, we get

rp ¼ � r �
Xnþ1

j¼0

ujΨj ¼ � r �
Xnþ1

j¼1

ujΨj;

and thusrp can be eliminated from Eq (10) entirely, resulting in

uir �
Xnþ1

j¼1

ujΨj � r � ðuiΨiÞ þ
Xnþ1

j¼0;j6¼i

â ijuiujðvj � viÞ ¼ 0; i ¼ 0; :::; nþ 1; ð11Þ

which, together with (5), are not linearly independent anymore.

To resolve this issue, we proceed by eliminating v0 from the system of Eq (11) and dropping

the equation for i = 0 from the set (11).

Note that

Xnþ1

i¼0

uivi ¼ 0 ð12Þ

is the trivial solution of (5), which leads to

u0v0 ¼ �
Xnþ1

j¼1

ujvj ð13Þ

and allows us to eliminate v0 v0 from (11). As a result, Eq (11) are simplified to

ðâ i0ui þ
Xnþ1

j¼0;j6¼i

â ijujÞuivi þ ui

Xnþ1

j¼1;j6¼i

ðâ i0 � â ijÞujvj ¼

¼ uir �
Xnþ1

j¼1

ujΨj � r � ðuiΨiÞ; i ¼ 1; :::; nþ 1:

ð14Þ

From this point on, we shall assume that all of Ψi’s are defined and independent of veloci-

ties (as in [23]). It is important to note that in this case the system (14) is linear with respect to

vi’s. This becomes crucial later on, when numerically computing velocities in practice.

At this stage, as long as Ψi’s are defined in terms of known quantities and previously intro-

duced variables, the combined system of Eqs (1) and (14) completely defines the variables ui
and vi, i = 1, � � �, n + 1, with (3) and (13) used to compute the volume fraction and the velocity

of the interstitial fluid whenever needed.

It now comes down to the selection of the form of Ψi’s to be used in (14). The choice

depends on the complexities of the mechanical responses needed to be reflected by the model.

In the examples presented in this paper we introduce a simple form

Ψi ¼ kiðu
opt
0 � u0ÞþI ¼: CiI; i ¼ 1; � � � ; nþ 1: ð15Þ

Here, uopt
0 is a parameter representing the optimal or typical volume fraction of the interstitial

fluid, which may or may not be constant over the domain. Whenever the current value of the

volume fraction of the interstitial fluid deviates from the optimal, the tissue is considered to be

under stress. The magnitude of the effect of the stress on the i-th component of the system is

controlled by the strain-stress coefficient ki.
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Since Ci’s defined above are scalars, Eq (14) simplify as

ðâ i0ui þ
Xnþ1

j¼0;j6¼i

â ijujÞuivi þ ui

Xnþ1

j¼1;j6¼i

ðâ i0 � â ijÞujvj

¼ uir
Xnþ1

j¼1

ujCj � rðuiCiÞ; i ¼ 1; :::; nþ 1:

ð16Þ

In contrast to [23, 24, 29] this approach does not assume that all the drag coefficients are

equal, and unlike [23, 24] it also does not assume radial symmetry.

An additional critical observation: if a component ui at some location in a sample has zero

volume fraction, its velocity cannot be determined from (16). This causes problems when the

equations are discretized—the coefficient matrix becomes singular. A way around this prob-

lem is to treat ui vi as state variables instead of just vi. Then, as we show in S3 Appendix subject

to some conditions on the drag coefficients, the system of equations for determining ui vi over

a grid has a unique solution.

Oxygen and glucose concentrations

In this section we describe chemical components that may be included in our model to repre-

sent the influence of micro-environment on the cells, as well as the impact of the cells’ metabo-

lisms on the micro-environment. These relationships between cells and micro-environmental

factors allow us to highlight both direct and indirect interactions between cells, the extracellu-

lar matrix, and the interstitial fluid, and offer meaningful conclusions based on the results of

the numerical simulations of the model.

Two main chemicals we are interested in are oxygen and glucose, both delivered to tissues

by the vascular network. Adding H+ (to capture acidity), VEGF’s (blood vessels growth fac-

tors), or any other chemical fields into the mix would be done in a similar manner.

Assuming that the chemicals diffuse in the interstitial fluid, let oi denote the fraction of the

interstitial fluid occupied by the i-th chemical, i = 1, . . ., m. Then u0 oi represents the actual

volume fraction of the i-th chemical. This volume fraction obeys the diffusion-advection equa-

tion

@ðu0oiÞ
@t

þr � ðu0oiviÞ ¼ ri � ci;

where vi is the velocity of the species, ri is a production rate and ci is a consumption rate of u0

oi. The velocity vi can be viewed as a superposition of the velocity of the interstitial fluid v0 and

the velocity of the chemical species relative to the interstitial fluid, vi0 (in other words, the dif-

fusive velocity of the chemical i), that is vi = v0 + vi0. Then the above equation can be written as

@ðu0oiÞ
@t

þr � ðoiðu0v0ÞÞ þ r � ðu0oivi0Þ ¼ ri � ci:

Using Fick’s law (see [10], for example), u0 oi vi0 = −Diroi, where Di is the diffusion coeffi-

cient, Eq (1) for u0, and product rule for differentiation, we get

u0

@oi
@t
þ oiðg0 � r � ðu0v0ÞÞ þ r � ðoiðu0v0ÞÞ � r � ðDiroiÞ ¼ ri � ci:

Simplifying this equation and also noting that we are interested in a steady-state solution of

the equation (since the diffusion of chemicals is a much quicker process than that of cell
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movement and growth), we obtain

� DiDoi þroi � ðu0v0 � rDiÞ þ oig0 � ri þ ci ¼ 0: ð17Þ

Recall that g0, the rate of change of the interstitial fluid due to growth and decay of other

components in the system, can be described by

g0 ¼ �
Xnþ1

i¼1

gi;

since
Pnþ1

i¼0
gi ¼ 0. The functions gi depend on birth-death rates of the present cells, as well as

volume fraction changes of the extracellular matrix, which in turn might depend on the cur-

rent values of the chemical species. Thus g0 = g0(oi), making Eq (17) non-linear with respect to

oi.
In [10] it is suggested that the diffusion coefficient varies over the computational domain

with the availability of the interstitial fluid. More specifically, Di ¼ D̂iud0 for some constant

parameters D̂i > 0 and δ> 1. Eq (17) then becomes

� D̂iud0Doi þroi � ðu0v0 � D̂irud0Þ þ oig0 � ri þ ci ¼ 0: ð18Þ

The consumption-production terms ri and ci vary from species to species and may depend

on the presence of other components of the model. The consumption ci can be assumed to be

of the form

ci ¼ oiu0

Xnþ1

j¼1

cijuj þ l

 !

; ð19Þ

where cij is the rate of consumption of the chemical i by the component j, and λ is the rate of

natural decay of oi. In general, the rates of consumption cij may depend on the micro-environ-

ment, therefore ci may add a nonlinear component to the diffusion equation.

The rate of production of chemical i, ri, depends on several factors and varies from chemical

to chemical. For example, oxygen and glucose are produced by capillary sources, while lactate

is produced by tumor cells when fermentation is in place.

Thus, in case of lactate, we have to specify ri, while for oxygen and glucose, it is reasonable

to solve

� D̂iud0Doi þroi � ðu0v0 � D̂irud0Þ þ oig0 þ oiu0

Xnþ1

j¼1

cijuj ¼ 0 ð20Þ

in the computational domain O, subject to the following conditions on the boundary of O:

oij@O ¼ �oi

for some constant value �oi , and, additional conditions,

oiðWÞ ¼ ~oiðWÞ; ð21Þ

where W denotes a set of capillary locations inO and ~oiðWÞ is a prescribed value of oi at these

locations. Oxygen partial pressure varies from vessel to vessel; a modeler may assign random

values to the capillary sources or a single value for simplicity. It is also possible to change these

values during simulations depending on the experimental design. For example, one can simu-

late fluctuating values at the capillary sources imitating cycling hypoxia and/or capillary dam-

age or closure.
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Numerical solution

The final system of Eq (1) is solved numerically. We discretize space and time by parameters h
and Δt, respectively. Once the spacial derivatives involved are approximated by finite differ-

ences, the equations can be treated as a system of ordinary differential equations with respect

to time. Then the numerical solutions are computed by a method based on a Predictor-Correc-

tor scheme also classified as a 2-stage Runge-Kutta method. For the approach to work, before

we are able to advance from time step t(ℓ) to t(ℓ+1) we have to compute the velocities of the com-

ponents at the moment of time t(ℓ) using Eq (16). Additionally, if in a given problem, the net

production rates, gi, are influenced by chemical fields, we solve the diffusion Eq (18) for the rel-

evant chemical species. To solve the latter PDEs, which are often nonlinear, their spatially dis-

cretized versions are solved by a combination of finite difference approach and Newton’s

method.

We present the full details of the numerical scheme in S1–S4 Appendices.

Simulations and Experimental Results

To illustrate the model’s ability to simulate various dynamic processes in soft tissue we set up a

series of computational experiments based on a couple of simple scenarios. Our goal is not to

conduct a detailed biological study, but to demonstrate the model’s potential for future

research.

The following subsections deal with tissue regeneration phenomena with and without a vas-

cular network explicitly present, and the ECM deformation during tumorigenesis. The model

can be easily adopted to deal with more complex scenarios by straightforward inclusion of

additional components and/or chemical species, varying constitutive relations, as well as intro-

ducing spacial heterogeneity within a tissue sample.

Finally, we conclude this section with experiments that demonstrate model accuracy and

predictive power.

Tissue regeneration

Multiple models for wound healing and tissue regeneration have been proposed over the

years. As we review a few examples below, we note that while our model has some features in

common with what’s been proposed in literature, it also has several distinct characteristics.

In [30], authors hypothesise that a single chemical with a simple regulatory effect can

account for the healing of circular epidermal wounds. The system of equations modeling the

process consists of an equation for cell density similar to (1), and an equation for the chemical

density similar to (20). Cell motion other than diffusion is not reflected in the model.

In [31], skin wound healing is modeled by a cell-ECM system coupled with two chemicals,

defined as activator and inhibitor. The equations describing the components are similar to Eq

(1), except that the mass transfer terms have explicit forms limited to specific processes, such

as diffusion and chemotaxis. Additionally, the system does not benefit from the inclusion of

Eqs (3) and (5).

In [32], a four component model is proposed to account for two fundamental processes

involved in the repair of an acute dermal wound: inflammatory response and fibroplasia. Each

of the four PDE’s can be seen as a special case of Eq (1). This system does not include Eqs (3)

and (5) either and has specific definitions for mass transfer terms.

In [33], the authors present a complex model for chronic wounds, with the equations defin-

ing the behavior of the components similar to (1). The authors assume that all components of

the model move with the same velocity.
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As seen above, in many cases, modelers resolve the difficulty of defining velocities of the

model’s components by postulating explicit formulations of the components’ motion. In con-

trast, our model relies on conservation of momentum, which allows us to determine these

velocities by accounting for local forces, subject to the incompressibility condition. These prin-

ciples have a stabilizing effect on the solutions of the systems of PDEs governing the dynamics

of the model.

In what follows, we first set up a simple model of tissue regeneration with just three compo-

nents: interstitial fluid, live cells, and the extracellular matrix. In the midst of a 2D grid of live

cells we introduce an irregularly shaped “wound” (a region without cells) and let the surround-

ing cells “grow into” the wound. The model represents the system in which the cells can divide

and grow, depending on the irregularities of the tissue, the ECM has the ability to regenerate

(as if secreted from cells) when damaged, and both components can move due to internal

stresses and are subject to frictional forces.

Denote u0 to be the volume fraction of interstitial fluid, u1—live cells, u2—the extracellular

matrix. By (1), our system obeys:

@ui

@t
þr � ðuiviÞ ¼ gi; i ¼ 1; 2;

and by (3), u0 = 1 − u1 − u2. By the force balance Eq (16), u1 v1 and u2 v2 obey

â i0ui þ
Xnþ1

j¼0;j6¼i

â ijuj

 !

uivi þ ui

Xnþ1

j¼1;j6¼i

ðâ i0 � â ijÞujvj

¼ rðuiCiÞ � uir
Xnþ1

j¼1

ujCj; i ¼ 1; 2;

where, using the form we introduced in (15), the stresses are defined by

Ci ¼ kiðu
opt
0 � u0Þþ ; i ¼ 1; 2:

For simplicity, we assume that the drag coefficients, â ij, are the same for all pairs of compo-

nents. Recall also that by (13),

u0v0 ¼ � u1v1 � u2v2:

To complete the model, we now define constitutive relations for the cellular and the ECM

components’ net production rates g1 and g2 (g0 = −g1 − g2 by Eq (2)).

In this example, we commonly assume that the rate of growth and the rate of decay of the

cellular component is proportional to its volume fraction. This is not the case for the ECM’s

growth rate, since it’s produced by cells and not the ECM itself:

g1 ¼ ðb1 � c1Þu1; g2 ¼ b2 � d2u2:

Here, b1 u1 is the growth and d1 u1 is the decay rate of the cellular component, and b2, d2 u2 are

the corresponding rates for the ECM. In this simple example we assume that no additional

damage is occurring during the simulation, so d1 = d2 = 0.

For the cellular growth rate we define

b1 ¼ b1;maxu0kr½ðu0 � uopt
0 Þþ�k2

;

where u0 is included to indicate that the interstitial fluid is needed for cell division and growth,

and b1,max is a positive constant. The term kr½ðu0 � uopt
0 Þþ�k2 is a scalar measure of the

PLOS ONE Modeling of cellular population and microenvironmental dynamics in soft tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0260108 November 17, 2021 11 / 31

https://doi.org/10.1371/journal.pone.0260108


gradient of the deviation from normal that triggers the cell division in the normal tissue (this is

in contrast to uncontrolled cell division typical for tumor cells). The gradient above “senses”

cellular volume fraction variations that are non uniform. This is what can be expected, for

example, near the boundary of the wound.

The ECM growth rate

b2 ¼ b2;maxu0u1ðu
opt
2 � u2Þþ

is defined to trigger the ECM regeneration when its volume fraction is below normal, specified

by a parameter uopt
2 . The u0 term is present to indicate that the materials needed to build the

ECM are delivered through the interstitial fluid and b2,max is a positive constant. Additionally,

u1 is present to indicate that the ECM is secreted by cells, and therefore its generation without

presence of cells is impossible. These assumptions are not uncommon, for examples see [33,

34].

For simplicity, we assume that the tissue architecture is uniform, that is, the parameters uopt
0

and uopt
2 are constant throughout the domain.

Initial conditions can be described as follows. A square domain with side length 0.3 mm is

populated with the ECM, interstitial fluid and cells. The ECM volume fraction is 0.05 every-

where, the cellular volume fraction is

u1ði; jÞ ¼
0:7; ði; jÞ 2 A;

0; ði; jÞ 2 B;

(

where B is a set of locations in the domain representing an initial wound, and A is the set of all

remaining locations. Fig 1A, illustrates this initial setup with B represented as blue and A as

yellow squares.

Table 1 summarizes the parameter values that remain unchanged in the experiments of this

example. Other parameters are varied to capture their influence on the processes simulated in

the experiments and are specified as needed. Some parameter values were found in literature,

others were estimated using the philosophy stated in [23]: to use the parameter values “for

which the resulting simulations exhibit the desired qualitative behavior”. This often involves

extensive numerical experimentation and qualitative and visual evaluation of the results.

To ensure the numerical stability of the simulation process (see S4 Appendix for details),

the time step Δt has to satisfy the condition (S4–1). Specifically, for the simulations that follow

Fig 1. Tissue regeneration. Cellular volume fraction u1 at various time steps with b1,max = 0.03. A: time step t = 1, B:

time step t = 11, C: time step t = 21.

https://doi.org/10.1371/journal.pone.0260108.g001
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we require that

Dt �
1

b1;maxð1 � uopt
0 Þ=hþ b2;maxu

opt
2 þ

4

â
ðk1 þ k2Þu

opt
0 =h2

The time step used in the simulations, Δt = 0.25, satisfies the inequality above. Since this condi-

tion was derived for the worst case scenario throughout the process, in practice, often a larger

time step may suffice.

Example 1.a. In the first example we set b1,max = 0.03, b2,max = 3 and k1 = 500, k2 = 300. Fig

1 demonstrates the changes in cellular volume fraction at the time steps 1, 11, and 21, where

the changes from dark blue to lighter colors indicate cellular regeneration.

Similar experiments are carried out with b1,max = 0.04 and 0.05. Fig 2 demonstrates the

changes in cellular volume fraction at the same time steps as before, when b1,max = 0.04. Com-

paring the Figs 1 and 2, we can observe that higher rate of cell division and growth leads to

faster tissue regeneration.

To illustrate it even better, at every time step we compute the total cellular volume fraction

s = ∑ij u1(i, j) over the entire domain divided by the corresponding “pre-wound” value. We

monitor this normalized cellular volume, ν, over time to track the change in the overall cell

population for the three growth rates in Fig 3A (where the blue graph corresponds to the low-

est and the red to the highest growth rates).

Example 1.b. In our next experiment we hold the growth rate coefficient b1,max at 0.04 and

vary the cell strain-stress parameter k1 from 300 to 500 in increments of 100. This parameter

Table 1. Parameter values for the experiments in tissue regeneration.

Parameter Notation Range Units

Cell Growth Rate Coefficient b1,max 0.03–0.05 day−1

ECM Growth Rate Coefficient b2,max 2–4 day−1

Cell strain-stress coefficient k1 300–500 kg mm2/day2

ECM strain-stress coefficient k2 200–400 kg mm2/day2

Friction coefficients â ij 105 − 106 kg/day

Optimal Interstitial Fluid uopt
0

0.25 –

Volume Fraction –

Optimal ECM Volume Fraction uopt
2

0.05 –

Domain grid size h 0.01 mm
Time step size Δt 0.25 day

https://doi.org/10.1371/journal.pone.0260108.t001

Fig 2. Tissue regeneration. Cellular volume fraction u1 at time steps t = 1, 11, 21 with b1,max = 0.04. A: time step t = 1,

B: time step t = 11, C: time step t = 21.

https://doi.org/10.1371/journal.pone.0260108.g002

PLOS ONE Modeling of cellular population and microenvironmental dynamics in soft tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0260108 November 17, 2021 13 / 31

https://doi.org/10.1371/journal.pone.0260108.t001
https://doi.org/10.1371/journal.pone.0260108.g002
https://doi.org/10.1371/journal.pone.0260108


controls the amount of stress experienced by cells due to deviation from normal. In Fig 3B we

recorded the normalized cellular volume values over time, for each value of k1. We can observe

that the cellular volume recovery is the highest when k1 is the lowest.

Example 1.c. In the above experiments we concentrated on cellular damage. The ECM vol-

ume fraction was set to the optimal value everywhere in the domain, including the “wound”,

and its growth was not triggered. In the following simulations, we assume there is some initial

ECM damage in addition to the cellular damage. Specifically,

u2ði; jÞ ¼
0:05; ði; jÞ 2 A

0; ði; jÞ 2 B
;

(

similar to u1. We keep b1,max = 0.04 and k1 = 500, and vary b2,max from 2 to 4, while keeping k2

= 300. Just like for the cellular volume fractions, at every time step we compute the normalized

ECM volume, μ, that is the total ECM volume fraction ∑ij u2(i, j) over the entire domain

divided by the corresponding “pre-wound” value. Fig 4A demonstrates that the increase in the

rate of regeneration leads to faster ECM recovery. Note also that, in all three cases, ECM

Fig 3. Normalized cellular volume, ν, changing with time. A: varying maximal cellular growth rate parameter, b1,max;

B: varying strain parameter k1 for the cellular volume fraction.

https://doi.org/10.1371/journal.pone.0260108.g003

Fig 4. Cellular and ECM volume fractions changing with time. ECM—solid lines, cells—dashed lines. A: varying

maximal rate of ECM growth, b2,max; B: Varying ECM strain parameter k2.

https://doi.org/10.1371/journal.pone.0260108.g004

PLOS ONE Modeling of cellular population and microenvironmental dynamics in soft tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0260108 November 17, 2021 14 / 31

https://doi.org/10.1371/journal.pone.0260108.g003
https://doi.org/10.1371/journal.pone.0260108.g004
https://doi.org/10.1371/journal.pone.0260108


regeneration lags behind the cellular regeneration, since we assumed that the ECM is secreted

by cells.

Example 1.d. To complete this series of experiments, let us fix the ECM growth rate coeffi-

cient b2,max at 4 and study the effects of changing the ECM strain-stress coefficient k2.

Consider Fig 4B where the normalized ECM volume is depicted changing with time for var-

ious values of k2. The dashed curves represent the corresponding normalized cellular volumes.

Note that with the higher k2 the ECM regenerates closer to pre-wound value, while in the

lowest case of k2 the ECM ends up overproduced. If we interpret the additional ECM volume

as scarring, then the faster movement (higher k2) of the ECM leads to the results closer to the

original tissue structure.

Tissue regeneration model in the presence of vascular network

In this section we are adding a capillary network to the tissue sample in order to simulate oxy-

gen distribution in the sample. This means including the diffusion equation for oxygen, i.e. Eq

(20), to the system of equations, subject to boundary conditions (21) at the capillary locations.

As opposed to the previous examples, the oxygen partial pressure is now going to explicitly

affect the cell proliferation.

The vascular system consisting of a few capillary sources is depicted in Fig 5A. Fig 5B shows

the corresponding distribution of the oxygen partial pressure in the domain. The histogram in

Fig 5C demonstrates that the tissue sample is well oxygenated, i.e. the PO2 value are well above

the hypoxic threshold of 10 mmHg.
Eq (20) is solved for o (here standing for the oxygen partial pressure PO2), subject to the

boundary PO2 value �o ¼ 30 mmHg and capillary PO2 value ~o ¼ 40 mmHg, with the diffusion

coefficient D̂ ¼ 173 and a parameter δ = 0.5. The production function is set to zero (the source

of oxygen is the capillary network) and the consumption function is defined as ou0 c1 u1. If we

assume the constant base consumption rate of PO2 by cells and additional consumption due to

cell division and growth, we can define

c1 ¼ ‘1 þ ‘2b1;

where b1 was introduced earlier as the cell growth rate and ℓ1, ℓ2 are positive constants.

In this example we introduce a population of “dead” cells in addition to the components

introduced earlier. The reasons for including such a population are: 1) we will allow live cells

Fig 5. Oxygenated tissue. A: yellow squares mark the presence of capillary sources. B: oxygenation levels of the

domain with the capillary sources as in the picture on the left and no damaged cells. Lower values of PO2 correspond to

darker blue. As PO2 increases, the color in the picture turns yellow. The most bright yellow squares can be identified

with capillary positions. C: PO2 histogram corresponding to the tissue sample for the oxygenation map depicted in the

center.

https://doi.org/10.1371/journal.pone.0260108.g005
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to die if tissue is hypoxic, 2) it takes time for dead cells to disintegrate and become part of the

interstitial fluid.

In summary, let u0 represent the volume fraction of the interstitial fluid, u1—live cells, u2—

dead cells, u3—the ECM. Define g0 = −g1 − g2 − g3, where g1 = b1 u1 − d1 u1 is the net rate of

change of population u1, live cells, g2 = d1 u1−d2 u2 is the net rate of change of population u2,

dead cells, and g3 = b3 is the net rate of change of the ECM volume fraction.

For the cells to reflect the dependence of their well-being on PO2, we define a decay func-

tion dependent on PO2 by

d1 ¼ d̂1

ðuopt
0 � u0Þþ

uopt
0

þ
~d1

2
1 � tanh R1ðo � T1Þð Þð Þ

and a growth function by

b1 ¼
b1;max

2
u0kr½ðu0 � uopt

0 Þþ�k2 1þ tanh R2ðo � T2Þð Þð Þ:

Fig 6 shows the curves representing dependence of the growth and decay functions on oxy-

gen partial pressure. For simplicity we set b1;maxu0kr½ðu0 � uopt
0 Þþ�k2

¼ 1, d̂1 ¼ 0 and ~d1 ¼ 1.

The growth function (blue) increases towards its maximum with the increase in oxygen partial

pressure. The steepness of the increase is controlled by a numerical parameter R2, and the

inflection point is located at the upper hypoxic threshold parameter T2 = 10 mmHg. The decay

function (red) decreases with oxygen partial pressure. Its steepness is controlled by a numerical

parameter R1, and the inflection point is located at the lower hypoxic threshold T1 = 2 mmHg.
In addition to the explicit oxygen dependent term, the decay function reflects that nutrients

are supplied to cells by the interstitial fluid, and its absence increases the decay rate.

The ECM growth rate is defined as in previous examples

b3 ¼ b3;maxu0u1ðu
opt
3 � u3Þþ;

and we will continue to assume that there is no additional damage to the ECM during the sim-

ulation, i.e, d3 = 0. The rate of dead cell disintegration d2 = 0.5 is constant everywhere in the

Fig 6. Growth and decay as functions of oxygen partial pressure.

https://doi.org/10.1371/journal.pone.0260108.g006
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domain and in all of the experiments in this example. We summarise the parameters involved

the experiments of this subsection in Table 2.

Just as in Examples 1.a-1.d, we set up the initial conditions for u1 to be 0.7 everywhere in

the domain except for the set B, the wound. Additionally, we “fill the wound” with dead cells

now, i.e., we set the volume fraction of dead cells at the the locations in the set B to 0.7. We run

the simulation under the PO2 conditions displayed in Fig 5.

Fig 7 illustrates the healing process providing snapshots of live cell volume fractions over

the domain at time steps 1, 26 and 51. The oxygen partial pressure, PO2, depicted in Fig 5,

remains similar to the initial distribution throughout the simulation.

Next, we remove the capillaries closest to the damaged region. Fig 8 presents the remaining

capillaries, the resulting oxygenation map, and the corresponding PO2 distribution. The histo-

gram reveals the presence of a hypoxic region, PO2< 10 mmHg. We repeat the experiment and

depict the changes in volume fraction of live cells at time steps 1, 26, 51 in Fig 9. The oxygen dis-

tribution remains similar to the initial setup throughout the simulation and comparing Fig 9 to

the similar spread in Fig 7 we can see that under relatively unfavorable PO2 conditions tissue

regeneration slows down considerably. To illustrate this further, Fig 10 compares the normalized

cellular volumes of live cells in the two simulations, with and without the central capillary sources.

These examples illustrate the ability of the model to incorporate micro-environmental fac-

tors in general, and cell populations dependencies on the spacial distribution of these factors

in particular.

Table 2. Default parameter values for the experiments in tissue regeneration model in the presence of vascular

network.

Parameter Notation Value Units

Live Cell Growth Rate Coefficient b1,max 0.04 day−1

ECM Growth Rate Coefficient b3,max 2 day−1

Live cell decay rate coefficients d̂1
0.01 day−1

~d1
0.01 day−1

Dead cell decay rate d2 0.5 day−1

ECM decay rate d3 0 day−1

Live cell strain-stress coefficient k1 500 kg mm2/day2

Dead cell strain-stress coefficient k2 600 kg mm2/day2

ECM strain-stress coefficient k3 400 kg mm2/day2

Friction coefficients â ij 0.8 × 106 kg/day

Optimal Interstitial Fluid uopt
0

0.25 –

Volume Fraction –

Optimal ECM Volume Fraction uopt
2

0.05 –

Domain grid size h 0.01 mm
Time step size Δt 0.25 day
Diffusion coefficient D̂ 173 mm2/day

Diffusion parameter δ 0.5 –

PO2 boundary value �o 30 mmHg
PO2 capillary value ~o 40 mmHg
Base consumption rate ℓ1 4 × 104 day−1

Additional consumption rate ℓ2 2 × 104 –

Lower hypoxic threshold T1 2 mmHg
Upper hypoxic threshold T2 10 mmHg
Numerical Parameters R1 0.25 –

R2 0.25 –

https://doi.org/10.1371/journal.pone.0260108.t002
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ECM deformation in tumorigenesis

Interactions of tumor cells with the extracellular matrix play an important role in tumorigene-

sis. Often tumors, especially benign ones, are surrounded by a dense capsule of fibrous tissue

[35]. “Active” response of the immune system leading to the ECM reconstruction at the loca-

tions of tumor cells and “passive” response of the ECM deformations leading to local increases

Fig 7. Tissue regeneration under normoxic conditions. Cellular volume fraction u1 at time steps t = 1, 11, 21. A: time

step t = 1, B: time step t = 11, C: time step t = 21.

https://doi.org/10.1371/journal.pone.0260108.g007

Fig 8. Oxygenated tissue with hypoxic regions. Left: yellow squares mark the presence of capillary sources. Center:

oxygenation levels of the domain with the capillary sources as in the picture on the left and no damaged cells. Darkest

blue indicates hypoxic locations. Right: PO2 histogram corresponding to the tissue sample in the center. Values below

10 are considered hypoxic.

https://doi.org/10.1371/journal.pone.0260108.g008

Fig 9. Tissue regeneration under hypoxic conditions. Cellular volume fraction u1 at time steps t = 1, 11, 21. A: time

step t = 1, B: time step t = 11, C: time step t = 21. These results demonstrate that the healing process in hypoxic tissue is

much slower, compared to well oxygenated tissue.

https://doi.org/10.1371/journal.pone.0260108.g009
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in the ECM density were modeled in [23, 24] for the purpose of explaining the phenomenon

of tumor encapsulation.

The model in [23] was developed under the assumption of central symmetry, and as a

result, the components’ volume fractions were treated as functions of time and one spatial vari-

able. It was assumed that the tumor cells were dividing and concurrently producing the ECM.

Tissue viscosity was taken into account, but vasculature, however, was not explicitly present.

The tumor cell proliferation rate was proportional to the amount of the interstitial fluid, which

was assumed to carry enough nutrients to sustain the growth.

The model in [24] had many similar characteristics. The main difference was that the

“active” response was included in the dynamics of tumor interactions with the ECM. Some of

the conclusions that followed from the simulation runs were the following: “active” response,

that is, the ECM reconstruction in tumor’s presence, significantly suppresses the tumor’s

growth, but without “passive” response, no capsule is formed, with high accumulation of the

ECM inside the tumor.

Here, we are using our framework to illustrate modeling of tumor encapsulation related pro-

cesses. We aim for the model to capture the growing population of tumor cells and the ECM

response that this growth can illicit (both ‘passive” and “active”). The goal is to elucidate the

conditions that can lead to tumor encapsulation.

Our model expands the setup in [24] to a two-dimensional case with more flexible general

assumptions on the interactions between the components, addition of live cells population,

and different constitutive relations for stresses. As seen in the numerical experiments pre-

sented here, our framework successfully reproduces many aspects of tumor encapsulation in a

manner similar to the results in [24], as well as provides additional insights into this and

related phenomena.

In the series of experiments in this section we introduce u0—volume fraction of the intersti-

tial fluid, u1—volume fraction of live healthy cells, u2—volume fraction of live tumor cells and

Fig 10. Normalized cellular volumes of live cells changing with time. Green line: results of the simulation under

normoxic conditions. Red line: results of the simulation under hypoxic conditions.

https://doi.org/10.1371/journal.pone.0260108.g010
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u3—volume fraction of the ECM. The net growth functions gi, i = 1, 2, 3 are defined in terms

of proliferation and decay rates as

g1 ¼ � d̂1u1ðu
opt
0 � u0Þþ

g2 ¼ ðb̂2u0 � d̂2ðu
opt
0 � u0ÞþÞu2

g3 ¼ b̂3u0u1ðu
opt
3 � u3Þþ;

where b̂i; d̂ i are positive constants. These functions are defined under the assumptions that 1)

live healthy cells may die due to unavailability of nutrients (low interstitial fluid volume frac-

tion), and they do not proliferate; 2) cancer cells divide and grow in proportion to availability

of interstitial fluid, and die otherwise; 3) the ECM growth is triggered when the ECM values

fall below its normal value, is “excreted” by healthy cells, and its rate of increase depends on

the availability of interstitial fluid.

As in the previous examples, the functions Ci, i = 1, 2, 3 used in the stress-strain constitu-

tive relations, are defined by kiðu
opt
0 � u0Þþ, and, for simplicity, the drag coefficients â ij are

assumed to be all equal.

Table 3 contains parameter values that are used in all of the following experiments, unless

specified otherwise.

Example 3.a. In this example we ignore the ECM reconstruction, by setting b̂3 ¼ 0, simu-

lating just “passive” response, and vary the stress-strain coefficient k3 (k3 = 1, 5, 25). The

increase of k3 impacts the excess pressure C3 in the ECM, thus varying the intensity of the

“passive” response.

We start with tumor cells located at the center of our domain (a square of side length 0.41),

having the volume fraction of 0.7. Normal cell volume fraction is set to 0.7 in the rest of the

Table 3. Default parameter values and parameter ranges for the experiments in ECM deformation in

tumorigenesis.

Parameter Notation Value Units

Normal Cell Growth Rate b̂1
0 day−1

Tumor Cell Growth Rate b̂2
0.9 day−1

ECM Growth Rate Coefficient b̂3
50 day−1

Normal cell decay rate d̂1
0.06 day−1

Tumor cell decay rate d̂2
0.06 day−1

Normal cell strain-stress coefficient k1 1 kg mm2/day2

Tumor cell strain-stress coefficient k2 1 kg mm2/day2

ECM strain-stress coefficient k3 25 kg mm2/day2

Drag coefficients â ij 106 kg/day

Optimal Interstitial Fluiduopt
0

0.25 –

Volume Fraction –

Optimal ECM Volume Fraction uopt
2

0.05 –

Domain grid size h 0.01 mm
Time step size Δt 0.5 day
Numerical parameter β 0.90 − 0.98 –

https://doi.org/10.1371/journal.pone.0260108.t003
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domain, and the ECM volume fraction is set to 0.05 everywhere. We run simulations for 500

steps.

As seen in Fig 11 the total tumor volume (∑i u2(pi) where pi’s are the grid locations in the

domain) increases with time, and the rate of its growth decreases as k3 increases, demonstrat-

ing that “passive” response slows down the tumor expansion.

To illustrate the dynamics of both tumor cells and the ECM, in Fig 12 we superimpose the

“slices” of their corresponding volume fractions taken at different time steps. These slices are

produced by “cutting” through the center of the domain of the corresponding functions simi-

lar to the ones in Fig 13. This representation is reasonable, since in this series of experiments

we are expecting radially symmetrical solutions due to the homogeneous setup. Fig 12 demon-

strates that with the increase in k3, the ECM deformations (red) become more noticeable, and

the tumor’s expansion (black) is not as wide. Additionally, with larger deformations of the

Fig 11. Tumor mass changing with time for various ECM strain-stress coefficients.

https://doi.org/10.1371/journal.pone.0260108.g011

Fig 12. Tumor and ECM dynamics for various ECM strain-stress coefficients. Superimposed “slices” through the

center of the tumor at times 100, 200,. . ., 500. Tumor volume fractions—black, ECM—red. A: k3 = 1 (low excess

pressure). B: k3 = 5. C: k3 = 25 (high excess pressure). Note that higher k3 means higher resistance from ECM and

slower tumor growth. Note also that ECM becomes visibly deformed at higher k3 values, indicating formation of a

“capsule.”

https://doi.org/10.1371/journal.pone.0260108.g012
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ECM, its levels decrease in the region around the tumor’s center, which is to be expected in the

absence of the ECM reconstruction.

Example 3.b. In this example, in addition to the “passive” response, the “active” response is

also turned on by introducing a non-zero value of the ECM growth coefficient

b̂3 2 f20; 100; 500g. Initial conditions, the length of the simulation run, and the time step are

the same as before, and k3 is 25.

The results are presented in Figs 14 and 15. The plot in Fig 14 demonstrates that the total

tumor volume increases with time, and the rate of growth decreases as b̂3 increases, demon-

strating that “active” response also slows down the tumor expansion. Additionally, if we com-

pare it to the plot in Fig 11, the total volume fraction for the tumor in all three cases of “active”

response inclusion are much lower than with just “passive” response. Fig 15 plots depict the

slices for the tumor cells and the ECM for time steps from 100 to 500. Compared to the results

in the previous example, the maximal values of the ECM are noticeably greater after the

“active” response is introduced. More specifically, measured at the last time step, we have

Fig 13. Tumor and ECM volume fractions over the domain at the last time step of the simulation with k3 = 25. A:

Tumor volume fraction. B: ECM volume fraction.

https://doi.org/10.1371/journal.pone.0260108.g013

Fig 14. Tumor mass changing with time for various ECM remodeling coefficient values.

https://doi.org/10.1371/journal.pone.0260108.g014
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maxO u3(t500) = 0.1168 in Example 3.a (k3 = 25), and maxO u3(t500) = 0.1726 in Example 3.b,

when b̂3 ¼ 500.

We repeated the experiments with the “passive” response off, i.e. setting k3 = 0. We omit the

corresponding figures here, since the results demonstrate that in the absence of “passive”

response the changes in the rate of the ECM reconstruction (b̂3 changes from 20 to 500) have

no effect on the growing tumor. If cells can “pass through” the ECM without deforming it,

then the capsule is never formed and the tumor is free to expand.

Example 3.c. In this example we allow ECM to regenerate beyond its normal optimal levels

by adjusting g3 function as follows:

g3 ¼ b̂3u0u1ðð1þ au2Þu
opt
3 � u3Þþ:

This formulation of g3 introduces an additional trigger for the ECM remodeling—presence of

cancer cells. This idea is trying to capture the fact that growing tumors often synthesize abun-

dant quantities of ECM molecules, which results in the ECM composition different from the

normal tissue [41]. As α increases, the “active” response of the tissue to the growth of tumor

cells is encouraging the ECM reconstruction to levels above normal. As a result the ECM gains

the ability to encapsulate the tumor, stopping it completely from growth and expansion.

The formula for g3 captures several connections between components of the system: net

growth of the ECM, g3, is proportional to u0, which demonstrates that ECM regeneration

requires substrates that come from the interstitial fluid; it is proportional to the volume frac-

tion of the live cells since it is being generated by them. The factor ()+ shows that the ECM

remodeling is triggered only when its volume fraction falls below ð1þ au2Þu
opt
3 ; and that with-

out the additional stimulant, αu2, the ECM can be restored to its normal value, but with a non-

zero alpha, it can be generated beyond uopt
3 .

We run three experiments varying α. Figs 16 and 17 illustrate the results when α = 0, 1, 2.

For each experiment we computed the maximal value of ð1þ au2Þu
opt
3 at the last time step.

Naturally, when α = 0, the value of uopt
3 is unchanged, i.e., 0.05. When α = 1,

maxOð1þ au2Þu
opt
3 ¼ 0:1336, and when α = 2, maxOð1þ au2Þu

opt
3 ¼ 0:1290, showing maximal

ECM volume fraction increase of 167% and 158% respectively.

To complete this example we repeated the experiment without “passive response”, at the

same time taking the idea of increasing the ECM optimal value to an extreme: we run the sim-

ulations with α = 0 (default), α = 50 (4 times higher that default), and α = 100 (16 times higher

than default). Fig 18 shows that the increase in ECM’s active response beyond normal slows

Fig 15. Tumor and ECM dynamics for various ECM growth coefficients. “Slices” at times 100, 200,. . ., 500. A:

b̂3 ¼ 20. B: b̂3 ¼ 100. C: b̂3 ¼ 500. Note that higher b3 values increase “active” ECM response, slowing down tumor

growth.

https://doi.org/10.1371/journal.pone.0260108.g015
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down the tumor growth. Upon a closer look, Fig 19 shows that even without “passive

response”, the ECM can encapsulate the tumor. Without the ability to deform, ECM simply

takes over the volume initially occupied by tumor.

Example 3.d. In all the previous examples we set the initial ECM values to be homogeneous

throughout the domain. In the example that follows we are illustrating the behavior of the sys-

tem under a non-homogeneous ECM setup. The initial ECM values are defined by

u3jt¼0
¼

z

40
ðsinð100xÞ þ sinð100yÞÞ þ 0:1þ rðx; yÞ;

subject to the boundary value of 0.1. Here r(x, y) are random numbers between −0.0012 and

0.0012. Here we use the sine functions and random values to introduce variability to the ECM

volume fraction. Other formulas can be used here, we chose this particular one for ease of con-

trol over the amplitude and periodicity.

Fig 16. Tumor mass changing with time for various optimal ECM volume fraction values.

https://doi.org/10.1371/journal.pone.0260108.g016

Fig 17. Tumor and ECM dynamics for various ECM active response coefficients. “Slices” at times 100, 200,. . ., 500.

A: α = 0. B: α = 1. C: α = 2. Note that as α increases, tumor becomes noticeably encapsulated.

https://doi.org/10.1371/journal.pone.0260108.g017
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Moreover, we assume that the normal state of the ECM is also non-homogeneous and the

initial conditions reflect the normal tissue architecture, i.e., uopt
i ¼ uijt¼0; i ¼ 0; 3. A reminder,

that this, in turn, influences many aspects of the system, including components’ velocities and

rates of growth and decay.

We run simulations with z = 0.5 (with the tumor cell proliferation rate b̂2 ¼ 1:2) for 500

steps. The results are presented in Fig 20 and illustrate how (in the current configuration) the

non-homogeneity in the ECM is influencing the shape of the tumor.

Further examples can be created to illustrate this modeling framework’s potential. Addi-

tional elements can be easily incorporated to address various aspects of tumorigenesis. For

instance, one can include vasculature changes (reflecting angiogenesis and capillary damage),

additional cell populations (such as immune system cells, fiberblasts, or multiple tumor sub-

populations), additional chemical fields (such as ECM degrading proteins, growth factors, or

drugs). We do not include these examples here for the sake of brevity.

Fig 18. Tumor mass changing with time for various α with “passive” response turned off.

https://doi.org/10.1371/journal.pone.0260108.g018

Fig 19. Tumor and ECM dynamics for various ECM active response coefficients. “Slices” at times 100, 200,. . ., 500.

A: α = 0. B: α = 50. C: α = 100. Note that even without “passive” response, increasing uopt
3 still leads to encapsulation.

https://doi.org/10.1371/journal.pone.0260108.g019
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Model validation and accuracy

In this subsection we demonstrate model accuracy and some of its predictive power using re-

scaled data from the clinical results in [6]. Below we set up two examples: 1) given time-tumor

volume data we estimate tumor cell parameters, and then run a simulation with these parame-

ters to show the accuracy of the model; 2) we estimate the parameters using partial data, and

use the model with these parameters to predict the tumor volume values for the rest of the data

points. The data in the two examples are generated based on the clinical data as follows. The

tumor volumes are first estimated from the supplementary materials in [6]. They are then

adjusted for the projection from 3D to 2D (each tumor volume is raised to the power 2/3).

Finally, for the uniformity of our experiments, we scale it down for the domain and mesh sizes

similar to the experiments in the subsections above. Tables 4 and 5 list the data.

In both examples our model’s components are the interstitial fluid, normal cells, tumor

cells, and the ECM. For simplicity we assume that the normal cells do not proliferate, nor do

they die. We also assume that there is no ECM degradation and no ECM reconstruction. To

sum up, the set up is similar to the one in ECM Deformation and Tumorigenesis experiments

with d̂1 ¼ b̂1 ¼ d̂3 ¼ b̂3 ¼ 0. The stress-strain coefficient for normal cells and the ECM, drag

coefficients, optimal volume fractions for the ECM and the interstitial fluid are the same as

listed in Table 3. The mesh size is 0.01 and the time step is 0.25. Finally, the numerical parame-

ter β = 0.9. The proliferation and decay rates for tumor cells, b̂2 and d̂2, as well as tumor cells

strain-stress coefficient k2 are estimated using MATLAB’s lsqcurvefit to minimize

S ¼
X9

i¼1

ðvi � MðtiÞÞ
2
;

where M(ti) is the value produced by the model at time ti.

Fig 20. The ECM and tumor volume fractions over the domain. A: Non-homogeneous ECM. B: Asymmetrical

tumor shape as a result of non-homogeneous ECM.

https://doi.org/10.1371/journal.pone.0260108.g020

Table 4. Tumor size data set 1. Scaled down from the clinical results in [6].

Time, in days ti 0 7 11 12 13

Total volume fraction of cells in the domain vi 1 13.57 46.30 47.27 58.72

Time, in days ti 14 15 18 19

Total volume fraction of cells in the domain vi 68.75 77.33 109.77 122.15

https://doi.org/10.1371/journal.pone.0260108.t004
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The initial conditions are similar to the ones in Example 3.a. We run the simulation for 80

time steps (the last data point corresponds to 19 × 4 + 1 = 77th time step).

Example 4.a. The least squares minimization procedure applied to data set 1 leads to the

parameter values b̂2 ¼ 13:20, d̂2 ¼ 0:00, and k2 = 17.83. Running the simulation with these

parameter values results in the tumor growth depicted in Fig 21A, smooth curve, where we

included the data points depicted by red asterisks. The visually satisfying fit is supported by the

high value of the coefficient of determination 1 �

P9

i¼1
ðvi � MðtiÞÞ

2

P9

i¼1
ðvi� �vÞ2

¼ 0:9963, where �v is a simple

mean of the data set fvig
9

i¼1
.

The least squares minimization procedure applied to data set 2 leads to the parameter values

b̂2 ¼ 11:57, d̂2 ¼ 0:83, and k2 = 35.95. Running the simulation with these parameter values

results in the tumor growth depicted in Fig 21B, black smooth curve, where we included the

data points depicted by red asterisks. The visually satisfying fit is supported by the high value

of the coefficient of determination 0.9951.

In [6] the authors perform similar experiments with nine classical mathematical models for

description and prediction of tumor growth. The reported values for the coefficients of deter-

mination range from 0.64 to 0.98.

Example 4.b. In this example the least square procedure is applied to a subset of our data.

The resulting parameters are used in a simulation of tumor growth and the values produced by

the simulation are compared to the data not used in the parameter estimation.

Three experiments are run for each set. The first one does not use the last data point in the

parameter estimation. The parameters found are used in a simulation to predict the tumor vol-

ume size on the last day of the data set. The prediction is compared to the data values using

Table 5. Tumor size data set 2. Scaled down from the clinical results in [6].

Time, in days ti 0 5 6 7 11 12

Total volume fraction of cells in the domain vi 1 13.57 14.46 18.57 40.74 54.29

Time, in days ti 13 14 15 18 19

Total volume fraction of cells in the domain vi 61.73 71.93 86.18 118.50 125.15

https://doi.org/10.1371/journal.pone.0260108.t005

Fig 21. Tumor volume fraction growth over time. Black curve represents the model, red asterisks represent the data.

A: Nonlinear least squares fit for data set 1. The coefficient of determination is 0.9963. B: Nonlinear Least Squares Fit

for Data Set 2. The coefficient of determination is 0.9951.

https://doi.org/10.1371/journal.pone.0260108.g021
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relative error

vlast � MðtlastÞ
vlast

�
�
�
�

�
�
�
�:

For the first data set this relative error is equal to 0.0205 versus 0.0399 when all of the data

were used. For the second data set this relative error is equal to 0.0664 vs 0.0432 when all of the

data were used.

The second experiment does not use the last two data points in the parameter estimation.

The parameters found are used in a simulation to predict the tumor volume size on the last

two days of the data set. The predictions are compared to the data values using the similar rela-

tive error.

For the first data set the relative errors are equal to 0.0464 (for t8) and 0.0415(for t9) versus

0.0398 and.0399 when all of the data were used. For the second data set these relative errors are

equal to 0.0197 (for t10) and 0.0791 (for t11) vs 0.0109 and 0.0432 when all of the data were used.

The third experiment does not use the last three data points in the parameter estimation. The

parameters found are used in a simulation to predict the tumor volume size on the last three days

of the data set. The predictions are compared to the data values using the similar relative error.

For the first data set the relative errors are equal to 0.0341(for t7), 0.0724 (for t8), and 0.0806

(for t9) versus 0.0584, 0.0398, and.0399 when all of the data were used. For the second data set

these relative errors are equal to 0.0459(for t9), 0.0006 (for t10), and 0.0572 (for t11) versus

0.0572, 0.0109, and 0.0432 when all of the data were used.

The relative errors in all of the above experiments range between 0.06% and 8%.

Conclusion

In this paper we presented a mathematical model that we developed with the goal of qualita-

tively and quantitatively capturing mechanical and chemical processes in soft tissues. The dis-

tinguishing characteristics of the model are:

• Choice of state variables. The equations for component velocities contain terms ui vi that are

not well-defined at the locations where the respective volume fraction ui is zero. Therefore,

vi is not a good choice of for a state variable—ui vi is. With the change of variables, the equa-

tions are well-defined everywhere on the domain, and the system possesses a unique solution

under very simple conditions on the drag coefficients.

• Conservation of momentum equations. The equations derived from the principle of the con-

servation of momentum allow us to determine independent values for all state variables ui vi.

The approach adds significant flexibility to the model allowing each component of the

model to move depending on the local conditions and interactions with other components.

Many existing models lack this flexibility.

• Introduction of optimal values for the interstitial fluid and the extracellular matrix. The two

parameters introduced into the model allow the components of the model to react to local

changes in the tissue composition. These parameters provide a simple but effective way for the

components to sense and react to deviations from normal, be it stresses due to tumor growth,

or tissue damage. They effectively work as shortcuts for capturing the cumulative effects of

complex biological signaling systems. Further tying the concept of deviation from normal to

various biological signals allows for modeling of even more sophisticated phenomena.

We described the algorithm that produces a numerical solution to the system of partial dif-

ferential equations that is the foundation of our model in S1 Appendix. We also addressed
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various issues related to the numerical methods used to approximate the solution to the system

of PDE’s in S2–S4 Appendices.

We demonstrated the model’s potential in two groups of examples: tissue remodeling (with

and without explicit oxygenation), and the ECM deformation under the pressure from the

growing tumor.

Potential applications and direction include but are not limited to:

• Analysis of evolutionary dynamics of multiple tumor cell sub-populations under the micro-

environmental stresses [36, 37].

• Study of the interplay between Warburg effect and metabolic requirements during cancer

progression [36, 38–40].

• Study of the effects of drug/radiation/fasting therapy on tumor development [9, 41].

• More detailed study of wound healing and scarring aspects, such epidermal-dermal interac-

tions [42], fibroblasts activation dynamics [43], and more.

• Extending the model to the 3D domains incorporating realistic, inherently three-dimen-

sional, processes of angiogenesis and vasculature rearrangements.

• Introducing more complex strain-stress relationships into the model reflecting such proper-

ties viscosity, fiber orientation, and more.

In summary, we developed a modeling and computational framework that offers a rich

toolset that we believe is flexible enough to serve as an instrument for studying a wide range of

biological phenomena associated with soft tissue dynamics.
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