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Abstract: In recent years, the preparation of flexible thermoelectric generators by screen printing
has attracted wide attention due to easy processing and high-volume production. In this work, we
propose an n-type Ag2Se/polymer polyvinylpyrrolidone (PVP) film based on screen printing and
investigate the effect of PVP on thermoelectric performance by varying the ratio of PVP. When the
content ratio of Ag2Se to PVP is 30:1, i.e., PI30, the fabricated PI30 film has the best thermoelectric
property. The maximum power factor (PF) of the PI30 is 4.3 µW·m−1·K−2, and conductivity reaches
81% of its initial value at 1500 bending cycles. Then, the film thermoelectric generator (F-TEG) fabri-
cated by PI30 is tested for practical application; the output voltage and the maximum output power
are 21.6 mV and 233.3 nW at the temperature difference of 40 K, respectively. This work demonstrates
that the use of PVP combined with screen printing to prepare F-TEG is a simple and rapid method,
which provides an efficient preparation solution for the development of environmentally friendly
and wearable flexible thermoelectric devices.

Keywords: Ag2Se; polyvinyl pyrrolidone; screen printing; composite films; thermoelectric generator

1. Introduction

Over the past decade, wearable consumer electronic devices such as wireless head-
phones, smart glasses, and smart watches have become increasingly popular in human
life. Although these devices have gradually decreased power consumption, they still
require battery power or charging after prolonged use [1–3]. Among many potential power
generation methods, thermoelectric generators (TEGs) are an ideal energy supply device.
They can directly convert the temperature difference (∆T) between the human body tem-
perature and the environment into electrical energy and require no maintenance [4,5]. The
conversion efficiency of TEGs is mainly determined by thermoelectric materials. The key
parameter describing the thermoelectric performance of materials is the figure of merit
ZT = S2σT/κ, where S, σ, κ and T are Seebeck coefficients, electrical conductivity, thermal
conductivity, and thermodynamic temperature. To achieve high ZT, TE materials should
have a high power factor (PF = S2σ) and low κ [6–9].

The traditional bulk TEG manufacturing process is expensive and has material
wastage, which typically involves many processes such as powder hot pressing, pol-
ishing, cutting, assembling, and joining the thermoelectric elements [10,11]. In contrast,
the film thermoelectric generators (F-TEGs) not only eliminate expensive processing steps
and can be fabricated to the desired size and shape, but also reduce material waste by
eliminating the additional cutting to fabricate TE legs. F-TEGs can be generally prepared
by sputtering [12,13], electrochemical deposition [14], inkjet printing [15,16], and screen
printing [17–21]. All of these methods are readily available for microfabrication, which
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provides opportunities for TEGs as a micro-dynamic source for electronics. Among them,
screen printing is an efficient and low-cost manufacturing technology with low processing
temperature. For instance, Ju et al. fabricated the Bi2Te3 and Sb2Te3 flexible TEG by screen
printing with an output voltage of 85 mV at ∆T of 50 K [17]. Liu et al. similarly used screen
printing to prepare an In2O3/ITO thermocouple that had an output voltage of 53.5 mV at a
thermal junction of 1270 ◦C [20]. Varghese et al. reported a screen-printed flexible and high-
performance Bi0.4Sb1.6Te3 p-type film with a voltage of 60 mV at ∆T of 80 K [21]. In general,
the complete TEG consists of p-type and n-type thermoelectric material modules, but
relatively little research has been completed on n-type materials due to ease of oxidization.
Many thermoelectric materials are being explored for power generation applications, such
as GeTe [22], PbTe [23], half-Heusler [24], and skutterudites [25]. The well-studied n-type
material of Bi2Te3 is brittle, and the element Te is rare and toxic, which is not favorable
for practical applications in wearable devices [17,26–28]. As an “electron crystal, phonon
liquid” n-type material, silver selenide (Ag2Se) is environmentally friendly and abundant,
with high electrical conductivity and low thermal conductivity at room temperature. It has
become an ideal Bi2Te3 replacement material and is the most promising n-type material in
recent years [29–33]. Mallick et al. initially prepared a flexible-folded TEG consisting of
13 thermocouples using screen printing with an output voltage of 181.4 mV at ∆T of 110 K,
where Ag-Se ink was used as n-type leg and PEDOT:PSS as the p-type leg. Later on, Ag-Se
ink was applied to 3D printing, three shapes of samples were prepared, and the output
voltage was 55 mV at 70 K [29–31]. To obtain n-type flexible thermoelectric devices with
better performance, some researches have been conducted on composite organic and inor-
ganic materials to make them flexible and to improve the thermoelectric properties of the
composites [34,35]. However, most conducting polymers are p-type, and n-type polymers
are largely unstable or do not perform well. In contrast, the insulating polymer is more
stable and can be applied to n-type TEGs. The insulating polymer polyvinylpyrrolidone
(PVP) has excellent film formation and adhesive properties, and its excellent physiological
inertness does not cause skin irritation, which allows it to be used as a binding agent
in printed films [36–40]. For example, Ankireddy et al. prepared films using PVP-K30
as a binding agent and evaluated the influence of ink composition consisting of carbon,
nickel, and silver on thermoelectric properties [37]. Ke et al. used PVP-K90 as the viscosity
regulator to obtain water-soluble AgNWs conductive inks with printability, which were
directly screen-printed on soft stretchable textiles to obtain good electrical conductivity [39].
For Ag2Se, as an inorganic thermoelectric material with good biocompatibility, there are
few reports of screen-printing method to prepare Ag2Se flexible wearable energy harvesters
easily and quickly in large areas. In addition, PVP as an addition of binder can significantly
affect the thermoelectric properties of TE films. Therefore, it is necessary to investigate
the carrier transport characteristics of Ag2Se composite film with PVP to optimize its
thermoelectric performance, which will give a promising solution for the preparation of
high-performance flexible thermoelectric films by batch screen-printing in the future.

In this work, we propose a simple method to prepare Ag2Se/PVP films based on
screen printing, and the effect of PVP on thermoelectric performance is investigated by
varying the ratio of Ag2Se to PVP. Then, the Ag2Se/PVP F-TEG is connected to the circuit
as a power source, with temperature difference and external load resistance changed
to test the output voltage and maximum output power. The thermoelectric materials
are manufactured directly into devices by the screen-printing process, which not only
eliminates material waste but also reduces the manufacturing cost compared to traditional
device fabrication methods.

2. Materials and Methods
2.1. Materials

Ethanol, ethylene glycol (EG), L-ascorbic acid, β-Cyclodextrin, selenium dioxide
(SeO2), and silver nitrate (AgNO3) were bought from Aladdin Industrial Corporation.
Polyvinyl pyrrolidone (PVP-K30, MW = 40,000) was purchased from Yatai Chemical Co.,
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Ltd. (Wuxi, China). Terpineol was bought from Xilong Science Co., Ltd (Shantou, China).
All reagents were used directly without purification.

2.2. Preparation of Ag2Se NRs and Ag2Se/PVP Film

All containers and tools were first ultrasonically cleaned. A total of 0.5 g SeO2 and
0.5 g β-cyclodextrin was magnetically stirred into 100mL deionized water. A total of 2 g
L-ascorbic acid was magnetically stirred into 100 mL deionized water, then slowly added
dropwise to the above-mixed solution. After stirring for about 4 h, the supernatant was
separated by centrifugation at 8500 rpm for 5 min and then washed twice using alternating
deionized water and ethanol. Then, it was dispersed in ethanol and left for 36 h until the
next experiment.

The Se nanorods (NRs) of the above solution were transferred into 10 mL EG and
then sonicated dispersion. According to the molar ratio of Ag and Se, a certain amount of
AgNO3 was magnetically stirred into 10 mL EG, and then slowly added dropwise to the Se
NRs solution. Additionally, an amount of L-ascorbic acid was added into 20 mL deionized
water and then slowly drop in the above-mixed dispersion. The molar ratio of L-ascorbic
acid:AgNO3 was 3:1. After continuous stirring for 4 h to completely finish the reaction, the
precipitates were collected by centrifugation at 8500 rpm for 5 min and washed twice with
alternating deionized water and ethanol. Finally, the Ag2Se NRs were obtained by drying
at 60 ◦C under nitrogen atmosphere.

A certain amount of PVP was dispersed and dissolved in 0.4 g terpineol, and 0.5 g
Ag2Se was dispersed in the above solution under sufficient stirring. The polyimide (PI)
substrate was ultrasonically cleaned to ensure its surface was free of impurities. After the
above mixture was screen-printed on PI substrate with a 200 mesh screen, it was heated
and cured at a constant temperature for 10 min to remove the terpineol in a nitrogen
environment. The screen printing and sintering process was repeated three times until
the mixture was used up. The effect of PVP content on the performance of films was
investigated by adjusting the PVP content to determine the content ratio of Ag2Se to PVP as
10:1, 20:1, and 30:1, and naming them PI10, PI20, and PI30, respectively. The films consisted
of 6 strips, each with a length of 40 mm× 5 mm and a spacing of 10 mm. The F-TEGs
used conductive silver adhesive to connect the legs to reduce additional resistance. The
manufacturing process and assisted sintering of the Ag2Se/PVP film using low-cost screen
printing are shown in Figure 1.
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Figure 1. Schematic of the manufacturing process of the Ag2Se/PVP film.

2.3. Measurement of Ag2Se NRs and F-TEG

The phase composition of the Ag2Se NRs was determined by X-ray diffraction (XRD,
DX-2700, Dandong, China). The surface morphology and thicknesses of these composite
films were observed by the field emission scanning electron microscope (FESEM, JSM-
7001F, Tokyo, Japan). Simultaneously, the energy spectrum analysis was measured by X-ray
energy dispersive spectroscopy (EDS). The Seebeck coefficient (S) and electrical resistivity
(ρ) were measured by the standard four-probe method in helium atmosphere (Linseis,
LSR-3, Selb, Germany), and the measurement error of S and ρ was about ±5%. The carrier
concentration (n) and mobility (µ) were measured by the Van der Pauw method in the
nitrogen atmosphere (Linseis, HCS, Selb, Germany).
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A test circuit was set up with the F-TEG as the power supply for measuring its output
performance. The hot side of the F-TEG obtained a variable high temperature through a
heating stage, while the cold side maintained a stable room temperature through a circulat-
ing water cooling device. The output voltage could be measured by changing the heating
temperature. The temperature was measured by a non-contact infrared thermometer.

3. Results and Discussion

The X-ray diffraction (XRD) of the prepared Ag2Se NRs is shown in Figure 2A. All
diffraction peaks can be indexed to Ag2Se (PDF#24-1041), which indicates Ag2Se NRs
produced no significant impurities. Additionally, it appears as the orthogonal phase β-
Ag2Se, which is the space point group P212121. The FESEM images of the surfaces of PI10,
PI20, and PI30 are shown in Figure 2B–D. The lengths of the Ag2Se NRs are greater than
4.5 µm, and the diameters are about 250 nm, which are nanorods. It can be seen that the
addition with different contents of PVP did not change the surface of these films because PVP
is an insulating polymer and does not react with Ag2Se NRs. The thicknesses of these films
are shown in Figure S1. The thicknesses are in the range of 100–110 µm, and the measured
thickness deviation is within 5 µm, which demonstrates the uniformity of screen printing.
The mapping of the elements C, O, S, Ag, and Se is shown in Figure 2E. Additionally, the
details of energy dispersive spectrum (EDS) analysis are shown in Figure S2. For PVP, it
is mainly composed of C, O, and N elements. The characteristic spectrum line of the O
element is very close to that of the N element, which makes the detected element O, while
for S, its content is minimal, which may come from EDS detection error. As the major
functional role of thermoelectric materials in the composite film, the analysis of Ag2Se is
the top priority. The element ratio analysis of the surface shows that the ratio of Ag to Se
is approximately 2:1, which agrees with the stoichiometric ratio. Additionally, the Ag2Se
NRs are uniformly distributed in the composite films. Although there is a large error in
calculating the element’s content by EDS, especially for the element with a lighter atomic
mass, the result reveals that the Ag2Se and PVP are mixed well in the composite film. In
short, the uniform composite film has been prepared well by the screen-printing method
and can be further used to fabricated a flexible TE generator.
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As shown in Figure 3, the Seebeck coefficient (S), electrical conductivity (σ), and
power factor (PF) of PI10, PI20, and PI30 films were tested to study the thermoelectric
properties from 300 K to 410 K. In Figure 3A, the negative value of the Seebeck coefficient
indicates that Ag2Se is an n-type TE material. These Seebeck coefficients of films also
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exhibit a similar tendency of changes, showing that the addition of PVP does not affect
the intrinsic conductivity type of the Ag2Se. Additionally, in the case of PI30, the Seebeck
coefficient has a sharp decrease from 58.5 µV·K−1 to 36.0 µV·K−1 from 390 K to 410 K,
which is due to the phase transition of Ag2Se from a low-temperature semiconductor
phase to a high-temperature superionic conductor phase near 407 K. In Figure 3B, the
electrical conductivities of these films maintain a rising trend with temperature due to
intrinsic property of semiconductor, such as the PI30 increases from 10.7 S·cm−1 at 300 K to
14.9 S·cm−1 at 410 K. In addition, the electrical conductivities of these films decrease with
the increase of PVP content because of the increase in insulation. After decreasing the PVP
content again, the dried films no longer adhered to the PI substrate and had extremely poor
flexibility, as shown in Figure S3. Under the simultaneous action of the Seebeck coefficient
and the electrical conductivity, PFs (PF = S2σ) of these films have a trend of increase with
the decrease of PVP content; as shown in Figure 3C, the PF of PI30 with the least PVP
content shows the best TE performance. At the same time, the PF of PI30 has a maximum
value of 4.3 µW·m−1·K−2 at 390 K, while its PF drops suddenly to 1.9 µW·m−1·K−2 at
410 K, which is due to phase transition of Ag2Se.
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To explain the variation of the Seebeck coefficient and the electrical conductivity
with temperature, the three films were tested for the Hall effect based on the Vanderbilt
method. The measured carrier concentration (n) and mobility (µ) change with tempera-
ture from 300 K to 410 K, as shown in Figure 4. Taking PI30 as an example, the carrier
concentration is 3.31 × 1018 cm−3 and the mobility is 17.81 cm2·V−1·S−1 at 300 K. When
the temperature rises from 400 K to 410 K, the carrier concentration suddenly increases
from 4.28 × 1018 cm−3 to 6.31 × 1018 cm−3 and mobility decreases from 18.21 cm2·V−1·S−1

to 14.36 cm2·V−1·S−1. The phase change of Ag2Se at 407 K causes changes in the carrier
concentration and mobility, which in turn lead to changes in the Seebeck coefficient and
electrical conductivity. The internal correlations are as follows [41]:
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S =
8ß2k2

B
3eh2 m∗T

(
ß

3n

)2/3
(1)

σ = neµ (2)

where kB is the Boltzmann constant, e is the electron quantity, h is the Planck constant,
and m* is the effective carrier mass. Below the phase transition temperature of 407 K, the
Ag2Se material shows intrinsic excitation with increasing temperature, resulting in a slowly
increasing trend of carrier concentration. The results are deduced from Equations (1) and (2):
the absolute value of the Seebeck coefficient decreases, and electrical conductivity increases
slowly. When the phase transition temperature is reached, since Ag2Se transforms from
the low-temperature semiconductor phase to the high-temperature superionic conductor
phase, the presence of two structures increases the disorder of the system. Compared to
the single structure, the scattering effect of carrier concentration is improved, and therefore,
the Seebeck coefficient is significantly reduced. At this time, structural transformation
and scattering cause a decrease in mobility, which has an impact on electrical conductivity,
but the increase in carrier concentration has a greater impact on electrical conductivity;
hence, electrical conductivity increases at this point. The change in carrier concentration
and mobility leads to an increase in electrical conductivity and a decrease in the Seebeck
coefficient, which ultimately affects the TE properties. In addition, although the thermal
conductivities of these composite films have not been measured due to the fact that the
thermal conductivities of the composite films with a tiny thermal capacitor can be neglected,
in practice, the enhancement of the scattering effect will also make the thermal conductivity
k (k = ke + kl; ke is electronic thermal conductivity, and kl is lattice thermal conductivity)
decrease due to the reduction of ke (ke = σLT = µneLT; L is Lorenz factor, µ is the mobility
ratio of carriers, n is the carrier concentration). At the same time, PVP, as an organic matter
with low thermal conductivity, will make the thermal conductivities of the composite films
lower than that of pure Ag2Se, which means PI10 will have the lowest thermal conductivity.
In a few words, the phenomenon demonstrates that the TE performance of the composite
films before the phase transition temperature can be kept stable, which is suitable for the
daily use of wearable devices.
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As the energy source for wearable devices, the flexibility of TEGs is also significant.
Therefore, the three films are tested for flexibility to further verify the adhesion and
film-forming properties of PVP, and the results are shown in Figure 5. The films were
bent repeatedly around an 8 mm diameter circular rod, and the internal resistance of
each module increases with the increase of bending times. After bending 1500 times, the
conductivity of PI10 was reduced to 93% of the initial state, PI20 to 86%, and PI30 to 81%,
which meant that the module with the higher PVP content had the best flexibility, and
therefore, the film with PVP had excellent bonding and film-forming properties. Moreover,
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PVP has excellent physiological inertness and biocompatibility, which has great potential in
the research of wearable flexible devices. In conclusion, screen-printing provides a solution
for preparing composites of multiple materials on different substrates, such as fabric, which
is more suitable for large volume wearable preparation.
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After flexibility testing, the feasibility of F-TEG as a wearable energy source was
verified by a series of F-TEG output performance tests (the circuit is shown in Figure S4).
By changing the temperature difference between the two ends of F-TEG, the output voltage
and output power under a certain temperature difference were tested; the results are shown
in Figure 6A,B. There is a linear relationship between temperature difference and voltage
in Figure 6A. When the temperature differences are 20 K and 40 K, the output voltages
of F-TEG are 11.1 mV and 21.6 mV, and the maximum output powers are 61.1 nW and
233.3 nW, respectively. The voltage Ul is calculated according to the following formula [42]:

Ul =

(
1 − Rin

Rin + Rl

)
× U0 (3)

where U0 is the open-circuit voltage of the F-TEG and Rin is the internal resistance of
the F-TEG. Therefore, under a certain temperature difference, the output voltage will
increase with the increase of the load resistance and eventually become infinitely close to
the open-circuit voltage. When the load resistance is equal to the internal resistance of the
F-TEG module at about 500 Ω, the maximum output power is obtained at this time. The
F-TEG power density Pd is 0.08 W·m−2 at a temperature difference of 40 K, which can be
calculated as follows:

Pd =
Pmax

N × S
(4)

where Pd is the power density, Pmax is the maximum output power, N is the number of
F-TEG strips, and S is the cross-sectional area. In Figure 6C, F-TEG wraps around the
arm with one side in direct contact with the skin and the other side isolated from the
skin by a bubble wrap. The temperature difference of about 4 K between the arm and the
environment generates a voltage of 1.7 mV (the temperature is measured with a non-contact
infrared thermometer). In Figure 6D, the same F-TEG is wrapped in a beaker containing
hot water, and a voltage of 7.3 mV is generated from a temperature difference of 15 K
between the upper (cold) and lower (hot) surfaces. The result indicates that screen-printed
Ag2Se films have great potential for the application of wearable devices.
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4. Conclusions

In conclusion, we reported a facile method for the preparation of Ag2Se/PVP film
based on screen printing with lower processing temperature and a simple handling process.
After Ag2Se was dispersed in the PVP terpineol solution, it was screen-printed on the
PI substrate and then heated to remove the terpineol. The PI30 had the largest PF of
4.3 µW·m−1·K−2, but its flexibility was the worst. Its conductivity reduced to 81% of the
initial value after bending 1500 times. On the contrary, PI10 had the best flexibility but the
smallest PF value. This is because PVP reduces conductivity while increasing the flexibility
of the film. F-TEG fabricated by PI30 films was connected to the test circuit as a power
supply; the output voltage and the maximum output power were 21.6 mV and 233.3 nW
at the temperature difference of 40 K, respectively. This work shows that PVP as a binder
combined with screen printing to prepare F-TEGs is a simple and fast method that can
provide ideas for preparing other material complexes on different substrates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11082042/s1, Supplementary Figure S1: The field emission scanning electron microscope
for PI10, PI20 and PI30 module thicknesses; Supplementary Figure S2: The energy dispersive
spectrum analysis of the PI30 modules; Supplementary Figure S3: The image of a dry TEG module
no longer adhering to the PI substrate; Supplementary Figure S4: The image of F-TEG output
performance measurement circuit.
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