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Abstract

The current pandemic outbreak clearly indicated the urgent need for tools allowing fast pre-

dictions of bioactivity of a large number of compounds, either available or at least synthesiz-

able. In the computational chemistry toolbox, several such tools are available, with the main

ones being docking and structure-activity relationship modeling either by classical linear

QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of

the results obtained using different docking protocols on the example of the search for bioac-

tivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus

with ACE2 human receptor interface. Based on over 1800 structures in the training set we

have predicted binding properties of the complete set of nearly 600000 structures from the

same class using the Machine Learning Random Forest Regressor approach.

Introduction

Subsequent outbreaks of pandemics [1] culminating in the current Covid-19 highlighted the

necessity of protective actions from the scientific community. This was manifested in the ini-

tial attempts of repurposing currently used drugs, followed by a search for novel antiviral com-

pounds and vaccines. Although the effort put into the studies of agents preventing infection

caused by the SARS-CoV-2 virus worldwide is impressive, neither new effective drugs have

been discovered nor there is a reassurance that vaccines will catch up with the fast mutations

of the virus. This indicates the need for the evaluation of the antiviral activity of synthesizable

compounds. In the case of current pandemics the search started with docking approach, pio-

neered by the most extensive study [2] of the inhibition at the interface between the spike pro-

tein (S-protein) of the virus and the human ACE2 receptor, responsible for the viral

recognition of host cells (see reference [3] for a recent summary). These studies, while quite
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exhaustive, were restricted to about 9000 compounds although performed with the aid of one

of the fastest available supercomputers.

In the chemoinformatics toolbox for studies of ligands interaction with enzymes, the reli-

ability of methods diminishes from molecular dynamics to docking to various variants of

Quantitative Structure-Activity Relationship (QSAR). However, the rate of processing ligand

structures increases dramatically in the same order. Thus different QSAR methods should

allow the exploration of large sets of potential antiviral compounds. The main drawback in

applying this approach lies in the fact that it requires large data sets on the activity of closely

related compounds to build reliable models. Such data is usually missing, especially when the

need for models is urgent. In the lieu of experimental data, the results of docking might be

used, although one has to keep in mind that the results of docking do not always correlate with

bioactivity.

We have previously [4] attempted building a QSAR model of interactions between the

series of compounds containing linear or cyclic N-N-C(S)-N structural motif with the inter-

face between the virus S-protein and the ACE2 receptor but a training set of only 160 com-

pounds did not lead to a reliable QSAR model. In this contribution, therefore, we have

extended the number of considered ligands over 10-fold (to 1820) by the inclusion of com-

pounds that can be readily synthesized. We have carried out docking studies using four differ-

ent docking algorithms and subsequently used these docking scores as the training set and

subsequently predicted binding properties of the complete library of 597780 structures from

the same class by applying fingerprint-based Machine Learning model employing Random

Forests classifiers [5–7] which rate outperforms classical QSAR methods by a few orders of

magnitudes.

We have selected compounds with the NH-NH-C(S)-NH motif because it already got sig-

nificant attention in medicinal chemistry. Biological activities of thiosemicarbazides, the

simplest hydrazine derivatives of thiocarbamic acid, are considered to be related to their abil-

ity to form chelates with zinc, iron, nickel, copper, and other transition metal cations that

play an important role in biological processes.[8] As a result, thiosemicarbazide ligands in

their nitrogen and sulfur (N, S) bidentate form or (N, N, S) tridentate form are considered

interesting targets for drug design and variety of bioactive compounds with potent antibacte-

rial, antifungal, anticancer, anti-HIV, antiviral, insecticidal, antisclerotic, antioxidant, radical

scavenging, and antiparasitic activity are reported in the literature every year.[9, 10] These

sulfur and nitrogen donor ligands have attracted singular attention due to their inhibitory

activity against the smallpox virus and protozoa influenza as well.[11] Some industrially

important applications like the regulation of plant growth, anticorrosion activity, and anti-

fouling effects have also been reported for these derivatives.[12, 13] Due to NH-NH-C(S)-

NH structural motif, 1,4-disubstituted thiosemicarbazides are convenient precursors for the

synthesis of their heterocyclic analogs with 1,2,4-triazole or 1,3,4-thiadiazole cores. Antibac-

terial, antifungal, antituberculosis, antimalarial, antileishmanial, antiviral, antioxidant, anti-

cancer, antidiabetic, antihypertensive, diuretic, neuroprotectant[4, 14–20] activities were

reported for these compounds. They have also well-documented activity as CNS depressants,

cannabinoid CB1 receptor antagonists, PDE4A inhibitors, γ-aminobutyric acid-A

(GABA-A) α-2, α-3 and α-5 containing receptor antagonists, analgesic, anticonvulsant, anti-

inflammatory, and analgesic agents.[21–24] Additionally, many drugs containing 1,3,4 thia-

diazole moiety such as acetazolamide, methazolamide, andmegazol or 1,2,4-triazole ring

such as fluconazole, itraconazole, posaconazole, voriconazole, ravuconazole, estazolam,

alprazolam, etizolam, rizatriptan, trapidil, trazodone, anastrozole, letrozole, ribavirin, and

loreclezole are available in clinical therapy.
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Results

The main focus of the present studies was on the identification of efficient evaluation of bioac-

tivity of compounds containing NH-NH-C(S)-NH motif, which was based on the ability of

their binding to the S-protein of SARS-CoV-2 virus—ACE2 human receptor interface which

structure was retrieved from the Protein Data Bank (PDB: 6M0J [25]). Considered substituted

structures of thiosemicarbazides, thiadiazoles, and triazoles are schematically presented in Fig

4 while all obtained results of docking are collected in Table S1 deposited in the public reposi-

tory (see Data Availability section). The studied molecules included linear carbonylthiosemi-

carbazide skeleton and its three cyclic derivatives: 1,3,4-thiadiazole, and 1,2,4-triazole (in the

thiol and thionic forms) cores decorated by five different five-member rings as the C-substitu-

ent and substituted phenyl ring as the N-substituent. In total 1820 structures including all

mono-, di-, and diortho-para-halogen- substituted R2 substituents have been used.

Four docking scoring functions have been used. These include Vina (Windows implemen-

tation in the Chimera environment), FlexX and Hyde (implemented in LeadIT), and

ChemPLP (implemented in Gold)—see Materials and Methods section for details. Note that

ChemPLP scores, in contrast to the other algorithms employed herein, use mathematical for-

mulas in which the more favorable interactions result in a higher score.

Subsequently, Machine Learning models using Random Forest Regressor have been trained

on all four sets of docking results (see Materials and Methods). The correlations obtained dur-

ing training (R^2) and leave one out validation (Q^2) quantifying models performance are

summarized in Table 1 and illustrated in Fig 1. The values of Q^2 above 0.75 are generally an

indication of a model with useful predictive capabilities. The best fit was obtained for FlexX,

while Vina and ChemPLP docking yielded acceptable correlations. A somewhat worse correla-

tion between the docking scores and molecular fingerprints has been obtained with Hyde.

Discussion

Fingerprint-based Random Forests Regressors model yielded excellent correlation in the case

of FlexX results, very good in cases of Vina and ChemPLP, and slightly worse in the case of

Hyde. Since no methods of direct visualization of Random Forests exist we have deepened the

analysis of the results by performing t-distributed Stochastic Neighbor Embedding (t-SNE)

[26] analysis of the descriptor space, as it excels over methods like Principal Component Anal-

ysis for highly dimensional data [27]– 4096 dimensions in our case. This analysis is illustrated

in Fig 2. The 20 clusters appearing in the t-SNE plots were verified to represent the signifi-

cantly chemically different groups of compounds (all combinations of core moieties and R1

substituent). The ability of t-SNE to identify the chemically different groups of compounds

confirms the choice of fingerprints to describe our compounds. It should be noted that the

activity data of the compounds was not used in the t-SNE analysis, it was only added at the

stage of plot preparation. Any correlations observed between the activity (presented as color in

Fig 2) and the position of the molecule in the t-SNE plots should be interpreted as intrinsic

correlations between the activity and chemistry of the molecule. A cluster represents a group

of molecules with similar fingerprint patterns, that can be understood as a structural similarity.

The appearance of clusters uniform in color (= activity), especially visible in Fig 2A suggests

Table 1. R^2 and Q^2 values for ML-QSAR Random Forests modeling of docking scores.

FlexX Vina ChemPLP Hyde

R^2 0.99 0.93 0.86 0.82

Q^2 0.96 0.82 0.82 0.57

https://doi.org/10.1371/journal.pone.0256834.t001
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that small variations in structural features do not significantly contribute to the activity. While

there is a consensus between docking scores of FlexX, Vina, and ChemPLP, Hyde scores

appear to vary within each cluster, a fact that might explain the lower performance of the SAR

modeling of Hyde scores.

As we have indicated, computational tools that can be used for the prediction of bioactivity

of different compounds need nowadays to be very fast to be able to cope with big data collec-

tions. Machine Learning techniques like Random Forests outperform significantly other meth-

ods such as molecular dynamics, docking, and classical QSAR. While our previous studies [28,

29] involving similar techniques hinted at Random Forest performing much better than classi-

cal QSAR in the modeling of the docking scores we were unable to sufficiently support such a

Fig 1. Predicted vs original docking scores obtained by Random Forests for scores computed by FlexX (A), Vina (B), ChemPLP (C), and

Hyde (D). Blue points—learning stage, orange points–leave one out cross-validation stage.

https://doi.org/10.1371/journal.pone.0256834.g001

PLOS ONE Aminothioureas docking to SARS-CoV-2—ACE2 interface

PLOS ONE | https://doi.org/10.1371/journal.pone.0256834 September 9, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0256834.g001
https://doi.org/10.1371/journal.pone.0256834


conclusion due to the limited number of compounds studied. Our present results provide

clear evidence that Random Forests calculations trained on docking results can provide an

improved scientific tool with better rate and precision of predictions that allow evaluation of

properties of hundreds of thousands of compounds in a realistic time. The practice of training

fast methods on more precise ones is in fact quite common in computational chemistry. For

example, computationally cheaper molecular mechanics force fields can be trained on data

from expensive high-level ab initio computations.

However, having evaluated a large library of nearly 600000 compounds comprising the

-N-N-C(S)-N- motif, we did not identify any compound that would be a better candidate for

the lead compounds for further drug development than those which were in the training set.

Therefore, below we discuss the results obtained from docking. Due to the lack of experimental

data, and thus our inability to put more trust into particular docking algorithms used, we have

ordered all results within a given docking protocol from the best to worst and assigned them a

rank corresponding to the position on the list. In this way, the four best compounds have been

identified. Subsequently, we have compiled a similar list according to the average rank in all

Fig 2. Two component t-SNE analysis of the set containing 1820 compounds in the 4096-dimensional space of Morgan Fingerprints colored by

FlexX (A), Vina (B), Gold (C), and Hyde (D) docking scores.

https://doi.org/10.1371/journal.pone.0256834.g002
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four docking protocols, a “consensus” ranking [30]. These five best compounds are collected

in Fig 5. In general, these results indicate that the linear thiosemicarbazides arrangement is

preferred, these compounds occupy the first 20 positions on the consensus rank list. This result

is not too surprising taking into account the length of the interface rim. Within the best-scored

compounds, the majority contain the hydroxyl group in the ortho position of the R2 substitu-

ent. Compounds highly substituted in the phenyl ring did not score high, although triply

substituted, with both ortho positions occupied scored highest in the case of ChemPLP and

Vina docking. The interactions in the groove connecting S-protein (presented in yellow) with

ACE2 receptor (presented in green) are illustrated in Fig 3 on the example of the molecule cor-

responding to the best result of the consensus docking presented in the first line of Fig 5. As

indicated in the inset of Fig 3 the molecule is held rigidly by a network of hydrogen bonds

(marked as pink lines) by both proteins. Sulfur atom forms hydrogen bonds with Tyr719,

Lys669 on the spike protein side, and His16 of the human receptor. Also, the oxygen atom of

the furan ring forms hydrogen bonds with both proteins; Gly762 of the spike protein and

Lys335 of the ACE2 receptor. Hydroxyl group forms multiple hydrogen bonds with Agr375

and Glu19 of ACE2 and Tyr771 of the spike protein. Finally, both protons of the -NH-NH-

fragment are in hydrogen bonding contact with His16 and Asp15 although the N-H. . .O

angles are low indicating that these hydrogen bonds are very weak. In the blind docking to the

SARS-CoV-2 S-protein–ACE2 receptor complex, as well as to both these proteins separately

docking scores are best at the illustrated position indicating that its mode of action would be

stabilization of the complex and thus trapping the virus rather than inhibiting its complexation

with the receptor.

All compounds collected in Fig 5 were subjected to ADMET analysis. Major properties per-

tinent to selecting lead compounds [31] are collected in Table 2. As can be seen, they compare

favorably with these of the two drugs tried clinically against Covid-19 (chlorquine and

remdesivir).

Materials and methods

Docking

Four docking algorithms were used. In the case of the FlexX algorithm [32], as implemented in

the LeadIT platform [33], docking space was defined as a sphere with a radius of 7.5 Å centered

at the point (83.5, 37.5, 110.0 Å) in the middle of the rim of the interface. Two different strate-

gies were used. The first one was docking corresponding to a rigid receptor. In the second a

100 Å3 penetration of the van der Waals radii was allowed to account for the protein flexibility.

The results of both docking strategies were found to be highly correlated and therefore only

the results of docking with “flexible” protein receptor were considered in further studies. All

best structures obtained for individual ligands using FlexX were subsequently subjected to

docking refinement by a relatively new algorithm Hyde [34] implemented in the same plat-

form. For docking using Vina [35] the standalone Windows-based executable has been used.

The binding site was limited to the interface space by defining a 100.0x65.0x80.0 ÅxÅxÅ
box centered at the same point as in FlexX docking using a visualization tool implemented in

the Chimera [36] program. The same box was defined in studies using SwissDock [37] but it

has been neglected by the server and blind docking has been performed instead. Since only a

single ligand per submission to the server was possible we have carried out docking for only

about 300 ligands and manually selected clusters docked in the space relevant to the interface.

Finally, the ChemPLP algorithm [38] as implemented in the Gold program [39] was used with

the same docking space as in the case of FlexX calculations. This algorithm has been consid-

ered as one of the best in most recent benchmark studies [40]. Blind docking in the case of all
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algorithms was used to check if the binding at the interface is the optimal place for a given

ligand. Furthermore, binding to individual proteins (ACE2 receptor and S-protein) has been

carried out to investigate the role of ligands (as a binder of binding inhibitor). For the proteins

and ligands preparation and visualization, apart from those embedded in the docking pro-

grams, Hyperchem [41], Gaussview [42], Chimera [19], and Mercury [43] were used.

Machine Learning using Random Forest Regressor

All of the 1820 structures were converted from 2D to 3D using RdKit [44] and relaxed at the

molecular mechanics level using MMFF94 Merck Force Field [45]. Morgan Fingerprints [27]

with a radius of 3 and bit length of 4096 were used as a representation of general structural fea-

tures of compounds. Calculations were done using Python scripts in the Anaconda environ-

ment. Models were built using scikit-learn [46] implementation of Random Forests Regressor

with grid optimization of the most important hyperparameters listed in Table 3. The R^2 on

Fig 3. The orientation of the best result of the consensus docking (see the first line of Table 3) at the SARS-CoV-2 S-protein (yellow)—

ACE2 receptor (green) interface. The insert shows the closest environment of the docked compound and the hydrogen bonding network.

https://doi.org/10.1371/journal.pone.0256834.g003

Table 2. ADMET properties of best results of docking in comparison to clinically tried drugs.

Property FlexX Vina ChemPLP Hyde consensus chlorquine remdesivir

Lipiński’s rules + + + + + + -

solubility soluble moderate moderate soluble soluble poor soluble

gastrointestinal absorption high high high high high high low

acute toxicity (LD50) 2.576 2.589 2.549 2.496 2.385 2.642 2.990

Human hepatotoxicity (H-HT) 0.828 0.838 0.744 0.664 0.788 0.822 0.822

drug induced liver injury (DILI) 0.812 0.806 0.712 0.802 0.868 0.468 0.785

ames mutagenicity 0.402 0.368 0.328 0.386 0.374 0.810 0.270

hERG blockers 0.314 0.318 0.399 0.232 0.230 0.882 0.532

https://doi.org/10.1371/journal.pone.0256834.t002
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the whole training set and Q^2 by five-fold cross-validation were used as metrics for learning

and prediction performance, respectively. Each of the considered docking scores modeled

delivered a separate hyperparameter set. The final models were validated by leave one out

cross-validation procedure.

Once mathematical models were created they were applied to the collection of 597780

structures comprising all variants of R2, i.e., all combinations of the phenyl ring decorated with

Table 3. Extents of the grid search for best hyperparameters of Random Forests Regressor models.

Hyperparameter name Values searched

min_samples_split 2, 4, 6, 8, 12, 16, 32, 64

min_samples_leaf 2, 4, 6, 8, 12, 16

max_features 8, 16, 32, 64, 128, 256, 512, 1024, 2048,4 096

https://doi.org/10.1371/journal.pone.0256834.t003

Fig 4. Components of structural fragments of compounds used in current studies.

https://doi.org/10.1371/journal.pone.0256834.g004
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one to five substituents listed in the last column of Fig 4 after removal of structures present in

the learning set. This collection was build using our own Python scripts in the Anaconda envi-

ronment [47].

ADMET

SwissADME program [48] implemented online [49] has been used for the assessment of

ADME properties and online implementation [50] of the PreADMET program [51] was used

for basic toxicology properties of all 1820 compounds in the training set. For the best results

collected in Fig 5 Lipiński’s rules, solubility, and gastrointestinal absorption has been taken

from the SwissADME. The toxicity of these compounds to humans (the last five entries

reported in Table 2) has been obtained using the online [52] ADMETlab platform [53].

Fig 5. Structure of the molecules with the best scores for individual docking and consensus ranking.

https://doi.org/10.1371/journal.pone.0256834.g005
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