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Abstract

Intravenous leiomyomatosis (IVL) is an unusual uterine smooth muscle proliferation that can be 

associated with aggressive clinical behavior despite a histologically benign appearance. It has 

some overlapping molecular characteristics with both uterine leiomyoma and leiomyosarcoma 

based on limited genetic data. In this study, we assessed the clinical and morphological 

characteristics of 28 IVL and their correlation with molecular features and protein expression, 

using array comparative genomic hybridization (aCGH) and Cyclin D1, p16, phosphorylated-Rb, 

SMARCB1, SOX10, CAIX, SDHB and FH immunohistochemistry. The most common 

morphologies were cellular (n=15), usual (n=11) and vascular (n=5; including 3 cellular IVL 

showing both vascular and cellular features). Among the immunohistochemical findings, the most 

striking was that all IVL showed differential expression of either p16 or Cyclin D1 in comparison 

to surrounding non-neoplastic tissue. Cytoplasmic phosphorylated-Rb was present in all but one 

IVL with hyalinization. SMARCB1, FH and SDHB were retained; S0X10 and CAIX were not 

expressed. The most common genetic alterations involved 1p (39%), 22q (36%), 2q (29%), 1q 

(25%), 13q (21%) and 14q (21%). Hierarchical clustering analysis of recurrent aberrations 

revealed 3 molecular groups: Group 1 (29%) and 2 (18%) with associated del(22q) and group 3 

(18%) with del(10q). The remaining IVL had non-specific or no alterations by aCGH. Genomic 

index scores were calculated for all cases and showed no significant difference between the 14 
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IVL associated with aggressive clinical behavior (extrauterine extension or recurrence) and those 

without (median scores 5.15 vs 3.5). Among the 5 IVL associated with recurrence, 4 had a 

vascular morphology and 3 had alterations of 8q. Recurrent chromosome alterations detected 

herein overlap with those observed in the spectrum of uterine smooth muscle tumors and involve 

genes implicated in mesenchymal tumors at different sites with distinct morphological features.
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Introduction

Intravenous leiomyomatosis (IVL) is defined as an intravascular proliferation of benign 

smooth muscle cells in the absence or outside the confines of a uterine leiomyoma (UL)1. In 

most cases, it represents an incidental finding, but it can be grossly identified. IVL may 

occasionally grow into extrauterine vessels and rarely reach the right heart through the 

inferior vena cava leading to increased morbidity and mortality. Overall, the prognosis is 

generally favorable after surgery, even though recurrences have been reported2–5.

The molecular knowledge on uterine smooth muscle neoplasms, particularly for UL and 

uterine leiomyosarcoma (ULMS), has significantly advanced in light of high throughput 

technologies over the last decade. t(12;14) with HMGA2-RAD51B fusion and del(7q) are 

the most common cytogenetic rearrangements in UL6–9. Whole-exome sequencing has 

revealed MED12 as the most frequently altered gene with mutations seen in approximately 

70% of UL10, while those without MED12 mutations are reported to have either HMGA2 
rearrangements and/or complex chromosomal rearrangements11–13. MED12 and HMGA2 
alterations together are present in 80–90% of UL14. Other recurrent chromosome 

rearrangements involve 6p21 (HMGA1), 1p, 1q (FH), 3q and rarely Xq (COL4A5-
COL4A6)15–19. On the other hand, ULMS have much more complex alterations, including 

1p, 2p, 6p, 9p, 10q, 13q, 14q, and 22q deletions and 8, 10, 12q, 17, X chromosome gains, 

and aneuploidy in addition to mutations and deletions in RB1, TP53 and PTEN, suggestive 

of genomic instability20,21.

In contrast to UL and ULMS, only three series have been reported to date focusing on the 

molecular aspects of IVL. In one study, recurrent 22q deletions (66%) and complex copy 

number alterations were detected using array comparative genomic hybridization (aCGH)22. 

None of these cases showed the most common MED12 mutation described in UL, 

highlighting the importance of structural chromosome rearrangements in the development of 

IVL. A second study described recurrent 12q14.3 rearrangements by FISH along with 

HMGA2 overexpression (58%, n=12) and loss of chromosome 22 in two out of three IVL 

analyzed by karyotyping23. Finally, a third study using RNA sequencing (n=5) detected 

HOXA13 as a distinctly upregulated gene in UL when compared to IVL or myometrium24. 

These studies suggest that IVL has unique molecular characteristics that partially overlap 

with both UL and ULMS akin to their intermediate clinical behavior. Herein, we study 
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genome-wide copy number alterations as well as potential correlation with clinical, 

histological and immunohistochemical features in a large series of 28 IVL.

Materials and Methods

Following institutional IRB approval, 28 IVL from 26 patients (Cases 4 and 24 were 

recurrences of 3 and 17, respectively) were identified and available H&E slides (median: 1 

slide, range: 1–17 slides) were reviewed by 4 pathologists (Z.O., E.O., P.H. and N.B.). The 

following microscopic characteristics were evaluated: cellularity (cellular or highly cellular), 

epithelioid morphology, hydropic change, hyalinization, hyaline plaques, vascularity and 

presence of adipose tissue, nuclear atypia, mitotic activity (number per 10 high power 

fields), and infarct-type necrosis. IVL with significantly more cellularity than the adjacent 

myometrium was described as “cellular”, while those with cellularity similar to that seen in 

endometrial stromal tumors were further characterized as “highly cellular”. IVL with 

features similar to those of uterine and extrauterine angioleiomyoma (numerous evenly 

distributed vasculature (capillary), venous (thick arteriole-like) or cavernous (widened) 

surrounded by smooth muscle cells) was classified as “vascular”25,26. The vasculature was 

considered as “usual” type when vessels were variably sized with at least some prominent 

thick-walled large blood vessels. In addition, tumor vessels were assessed for hyalinization, 

myxoid change, and thrombi. The extent of morphological features was scored as minimal 

(<5%), focal (5–24%) or diffuse (>25%). For classification purposes, only when a specific 

morphology was at least focally present, the tumor was assigned to that category. Clinical 

and demographic information were retrieved from medical records or pathology reports. 

Aggressive clinical behavior was defined as presence of tumor outside the uterus or 

recurrence.

Immunohistochemistry (IHC) was performed on the Leica Bond automated staining 

platform with appropriate positive and negative controls stained in parallel. Citrate or EDTA 

antigen retrievals were done using the Leica Biosystems Refine Detection Kit. The 

following antibodies were used: phosphorylated Rb (Cell Signaling Technology, #9308 

clone s807/811, 1:100, citrate retrieval, presence of cytoplasmic or nuclear staining), SOX10 

(Cell Marque, #CM383A-76 Polyclonal,1:50, citrate retrieval, extent of nuclear staining), 

SDHB (Abcam, #14714 clone 21A11AE7,1:1000, EDTA retrieval, lack of cytoplasmic 

staining), p16 (Roche, #725–4713, 1:4, EDTA retrieval), Cyclin D1 (Leica, #PA0046, 1:1, 

EDTA retrieval, extent of nuclear staining), SMARCB1 (BD Bioscience, #612110, 1:100, 

EDTA retrieval, lack of nuclear staining), Carbonic Anhydrase IX (CAIX) (Cell Marque, 

#379R, 1:1, Citrate retrieval, extent of cytoplasmic/membranous staining) and FH (Thermo 

Scientific, #PA5–22091, EDTA retrieval, lack of cytoplasmic staining). When assessing 

extent of staining, a semiquantitative scoring method was used: 0 (no staining), 1 (<5%), 2 

(5–24%), 3 (25–50%), and 4 (>50%) in IVL and surrounding non-neoplastic tissue (means 

between the two compared by Student’s t-test).

DNA isolation and oligonucleotide aCGH assay were performed as previously described 

after manual dissection of tumor tissue from 5 μm unstained sections of formalin-fixed 

paraffin embedded tissue22. Briefly, DNA was extracted according to the manufacturer’s 

instructions using Qiagen tissue kit (Qiagen, Chatsworth, CA). Patient and control DNA 
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labeling, oligonucleotide array hybridization (SurePrint G3 Human CGH 8 × 60K Oligo 

Microarray Kit with 62 976 probes of 60-mer oligonucleotide per array; Agilent 

Technologies), post-hybridization wash, image capture, and extraction of signal feature were 

performed as previously described27. Genome-wide copy number variation was analyzed 

with a threshold value of 6, a cut-off value of 0.25, and a filter of 6 continuous probes in 

Agilent CytoGenomics 4.0. All nucleotide positions were designated according to the March 

2006 Assembly (NCBI36/hg18) in the University of California Santa Cruz (UCSC) Human 

Genome browser (http://genome.ucsc.edu/). Genome-wide distribution and relative 

frequency of the chromosomal abnormalities were resulted from the raw data of copy 

number alterations in cases. Database of Genomic Variants (http://dgv.tcag.ca/dgv) was used 

to determine known copy number variants28. Cancer related genes in the recurrent copy 

number aberrations were detected using the Cancer Gene Census (https://

cancer.sanger.ac.uk/cosmic/census?tier=all#cl_search) tool29, including Tier 1 (documented 

activity in cancer with genomic alterations promoting oncogenic transformation) and tier 2 

(recently emerging with strong indications of a role in cancer) genes, as well as literature 

search. Genomic index was calculated as A2/C (A=total number of alterations, C=number of 

involved chromosomes)30–32. Genomic index scores between IVL with aggressive clinical 

features and those without were compared by Mann-Whitney U Test. Unsupervised 

hierarchical cluster analysis was performed based on the presence of recurrent aberrations 

within the indicated chromosome band detected in at least 4 cases (~ 15%). Of note, aCGH 

results from 3 cases (5, 6 and 22) had been previously reported22.

Results

Clinical Data

Twenty-eight IVL from 26 patients with a median age of 45.5 (34 to 82) years at diagnosis 

were analyzed. Tumors ranged in size from 0.2 (microscopic) to 17 (median 6) cm. 

Accompanying UL was noted in 18 IVL. At least 5 year-follow up was available for 23 

patients with a median of 13 (up to 25) years. Fourteen IVL (12 patients) were associated 

with extrauterine extension, and 5 with recurrence (3 patients). In two instances IVL was 

incompletely resected due to anatomic extent of the tumor (Table 1).

Tumor Morphology

The most common morphologies were cellular (n=15, including 4 highly cellular), usual 

(n=11), and vascular (n=5, including 3 cellular IVL, showing both vascular and cellular 

features). There were 2 IVL with adipose tissue and 2 with epithelioid morphology, all of 

them cellular (Table 2). Hydropic change was detected in 11 (7 focal), hyalinization in 10 (4 

focal), and both in 7 while hyaline plaques were present in 7 IVL (4 minimal, 1 focal) 

(Figure 1). Twenty-three IVL had usual vasculature with prominent thick-walled large 

caliber vessels and cleft like spaces. Vascular IVL (n=5) included capillary predominant 

(n=2) and arteriole-like (n=3) vasculature (Figure 2). Ten IVL had vascular hyalinization (6 

focal), Myxoid change within vessel walls was seen in 2 cases, one with extensive thrombi, 

hemorrhage and hemosiderin deposition (Figure 1). All associated UL available for review 

(15/18) had overlapping morphology with the accompanying IVL (7 usual, 7 cellular 

Ordulu et al. Page 4

Mod Pathol. Author manuscript; available in PMC 2020 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://genome.ucsc.edu/
http://dgv.tcag.ca/dgv
https://cancer.sanger.ac.uk/cosmic/census?tier=all#cl_search
https://cancer.sanger.ac.uk/cosmic/census?tier=all#cl_search


including 1 epithelioid) except for 1 highly cellular IVL with usual UL (Table 2). Tumors 

were characterized by bland cytologic features and up to 2 mitoses/10 high power fields.

Immunohistochemistry

All IVL showed increased expression of either p16 or Cyclin D1 (mean scores 2.18 and 

1.79) in comparison to surrounding non-neoplastic tissue (mean scores 0.58 and 0.88) 

(p<0,0001 and p=0.0032). Extensive (score ≥3) p16 or Cyclin D1 staining was detected in 

10 (38%) and 6 (21%) IVL, respectively, with 3 (11%) showing positivity for both (Table 2). 

All but one IVL (Case 23), as well as their surrounding normal tissue displayed cytoplasmic 

phosphorylated-Rb staining with background nerve and endometrial cells showing nuclear 

localization. SMARCB1 and FH expression was preserved in all IVL while SOX10 or 

Carbonic Anhydrase IX were lacking in all.

Molecular Alterations

The most frequently involved chromosome arms were 1p (39%), 22q (36%), 2q (29%), 1q 

(25%), 13q (21%), 14q (21%), 3q (18%) and 10q (18%) (Figure 3, Table 3, Supplementary 

Figures 1 and 2) with a median genomic index of 4.75 (0 to 19.3) (Table 2). Putative affected 

genes in these regions include MEAF6 (1p), SMARCB1 and DEPDC5 (22q), RB1 (13q), 

RAD51B (14q), KAT6B and FAM22B (10q), in addition to other genes of potential 

pathogenetic implications on chromosomes 8q (PLAG1), 17p (MYOCD) and Xq 

(COL4A5/6), among others (Table 3.)

Three molecular groups were identified based on unsupervised hierarchical clustering 

analysis of the recurrent copy number alterations, which were predominantly deletions: 

Group 1 (n=8) and 2 (n=5) with associated del(22q) (most common shared alteration) and 

group 3 (n=5) with del(10q) (Figure 4, Supplementary Table 1). All three groups had 

alterations of 1p (n=10) and 1q (n=6). The remaining cases had either non-specific 

aberrations (n=4) or no alterations (n=6) detected.

Groups 1 and 2 (n=13) showed common alterations involving 22q (n=8), 14q (n=6), 8q 

(n=2), 9q (n=2), 15q (n=2), 18q (n=2) and Xp (n=2), which were not detected in Group 3. 

Other specific alterations only present in Group 1 included 2q (n=7), 13q (n=6), 5q (n=4). 

All IVL in Group 3 (n=5) had del(10q). Non-specific, but amplification-predominant 

alterations were seen in 5 IVL, including 2 cases with del(22q) that did not have the 

commonly accompanied alterations present in Groups 1 or 2. Median genomic index scores 

of Groups 1–3 and those with non-specific and no alterations were 10.2, 3, 2, 7.15, and 0, 

respectively.

Integrated Clinicopathological and Molecular Characteristics

Cellular appearance (n=15, 54%) was the most frequent morphology and present in all 

molecular groups. Only 1 cellular (also epithelioid) IVL had no alterations detected. 

Chromosomal abnormalities in cellular IVL involved 1p (n=9, 6 with 1q, 2 with 10q, 3 with 

8q), 1q (n=6), 10q (n=5), 8q (n=4) that were not seen in IVL with usual cellularity except for 

those with alterations in 1p (n=3, none with accompanying 1q or 8q). Among these, 3 of the 

4 highly cellular IVL had alterations of 1p and 1q (2 with del(10q)) and the other had 
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amplifications of 1q and 8q. Two cellular IVL in Group 3 with del(10q) had adipose tissue 

(Figure 1). There were no other unique aberrations associated with a specific morphology.

Among the three molecular IVL groups, only tumors in Group 3 had distinct morphological 

features. All 5 IVL in this group were cellular (2 highly cellular), with hyaline plaques 

present in 4, adipose tissue in 2, focal to extensive hyalinized vessels with minimal to focal 

background hyalinization in 2 (Figure 1, Table 2). Three IVL outside Group 3 also had 

hyaline plaques, including one hypocellular IVL with extensively hyalinized vessels and no 

detectable copy number alterations (Case 24, recurrence of Case 17 in Group 3, Figure 1)). 

The other two cases with hyaline plaques had non-specific aberrations (1 highly cellular, 1 

usual). The only IVL in Group 3 (Case 15) without hyaline plaques or hyalinized vessels had 

thrombi and myxoid change in large vessels with associated hemorrhage and hemosiderin 

deposition, a combination of features not found in any other IVL in our series. No clear 

correlation was observed between morphologic features and other molecular groups. Among 

the 6 IVL with no aberrations, 3 were hypocellular due to extensive hyalinization (2 usual, 1 

vascular) while the other 3 included 1 usual IVL with focal hyalinization, 1 cellular and 

epithelioid, and 1 vascular IVL.

Immunohistochemical stains were selected based on vasculotropism of IVL (CAIX) as well 

as recurrent molecular alterations (all the other immunostains). RB (13q), Cyclin D1 and 

p16 were analyzed given the frequent deletion of 13q (RB1) and regulatory pathway of RB. 

While cytoplasmic phosphorylated-Rb staining was detected in all but one IVL with 

hyalinization (Case 23), there was no correlation between p16 or Cyclin D1 expression and 

tumor morphology, molecular groups or genomic index scores. SMARCB1 (22q), SDHB 

(1p), and FH (1q) expression was retained. SOX10 (22q) and CAIX were negative in all 

IVL.

Aggressive clinical behavior was noted in 14 IVL (all with extrauterine extension and 5 

associated with recurrences), with no significant differences in morphology, p16 and Cyclin 

D1 expression, molecular groups (Table 2), or genomic index scores (5.15 vs 3.5) compared 

to IVL without aggressive behavior.

The majority of IVL associated with recurrence showed vascular morphology (4 out of 5) 

(Figure 2). The distribution of recurrences between molecular groups was as follows: Group 

1 (n=2), Group 2 (n=1), Group 3 (n=1) and no alterations (n=1). Alterations in 8q were 

detected in 3 of the recurrent IVL. One patient (Cases 3 and 4) had pelvic recurrence excised 

5 years later. Morphologically both tumors showed hydropic change and were focally 

hyalinized. The recurrence had increased numbers of interspersed capillary lumens. The 

recurrence showed all the aberrations observed in primary tumor : deletions in 

1p,2p,2q,13q,14q, 22q and amplifications in 8p and 8q and in addition, a new amplification 

in 2p (480 kb downstream to 2p deletion) and a deletion in 5q (Supplementary Table 1). 

Another recurrent IVL (Case 13, primary not available) had a deletion of 8q upstream to the 

aforementioned 8q amplification with deletions in 1p, 18q, 19q and 22q. Another patient had 

a recurrence 4 months later (cases 17 and 24). The primary tumor was hydropic with 

prominent hyalinized arteriole-like vessels and had del(10q) while the recurrence was highly 

vascular with arteriole-like hyalinized vessels, limited cellularity and no genomic alterations. 
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Although not considered a recurrence, it is interesting to note that another patient (Case 15) 

with del(10q) showing large vessels with extensive thrombi, hemorrhage, myxoid change 

and hemosiderin deposition without prior treatment, presented 10 years later with a left palm 

mass that was histologically a thrombosed vein.

Pelvic lymph node involvement was noted in two IVL (Cases 14 and 20), both highly 

cellular. Case 14 also had adipose tissue and was found to have deletions in 1p,1q, 3q and 

10q. Case 20 had parametrial and pelvic soft tissue extension and showed amplification of 

both 8p and 8q.

Discussion

IVL is a rare uterine neoplasm with less than 400 reports in the literature33–35, and is defined 

as an intravenous endothelium-coated benign smooth muscle proliferation outside the 

confines of a leiomyoma. The histologic features of IVL overlap with those of typical 

leiomyoma and leiomyoma variants, including cellular, epithelioid, and hydropic variants, 

leiomyoma with bizarre nuclei, lipoleiomyoma, and other less common variants1,36. The 

morphology of IVL may also overlap with other uterine mesenchymal tumors, most 

commonly hydropic leiomyoma, highly cellular leiomyoma with seedling leiomyomas, low-

grade endometrial stromal sarcoma and rarely with ULMS if the latter shows a prominent 

intravascular component37–39. However, the diagnosis in most cases is straightforward, as 

low-grade endometrial stromal sarcoma typically presents as a multinodular mass involving 

the endo-myometrium with tongue-like pattern of myometrial invasion, and is histologically 

composed of relatively uniform endometrial stromal cells with spiral arterioles40. 

Leiomyosarcoma with prominent vascular involvement shows high-grade cytology, brisk 

mitotic activity and/or tumor cell necrosis, features that are lacking in IVL39. Leiomyoma 

with hydropic change and highly cellular leiomyoma with seedling leiomyomas may closely 

mimic the appearance of IVL at low power magnification37,41. IVL may extend outside the 

uterus, into pelvic vessels, inferior vena cava, the right heart, or may even involve the 

pulmonary vessels, and it has a recurrence rate of approximately 10%2–5. Few studies have 

been conducted to investigate the molecular and immunohistochemical profile of IVL. In 

this study, we analyzed 28 such tumors by aCGH and immunohistochemistry to further 

understand their clinicopathologic and genomic characteristics.

Frequent Molecular Alterations in IVL

IVL has previously been characterized by der(14)t(12;14), a unique cytogenetic alteration 

detected by karyotyping42. This aberration is considered different than the balanced t(12;14) 

with HMGA2-RAD51B fusion seen in UL. Despite their identical breakpoints, 

der(14)t(12;14) cytogenetically corresponds to an unbalanced translocation which has two 

normal chromosome 12, and one normal and one derivative chromosome 14 with a deleted 

portion of 14q which is presumably replaced by 12q. Therefore, it has been proposed that 

the presence of an extra copy of 12q and/or loss of 14q may be critical genetic events 

leading to intravascular proliferation. There is only one reported IVL with a der(14)t(12;14) 

characterized by karyotyping and FISH that was subsequently analyzed by microarray23. It 

harbored complex chromosome alterations including del(14q) involving RAD51B, 
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surprisingly without an increase in 12q copy number, as well as small deletions in 1p and 1q 

among others. Interestingly, presence of ring chromosome 1 (presumed to have copy number 

alterations in 1p, 1q or both) is reported to be a concurrent change in UL with a t(12;14)43. 

This observation parallels the findings in our IVL with del(14q) (n=6, 5 involving 

RAD51B), 4 with an accompanying 1p deletion (1 tumor also had 1q gain) and none with 

12q alterations. In addition to del(14q) (21%), other most common alterations involved 1p 

(39%), 22q (36%), 2q (29%), 1q (25%), 13q (21%), 3q (18%), and 10q (18%) (Figure 3, 

Table 3), which is similar to a previously reported series22.

Immunohistochemical Characterization of IVL

Deregulation of the Rb/E2F pathway has been identified in a wide range of tumors by 

altering expression of genes involved in angiogenesis, epithelial-mesenchymal transition, 

invasion, and migration44. Hyperphosphorylation of Rb promotes tumorigenesis by blocking 

apoptosis and stimulating proliferation and invasion, which is regulated by Cyclin D1 and 

p16 proteins45,46. In many cancer types alterations leading to increased Rb phosphorylation 

are more common than Rb mutations and therefore, targeted therapies are designed to inhibit 

the activity of cyclin dependent kinases toward Rb47. In this series, one of the most frequent 

alterations was del(13q) (RB1) (Table 3, Supplementary Table 1). Ser807 is a site 

phosphorylated by Cyclin D1/CDK4 that is shown to be important for hyperphosphorylation 

of Rb and its nuclear export resulting in its inactivation48. In this study, all but one IVL, 

which was hypocellular, displayed cytoplasmic phosphorylated-Rb localization, suggesting 

that nuclear export may be the mechanism for Rb inactivation.

IVL Molecular Groups vs UL Subtypes

IVL were grouped by hierarchical clustering of recurrent aberrations to further correlate the 

concurrent alterations amongst each other as well as with clinicopathologic findings (Figure 

4, Table 2). Three molecular groups were identified, while the rest had non-specific/no 

alterations. The two most common characteristic changes in Groups 1 (n=8, 29%) and 2 

(n=5, 18%) were del(22q) (n=8) and del(14q) (n=6), whereas all IVL in Group 3 had a 

distinct profile of del(10q) (n=5, 18%). Alterations involving 1p (n=10) and 1q (n=6) were 

seen in all three groups. Based on these results, Group 1 can be considered the genomically 

unstable counterpart of Group 2 (median genomic index=10.2 vs 3) given multiple unique 

alterations in Group 1, including changes in 2q, 13q, 5q, besides the common alterations 

seen in both groups. Four IVL (14%) had copy number changes that could not be 

categorized into any specific group, showing predominantly amplifications, in contrast to 

Groups 1–3 showing predominantly deletions. Six (21%) IVL had no alterations detected (3 

of them with limited tumor cellularity due to extensive hyalinization).

The three genomic groups described herein are comparable to the molecular subtypes 

described in UL, despite technical limitations related to detection of point mutations and 

balanced rearrangements by aCGH. In a study by Mehine et al. with selective enrichment of 

otherwise rare del(22q) UL (20/94), four UL subtypes were identified integrating both gene 

expression data and genomic alterations: HMGA2 (12q), MED12 (Xq), FH (1q), and 

COL4A5-COL4A6 (Xq))18. Among these, HMGA2 UL usually had t(12;14) with RAD51B 
(14q) as the preferential translocation partner, whereas MED12 UL showed up-regulation of 
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RAD51B expression. Nineteen out of 20 del(22q) UL clustered in either HMGA2 (12) or 

COL4A5/6 (7) subtypes. In our series, 8 out of 10 del(22q) IVL clustered together with IVL 

having del(14q) (n=6, 5 involving RAD51B) and del (Xq) (n=2, 1 involving COL4A5/6) in 

Groups 1 and 2 (Figure 4, Supplementary Table 1). Although the number of cases is limited 

in both studies, it is worth noting that both IVL and UL with del(22q) appeared to have 

overlapping molecular features with tumors having genomic alterations in HMGA2/
RAD51B or COL4A5/6 based on their preferential clustering with such tumors. In addition, 

UL with 22q alterations were further characterized by studying minimally deleted regions 

(27,111,559–33,871,686) and a UL with 22q translocation. DEPDC5 (with 5 UL showing a 

“second hit” mutation in this gene) and SMARCB1 were identified as the two putative target 

genes involved in 22q UL. Not only the minimally deleted 22q region reported in UL had a 4 

Mb overlap with one reported herein (27,111,559–33,871,686 vs 25,351,942–31,211,236, 

respectively, Table 3), but also both DEPDC5 and SMARCB1 were either involved by or 

within 1 Mb of the altered region in 9 out of 10 IVL with del(22q). Taken together, IVL with 

del(22q) and del(14q) are common and tend to cluster together in same molecular groups, 

which appear to share similar molecular characteristics with their UL counterparts. Of note, 

none of the del(14q) IVL in our study had a del(10q), however, the aforementioned IVL 

described elsewhere23 with der(14) with del(14q) also had a del(10q).

Group 3 IVL (18%) were characterized by del(10q). Alterations involving 10q have rarely 

been reported in UL (2%)49, although specifically del(10q) are more commonly observed in 

ULMS than UL50. KAT6B, a rare tumor suppressor gene with homozygous deletions in 

multiple cancer types51,52, is described as the candidate 10q gene in UL in a study analyzing 

the rare t(10;17) event53 and a similar t(10;17), resulting in a KAT6B-KANSL1 fusion 

detected in a retroperitoneal and more recently in a uterine leiomyoma54,55. This fusion is 

located at exon 3 (histone binding domain) of KAT6B without involvement of the 

downstream functional domains (histone acetylation and transcriptional activation), 

implicating KAT6B loss of function. Furthermore, germline mutations in both KAT6B and 

MED12 are associated with Ohdo Syndrome, a heterogenous group of disorders with 

intellectual disability and craniofacial anomalies56. Therefore, previous studies suggested 

that MED12 and KAT6B are functionally related, both encoding for chromatin-modifying 

enzymes and implicated in same diseases with mutations at germline and somatic levels56,57. 

Interestingly, in our series all del(10q) IVL in Group 3 (5) involved KAT6B and none 

clustered together with del(22q), which may be parallel to UL groups with only 1 out of 20 

del(22q) clustering with the MED12 subtype18.

Overall, our IVL molecular groups had overlapping characteristics with UL subtypes, albeit 

the latter has been studied more comprehensively due to integration of RNA data. 

Commonly altered chromosome regions in IVL (Table 3) are less frequently involved in UL 

except for 14q (RAD51B). However, despite 14q being a frequently altered region in IVL 

and UL, the unbalanced nature of this aberration remains unique to IVL. The paucity of the 

common IVL alterations in UL may provide insight into the fact that only a very small 

subset of women with UL have accompanying IVL. Analysis of additional IVL along with 

RNA expression and fusion transcript data may help further characterize IVL molecular 

groups and their correlations with UL subtypes.
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Alterations in IVL vs other UL Variants with Unusual Clinical Behavior and Soft Tissue LM

Benign metastasizing leiomyoma (BML) and disseminated peritoneal leiomyomatosis 

(DPL) are considered other unusual leiomyoma variants. Alterations involving 1p, 2q, 3q, 

7p, 11q, 19q, 22q have been reported in BML58–60. A case report of a cellular DPL after 

morcellation of a hydropic and hyalinized UL showed r(1), del(3q), del(9q) and t(12;14) on 

karyotype with 1p, 1q, 2p 2q 3q, 14q loss and 11p gain on microarray, in parallel to the 

aforementioned associations of IVL with der(14) and its relationship to r(1) and del(14q). In 

a study analyzing 8 soft tissue LM (all female patients with retroperitoneal/pelvic tumors), 3 

had 12q alterations (inv(12); t(12;14); der(12) and del(14q) as well as −22), 3 had 8q (ins(8)

(p23q12q22), t(8;14)(q13;q24), t(8;19)(q12;q13)), 1 had del(7) and del(14q), 1 had t(3;11) 

and add(11q). Tumors with 8q alterations showed PLAG1 involvement61, which was also 

amplified in 3 IVL with aggressive behavior in our series. These rare subsets of leiomyomas 

occurring outside the uterus have recurrent alterations similar to those seen in IVL, which 

are rarely seen in UL.

Alterations in Cellular IVL vs Cellular UL and Endometrial Stromal Sarcoma (ESS)

Cellular UL has been associated with del(1p) and t(10;17)19,53,62. In particular, a study 

analyzing 9 UL with del(1p) and other aberrations including loss of chromosomes 19 and/or 

22, and less commonly 10q, 13q and 14, reported 6 of them being cellular62. In another 

study, gene expression analysis demonstrated clustering of IVL with ULMS and cellular/

atypical UL with 1p deletion, rather than with myometrium, usual or plexiform UL23. In the 

current series, chromosomal abnormalities in cellular IVL involved 1p, 1q, 8q and 10q. 

Among these, 3 of the 4 highly cellular IVL had alterations of 1p and 1q (2 with del(10q)) 

and the other had amplifications of 8q and 8q. Although the copy number alterations 

reported herein are mostly Mb-sized larger genomic regions, it is interesting to note that 

some of the recurrent alterations in cellular IVL involve genes altered in ESS genomic 

rearrangements including MEAF6 (1p) and FAM22B (10q) (Table 3).

Vascular IVL vs Angioleiomyoma

Angioleiomyoma (angiomyoma, vascular leiomyoma) is a benign soft tissue tumor with 

thick-walled vessels formed by proliferating smooth muscle cells, and vascular channels, 

which can rarely occur in the uterus26. Deletions in 6p63 and 13q have been described in soft 

tissue tumors.64. A microarray analysis of these tumors showed recurrent 22q loss as the 

most common alteration (22%)65. Cytogenetic analysis of a uterine angioleiomyoma showed 

a complex karyotype with abnormalities involving 2p, 2q, 5q, 11p, 20q and Xp including 

inv(2)(p15q13)66. None of these alterations are common in UL, however, they mostly 

overlap with IVL reported herein including those with vascular morphology, albeit not 

specific to this morphologic subtype.

IVL with del(22q) and del(14q) vs Gastrointestinal Stromal Tumors

Loss of 22q is one of the most frequent alterations in IVL, identified in 36% of tumors in our 

series and in two-thirds of tumors in a previously published smaller series22. In addition, we 

observed loss of 14q in 21% of IVL. Interestingly, losses involving chromosomes 22q and 

14q have also been frequently found in gastrointestinal stromal tumors (GIST)67–70, and it 
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has been suggested that these alterations play an important role in early stages of GIST 

tumorigenesis70. In addition, allelic losses at 22q in GIST were found to be associated with 

high mitotic activity and disease recurrence71. We observed loss of 22q in 6 of 14 IVL with 

extrauterine extension and in 3 of 5 recurrent tumors, suggesting the possibility of a similar 

association. From a potential diagnostic aspect, although karyotyping or array CGH are not 

typically performed as part of the routine diagnostic work-up, the overlap in tumor genomic 

profiles between GIST and IVL should also be taken into account when encountering 

spindle cell tumors at unusual peritoneal locations.

IVL vs Smooth Muscle Tumors of Uncertain Malignant Potential (STUMP)

Although IVL is histologically benign, our series shows molecular features that parallel 

those reported in STUMP72. An array genomic hybridization analysis of 29 STUMP showed 

alterations involving 22q (70%), 13q (50%), 11p (50%), 6q (50%), 3q (50%) and 1q 

(60%)31. In addition, a recent series by Croce et al. of 77 uterine smooth muscle tumors with 

a mean follow up of 63.6 months identified a genomic index cut off score of 10 as a 

predictor of recurrence and a criterion for “molecular leiomyosarcoma”32. Among stage 1 

“molecular leiomyosarcomas” in that study, poor prognostic markers included genomic 

index cut-off score of 35, 5p gain, 13q loss involving RB1 and 17p gain involving MYOCD, 

the latter promoting smooth muscle differentiation and cell migration73. Alterations of 22q 

(36%), 13q (21%), 6q (14%), 3q (18%) and 1q (25%) (Table 3) were overlapping recurrent 

aberrations detected in IVL in our series (predominantly in Group 1), although less frequent 

than those previously reported in STUMP. Six (21%) IVL had a genomic index of ≥10 (all 

<35), also mostly in Group 1 (4 of them). However, there was no association between 

genomic index (with or without specific cut off of 10) and clinically aggressive behavior in 

IVL. It is interesting to note that Case 5 (Group 1) had the highest genomic index (19.3) and 

would have qualified as “molecular leiomyosarcoma” with two poor prognostic factors (5p 

gain and 13q loss) based on the aforementioned study. However, it had usual morphology, 

was confined to the uterus, and the patient had no recurrence after 6 years. Therefore, 

especially in the setting of leiomyoma variants, results of genomic analysis should be 

interpreted carefully in correlation with the pathologic findings. That said, the majority of 

the tumors in our series showed simple genomic profiles (genomic index ranging from 0 to 

19.3; mean 5.9), significantly different from the previously reported genomic profiles of 

leiomyosarcomas (with genomic index up to 180, and mean 51.8)32. Future studies - using 

other techniques (mutation and gene expression analyses) – may uncover additional genomic 

alterations not detectable by aCGH (mutations or balanced rearrangements) that may be 

responsible for the intravascular tumor location and the resulting aggressive clinical behavior 

in some patients.

Conclusion

Herein, we describe three genomic groups of IVL, in which del(10q) and del(22q) were 

mutually exclusive with overlap in other aberrations including del(1p), comparable to 

molecular subtypes reported in UL. The described recurrent chromosome alterations 

included target genes reported in other uterine and extrauterine mesenchymal tumors with 

unique histologic characteristics particularly for cellular, vascular and Group 3 tumors with 
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del(10q). The previously proposed genomic index for uterine smooth muscle tumors did not 

predict a malignant course in our series and there was no specific molecular alteration 

associated with aggressive behavior. Our molecular and immunohistochemical findings 

suggest involvement of the Rb pathway in the pathogenesis of a subset of IVL. Currently, 

this is the largest series correlating histological, immunohistochemical, and molecular 

characteristics of IVL. While our molecular analysis is limited to array CGH, these data may 

serve as a platform for future studies - including additional protein expression analysis and 

next generation sequencing – on IVL and paired adjacent leiomyomas to further explore 

their potential pathogenetic relationship and elucidate the critical steps of IVL 

tumorigenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Morphological characteristics of molecular group 3 IVL (Cases 14–18) and Case 24 
(recurrence of Case 17).
Note the hyaline plaques (Cases 14, 16–18, and 24) and hyalinized vessels (Cases 14, 16, 17 

and 24), adipose tissue (Cases 14 and 18), and large vessel with thrombosis, myxoid change 

and hemorrhage (Case 15). All these IVL are cellular except for Case 24, which is 

extensively hyalinized and cellularity is difficult to assess.
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Figure 2. Morphological characteristics of vascular IVL.
Cases 3 and 4 (recurrence of Case 3) have capillary-predominant, whereas Cases 17, 24 

(recurrence of Case 17), and 28 have arteriole-like vasculature. In addition, Case 4 has 

myopericytoma-like vessels with minimal thrombi, which were not seen in Case 3.
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Figure 3. 
Chromosome view of copy number alterations.
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Figure 4. Molecular groups.
Unsupervised hierarchical clustering of the recurrent copy number alterations.
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Table 3.

Maximum and minimal overlapping regions in recurrent chromosome aberrations with tumor related genes 

located in the minimal overlapping regions.

Maximum interval (kb) Minimum interval (kb) Relevant Genes Number of cases (%)

1p36.33p11.2: 564,424-121,322,377 
(120,758)

1p35.2p33: 30,665,772-46,928,430 
(16,263)

LCK, SFPQ, THRAP3, CSF3R, 
MYCL, MPL, MUTYH, 

MEAF6
8 (29%)

11 (39%)1p22.3p13.3: 85,239,163-111,475,662 
(26,236)

BCL10, RPL5, TGFBR3, 
RBM15 9 (32%)

1p13.2p13.1: 
111,967,027-116,618,073 (4,651) TRIM33, NRAS 9 (32%)

1q21.1q44: 143,787,504-247,139,492 
(103,352)

1q31.2q32.1: 
201,586,748-202,001,197 (414) ELF3, FH 7 (25%)

2q11.1q37.3: 95,529,039-243,028,452 
(147,499)

2q12.2q21.1: 
106,120,724-130,333,677 (24,213)

RGPD3, RANBP2, PAX8, 
ERCC3 5 (18%)

8 (29%)2q31: 176,959,166-177,055,486 (96) HOXD13, HOXD11 7 (25%)

2q37.3: 240,116,052-240,320,953 
(205) - 5 (18%)

3q11.1q29: 93,575,285-198,154,829 
(104,580)

3q21.1q24: 123,390,999-146,012,579 
(22,622)

GATA2, RPN1, CNBP, STAG1, 
PIK3CB, FOXL2, ATR 4 (14%)

5 (18%)
3q13.3q21.1: 

121,295,144-123,300,941 (2,006) - 4 (14%)

5q11.2q35.3: 54,636,411-180,598,584 
(125,962)

5q33.3q34: 157,708,829-165,950,962 
(8,242) EBF1, PWWP2A 4 (14%)

6q11.1q25.1: 62,448,434-151,805,950 
(89,358)

6q14.3q16.1: 87,044,032-95,997,166 
(8,953) EPHA7 3 (11%)

4 (14%)
6q16.1q16.3: 97,695,181-99,998,194 

(2,303) - 3 (11%)

8p23.2p11.1: 2,308,926-43,452,795 
(41,144)

8p23.2: 2,308,926-2,965,283 (656) - 1 (4%)

4 (14%)8p23.1p11.21: 9,615,685-43,167,985 
(33,552)

LEPROTL1, WRN, NRG1, 
NSD3, ANK1, KAT6A, 

IKBKB, HOOK3
3 (11%)

8q11.21q24.3: 
50,336,903-145,976,051 (95,639)

8q12.1q24.3: 56,899,737-142,274,992 
(85,375)

PLAG1, CHCHD7, PREX2, 
NCOA2, HEY1, CNBD1, NBN, 
RUNX1T1, CDH17, COX6C, 

PABPC1, UBR5, RSPO2, 
EIF3E, CSMD3, RAD21, 
EXT1, MYC, NDRG1, 

FAM135B

3 (11%) 4 (14%)

10q11.21q26.3: 
42,209,250-135,254,513 (93,045)

10q22.2q26.3: 
76,458,215-133,476,839 (57,019)

KAT6B, GATA3, NUTM2B, 
LARP4B, BMPR1A, NUTM2D, 
FAM22B, PTEN, FAS, TLX1, 

NFKB2, SUFU, NT5C2, 
VTI1A, TCF7L2, SHTN1, 
FGFR2, CPEB3, CYP2C8, 

MGMT, MGEA5

5 (18%)

13q11q34: 18,194,544-112,732,368 
(94,538)

13q14.2q14.3: 47,559,566-52,307,072 
(4,748) RB1, CYSLTR2 5 (18%)

6 (21%)13q21.2q21.33: 
62,222,639-72,463,336 (10,241) - 5 (18%)

13q22.3q34: 77,509,972-112,586,620 
(35,077) GPC5, SOX21, ERCC5 4 (14%)

14q11.2q32.33: 
19,323,579-105,432,573 (86,109)

14q12q22.1: 27,867,557-51,125,450 
(23,258)

ARHGAP5, BAZ1A, NKX2-1, 
FOXA1 5 (18%) 6 (21%)
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Maximum interval (kb) Minimum interval (kb) Relevant Genes Number of cases (%)

14q24.1q24.2: 68,603,041-69,446,436 
(843) RAD51B 5 (18%)

22q11.1q13.33: 
15,533,988-51,219,009 (35,685)

22q12.1q12.3: 25,351,942-31,211,236 
(5,859)

MN1, CHEK2, ZNRF3, 
EWSR1, NF2, SMARCB1, 

DEPDC5
9 (32%)

10 (36%)22q13.1q13.33: 
36,788,138-48,390,822 (11,603)

ZC3H7B, APOBEC3B, 
PDGFB, MRTFA, EP300 9 (32%)

22q12.3q13.1: 37,300,872-37,976,764 
(676)

- 9 (32%)
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