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A B S T R A C T

Precise and fast diagnosis of COVID-19 cases play a vital role in early stage of medical treat-

ment and prevention. Automatic detection of COVID-19 cases using the chest X-ray images

and chest CT-scan images will be helpful to reduce the impact of this pandemic on the

human society. We have developed a novel FractalCovNet architecture using Fractal blocks

and U-Net for segmentation of chest CT-scan images to localize the lesion region. The same

FractalCovNet architecture is also used for classification of chest X-ray images using trans-

fer learning. We have compared the segmentation results using various model such as U-

Net, DenseUNet, Segnet, ResnetUNet, and FCN. We have also compared the classification

results with various models like ResNet5-, Xception, InceptionResNetV2, VGG-16 and Den-

seNet architectures. The proposed FractalCovNet model is able to predict the COVID-19

lesion with high F-measure and precision values compared to the other state-of-the-art

methods. Thus the proposed model can accurately predict the COVID-19 cases and discover

lesion regions in chest CTwithout the manual annotations of lesions for every suspected

individual. An easily-trained and high-performance deep learning model provides a fast

way to identify COVID-19 patients, which is beneficial to control the outbreak of SARS-II-

COV.
� 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 [1] is one of the major catastrophes in the history of

mankind. It is important that suspected cases must go on
with early diagnosis and detection so that they can recover

from this disease. COVID-19 is caused by SARS-II Corona

Virus [2] which was first discovered in China at late 2019.

The virus majorly transmits through surfaces, human -
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human contact and through aerosols and droplets. The major

impact of COVID-19 includes affecting the lungs with severe

pneumonia, suffocation from loss of oxygen and it is still

under research. There are few vaccines or drugs introduced

to prevent or to cure this disease [3,4]. But still there are

muted variants of corona virus are spreading across the globe

[5,6] the effectiveness of the vaccine is not predicted for this

modified virus strand [7]. So in this alarming pandemic situa-

tion it is our responsibility as individuals to be safe if any

symptoms such as cough, sneeze, fever is present. As there

is a probable transmission through aerosols, COVID-19 has

significantly high R0 factor.

We must be able to diagnose at earlier stage either through

blood test with Reverse Transcription Polymerase Chain Reac-

tion (RT-PCR) [8] or through antibody testing. A large crowd

cannot exploit all the tests like RT-PCR. This is a golden

method and its sensitivity and specificity is high according

to the research. Priority must be given for the people who

have all the symptoms. The main short-comes of RT-PCR kit

is there are very few in terms of resource, the cost is too high,

limited hospitals are having this facility. The time needed for

report generation is high which does not meet the isolation of

patients rapidly. It is important to find an alternative solu-

tions like antibody testing using CT-scan images by practi-

tioners to diagnose patients with COVID-19. Though they

reduce the exploit of resource, there is a high chance of error

and cost of testing also crucial.

In order to reduce cost and increase efficiency many solu-

tions were proposed that deals with classifying the chest X-

ray images and CT-scan images for diagnosing whether the

patient is COVID-19 positive or negative. It would be much

helpful if COVID-19 positive cases can be identified at the ear-

lier stage, so that isolating of the patients will be easy. These

action can limit the rapid spread of the disease. To perform

automatic detection of COVID-19 patients we have designed

a decision support tool which helps to automatically detect,

classify, and segment the lesion region of lungs of the

COVID-19 patients. In this work, we implemented a Fractal

COVID-19 Network (FractalCovNet) architecture for classifica-

tion of X-ray images and segmentation of the CT-scan images.

The FractalNet [9] was first proposed for classification of

the images. Here the fractal blocks are used to build a very

deep neural network for classification of the ImageNet data-

set. Later, it was adopted for segmentation models. In this
Fig. 1 – Framework of the proposed FractalCovNet for

classification and segmentation.
work, we propose a FractalCovNet using the Fractal modules.

The overall framework of the proposed model is shown in

Fig. 1. The proposed approach performs segmentation of CT-

scan images using the FractalCovNet architecture. We have

also used the FractalCovNet for classification of chest X-ray

images using transfer learning.

In this work, we have implemented various deep learning

models such as ResNet50, VGG16, Xception, DenseNet201 and

InceptionResNetV2 using transfer learning for classification

of chest X-ray images and their performances are compared

with our proposed model. The various segmentation models

such as FCN (Fully Convolutional Network), U-Net, DenseU-

Net, and ResNetUNet are implemented for segmentation of

CT-scan images and results are compared with the proposed

approach. Metrics such as precision, recall, F-measure, and

accuracy are used to evaluate the models. We hope using

the models that we created will help in fast and early diagno-

sis of COVID-19 patient and help in saving life. We are propos-

ing a cost and time effective measure for diagnosis as the

medical practitioners suffer due to the huge workload to save

each patient.

The organization of the paper is as follows: Section 2 dis-

cusses the related works. Section 3 describes the proposed

FractalCovNet architecture for segmentation of chest CT-

scan images and classification of the chest X-ray images. Sec-

tion 4 describes the various datasets used, evaluation metrics

along with the implementation details. Section 5 discusses

the results obtained using the proposed approach and other

pre-trained CNN models. Section 6 discusses the advantages

of proposed model over other models available in the litera-

ture. Section 7 presents the conclusion.

2. Related Works

The process of automating the identification of COVID-19

patient has started in the early March 2020. But there were

lesser number of test samples available for training the mod-

els. Some of the initial models developed for automatic detec-

tion of COVID-19 was designed using custom CNN models.

And others were developed using the pre-trained CNNmodels

like VGG-16 [10], ResNet [11], InceptionResnetV2 [12], etc. The

models developed for automatic detection of COVID-19 can be

classified into two types: Models developed using CT-scan

images and models developed using X-ray images. The pro-

cessing of X-ray images helps only in detection whether the

patient has COVID-19 or not. Whereas the processing of CT-

scan images can identify both whether the patient has

COVID-19 or not, and also determine the severity of the

infection.

There are many segmentation approaches proposed for

segmentation of medical images [13–15]. The U-Net [13] is

successfully used in many medical image segmentation

approaches. The adaptive context selection approach in [14]

uses an context selection method in U-Net for polyp segmen-

tation. It adds a context detection block to process the fea-

tures from down sampling block before giving as an input to

the up sampling block. The approach in [15] proposes a paral-

lel reverse attention network (PraNet) for segmentation of

polyp. The parallel reverse attention block provides attention
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at multiple stages of up sampling to increases the accuracy of

segmentation. In this work, we propose a variation of U-Net

which uses fractal blocks in the U-Net for segmentation of

chest CT-scan images. The features from the down sampling

block is passes through an intermediate up sampling and

down sampling blocks before provided as an input to the final

up sampling block.

The approach in [16] is one of the early COVID-19 classifi-

cation model developed using SqueezeNet to differentiate

COVID-19 affected and non affected CT-scan images. The

SqueezeNet consists of blocks called as ”Fire Module” which

is a simple bypass connection. All the features from parallel

fire modules are concatenated using global average pooling

layer. Dual-branch Combination Network (DCN) was devel-

oped in [17] to classify the COVID-19 and other diseases

infected patients. A lesion attention module was developed

to isolate the infected region from the CT-scan images.

COVID-19 pneumonia lesion segmentation network

(COPLE-Net) [18] was developed for noise robust lesion region

segmentation. It also uses a noise robust DICE loss for seg-

mentation, which helps to overcome the problem of limited

dataset images available for training the model. Inf-Net [19]

was developed to segment the COVID-19 lung infection auto-

matically from the chest CT-scan images. Inf-Net consist of

parallel partial decoder, global map, implicit and explicit edge

attention model, and semi-supervised segmentation frame-

work for segmenting the lung infected region of CT-scan

images.

A multi-tasking model [20] was proposed for classification

and segmentation of the CT-scan images. The automatic clas-

sification as well as segmentation tool identify lung region

affected by COVID-19 from the CT-scan images. Their pro-

posed work uses a common encoder to represent the disen-

tangled feature which support segmenting and classifying

the lesion regions. In [21] automatic segmentation for

COVID-19 was implemented using CT-scan images. Here the

large scene small object issue of medical images is resolved

by using the symmetric property of lungs and tissues, which

yield higher accuracy of segmenting the COVID-19 affected

regions.

The Multi-Scale Discriminative Network (MSD-Net) [22] is

designed to perform multi-class segmentation of the CT-

scan images. MSD-Net uses a Pyramid Convolutional Block

(PCB) which has varying size of kernels. It also has a Channel

Attention Block (CAB) used to focus on the area to be seg-

mented. A weakly supervised deep learning [23] framework

is developed to localize the lesion region of lung CT-scan

images using pre-trained U-Net model. The segmented

images is fed as an input to 3D deep neural network DeepCov-

Net for classification. The approach proposed in [24] uses

Residual block with U-Net for segmentation of CT-scan

images. Here the ground truth labels for multiple class in seg-

mentation is obtained from radiologists.

A deep learning based model is proposed for classification

of CT-scan images in [25] using GoogleNet InceptionV3 by

applying transfer learning. The approach proposed in [8] seg-

ment the region of infection using 3D-CNN model. The seg-

mented region is given as input to the pre-trained ResNet-

18 model for feature extraction which is used for classifica-

tion. Here the pre-trained CNN models are used only for clas-
sification, but we propose a model for segmentation of lesion

region from the CT scan images.

Another approach in [26] uses UNet++ architecture pro-

posed in [27] for medical image segmentation. The UNet++

architecture is similar to the U-Net [13], but here the encoder

and decoder are connected through nested, dense skip path-

ways. The UNet++ is proved to be efficient for various medical

image segmentation tasks. Another AI based system is pro-

posed for diagnosis of COVID-19 using UNet++ [28]. Here the

segmented image along with help of medical practitioners is

used to diagnosis the CT-scan of COVID-19 patients. The

interpretation of the results by medical purpose does not pro-

vide an automated system for diagnosis of COVID-19. We pro-

pose a novel architecture that uses fractal blocks in U-Net

architecture. This results in better segmentation of the lesion

region compared to basic U-Net based models.

The Deep COVID proposed in [29] uses various deep learn-

ing model by applying transfer learning to detect COVID-19

from X-ray images. They have trained various deep learning

models like ResNet (18 and 50), SqueezeNet and DenseNet-

121. The approach in [30,31] uses pre-trained Xception [32]

model for classification of COVID-19 chest X-ray images by

applying transfer learning. Another approach proposed in

[33] uses the various pre-trained CNN model for feature

extraction. A correlation based feature selection is applied

on the extracted features and a Bayesnet classifier is devel-

oped for classification. The proposed approach uses Frac-

talCovNet pre-trained on chest CT-scan images, this

provides better results as the model is pre-trained on medical

images rather than use of ImageNet dataset.

Computer Aided Diagnosis (CAD) [34] was developed to

detect the infection occurred by coronavirus using pre-

trained VGG-16 model. The diaphragm regions are removed

from the X-ray image. Then two different pre-processing

methods like histogram equalization and bilateral low pass

filter are used to generate a pseudo color image. Here remov-

ing diaphragm region improves the performance of the

model. The approach in [35] proposed a Bayesian-CNN for

classification of X-ray images with human intervention. This

model is dependent on human experts for accurate recogni-

tion of COVID-19.

In [36] a sequential CNN model is proposed for detecting

COVID-19 using chest X-ray images. The proposed model per-

forms better than the other pre-trained CNN models for chest

X-ray classification. In an another approach COVID-GAN [37]

is designed for generating synthetic chest X-ray (CXR) images.

Initially, they generated CXR image from Auxiliary Classifier

Generative Adversarial Network (ACGAN) model. The model

produces high accuracy of 95% for classification, but it also

includes the generated synthetic images. A custom COVID-

Net [38] model is developed for classification of chest X-ray

images of COVID-19 patients. The model is first pre-trained

using ImageNet dataset before fine tuning it for COVID-19

chest X-ray classification.

An Artificial Intelligence (AI) based model is proposed in

[39] for diagnosis of COVID-19 patients. Here the attention

region of the deep learning model is used to visualise the

effective representation of CT-scan images obtained from

COVID-19 patients. The AI system acts as an integrated sys-

tem with human expertise, which again requires time from



1028 b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 1 ( 2 0 2 1 ) 1 0 2 5 –1 0 3 8
the medical practitioners. Another approach in [40] proposes

Fractal model for feature extraction from CT-scan and X-ray

images for segmentation and classification. The fractal model

extracts the features and uses Eigen analysis for feature

selection and dimensionality reduction. These features are

then provided to the CNN model for segmentation and

classification.

Though there are many approaches proposed for detec-

tion of COVID-19 from the chest X-ray and CT-scan images.

Many approaches use CNN models pre-trained using Ima-

geNet dataset for detection of COVID-19. The ImageNet data-

set comprises of RGB images that belongs to wide variety of

images. The fine tuning of these pre-trained model with lar-

ger number of parameters using the CT or X-ray images

reduces the performance of the model. This is due to the

limited number of CT-scan and X-ray images available from

COVID-19 patients. Thus, we propose a custom Frac-

talCovNet architecture for classification and segmentation.

We have designed the FractalCovNet using U-Net along with

the fractal blocks in the architecture for classification of

chest X-ray images and segmentation of lesion in the CT-

scan images.

2.1. Other segmentation models

In addition to the proposed FractalCovNet model we have

implemented the following models for segmentation of CT-

scan images. The models are trained using transfer learning

and the results are compared with the proposed Frac-

talCovNet model for segmentation of CT-scan images.

2.1.1. Fully Convolutional Network (FCN):
This is a simple custom convolutional network built for the

segmentation of the CT-scan images obtained from COVID-

19 patients. The model is built using conv blocks and pooling

layer to extract the features. At the end of each stage, a

lambda layer is added with the linear activation. The linear

activated layer is used to transform the result for pixel wise

classification of the images. This model has disadvantages

due to the bias generated while training the models.

2.1.2. Segnet
The Segnet model consists of an encoder and decoder. The

encoder consists of a set of convolution blocks with batch

normalization layer used for feature extraction. The continu-

ous blocks of convolution and batch normalisation extracts

the normalized feature map. The decoder consists a set of

convolution blocks and batch normalization in a decreasing

order. The resultant feature set is send to output layer to

accurately detect the spots of infection. It compares the pixel

wise values to detect the lesions on the CT-scan images.

2.1.3. U-Net
U-Net [13] is a Fully Convolutional Network (FCN) architecture

proposed for segmentation of medical images. The U-Net

model uses symmetric architecture at the encoder and deco-

der. The features from the encoder are concatenated to the

decoder using skip connections instead of a sum. It consist

of three parts: the contracting/down sampling path, Bottle-

neck layer, the expanding/up sampling path. The contracting
path aims to extract the context from the input image to per-

form segmentation.

2.1.4. ResUNet
The ResUNet [24] model is constructed using residual blocks

[11] at the U-Net architecture. The residual blocks helps in

easier and fast computation of features by skipping certain

convolution blocks. The ResUNet consists of identity blocks

and convolution blocks. The identity block in the ResUNet

helps to maintain the image dimension and helps in skipping

part of the ResUNet architecture.

2.1.5. DenseUNet
The DenseUNet architecture proposed in [41] is divided into

two sections: down sampling and up sampling similar to U-

Net. But at each step of up sampling and down sampling a

dense block is used to process the input features. Then the

resultant feature map is concatenated and given as input to

the next stage after pooling. The dense block at each step fur-

ther increases the depth of the model which helps in better

segmentation of the input images.

2.2. Other classification models

The following pre-trainedmodels are trained for classification

of chest X-ray images using transfer learning. We have com-

pared the results obtained by the proposed FractalCovNet

architecture with the results obtained by the following pre-

trained CNN models.

2.2.1. VGGNet
The VGG [10] is a pre-trained Convolutional Neural Network

developed by Visual Geometry Group for solving the ImageNet

challenge. The model is trained on the ImageNet challenge

(ILSVRC) for classifying the images that belongs to 1000 class.

Here two architectures were proposed: VGG-16 which consists

of 16 layers and VGG-19 which consists of 19 layers. Both the

model consists of a stack of convolution and pooling layers. It

was shown that the VGG-16 model provides better classifica-

tion accuracy. Hence in our work we use the VGG-16 model by

extracting features from the final fully connected layers to

obtain a feature vector of size 4096.

2.2.2. ResNet
Increasing the number of layers in the deep learning models

have increased the performance of the models designed for

computer vision task. But, as we increase the number of lay-

ers, many difficulties arise while training the model like over-

fitting, vanishing and exploding gradient problem, etc. To

overcome these problems Residual Networks was proposed

to solve the ImageNet challenge in [11]. Different ResNet

architectures were proposed using 18, 34, 50, 101 and 152 lay-

ers. The ResNet-152 model provided best classification results

for the ImageNet challenge. In this work, we have chosen the

ResNet-50 model due to lesser amount of data available for

training.

2.2.3. InceptionResNetV2
The InceptionResnetV2 [12] proposes a deep learning archi-

tecture which uses a Inception module. The inceptionmodule
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has a number of parallel convolutions, the output obtained

from the convolutions are concatenated and given as input

to the next convolution module. There is a filter expansion

layer after every Inception block in the model which scales

up the dimensionality of the filter bank. The InceptionRes-

netV2 model consists of both the Inception module and the

residual blocks.

2.2.4. Xception
Xception [32] model is a deep convolutional neural network

architecture that uses depth-wise separable convolutions fol-

lowed by point-wise convolutions. The Xception (Extreme

Inception) is similar to the Inception module but the Incep-

tion modules are replaced by the depth-wise separable convo-

lutions. Every separable convolution layer in the architecture

is followed by batch normalization layer.

3. Proposed FractalCovNet architecture

We propose a novel FractalCovNet architecture for segmenta-

tion of CT-scan images and classification of X-ray images. It

enables automatic detection of the COVID-19 patients which

will help in early treatment of the COVID-19 patients. The

FractalCovNet consists of U-Net architecture with fractal

blocks. The architecture of the proposed FractalCovNet is

shown in Fig. 2. The architecture shows the various expand-

ing and contracting layers of the model. The FractalCovNet

is first trained for segmentation of CT-scan images. This

model is then fine tuned for classification of X-ray images

using transfer learning.

3.1. FractalCovNet for segmentation of chest CT-scan
images

Fractal network was first introduced in [9] for image classifi-

cation task. It was shown that the very deep neural networks

performwell in classification task, irrespective of the usage of

residual block. Hence we choose a variant of the basic fractal

network for our segmentation task. U-Net [13] was proposed

for segmentation of medical images which was found to be

successful in various medical image segmentation tasks.
Fig. 2 – The proposed architecture using fractal bl
It is also used in various image reconstruction tasks. In this

work, we propose a variant of U-Net model with fractal blocks

for segmentation of lesion regions from CT-scan images of

the COVID-19 patients.

A U-Net usually has two path of CNN layers for feature

extraction called as expanding path and contracting path.

The contracting path down samples the input image into

smaller dimensions. While the expanding path up samples

the output from the previous layer. The U-Net uses feature

concatenation from the contracting path to the expanding

path at each level of the model which helps in reconstruction

of the images. The contracting path reduces the feature

dimension size till the bottleneck layer of the model. The fea-

tures of the bottleneck layer are used by the expanding path

to construct the segmented output images. As the proposed

FractalCovNet has two paths for expansion and another two

paths for contraction, the architecture has the double U-

shape as shown in Fig. 2. The features from the first contract-

ing path flows to the final expanding path through the fractal

block.

Let I be the input image for the FractalCovNet model. The

input image is passed through a set of convolution layer P1 to

P5 in the first contracting path of the model as shown in Fig. 2.

Then the output is passed through the bottleneck layer P6.

The output of the bottleneck layer is passed through the

expanding path from P7 to P9. Again the output of the first

expanding path is passed through the second bottleneck layer

Q1. The output of the bottleneck layer Q1 is passed through

the contracting path Q2 to Q4. Q5 is the third bottleneck layer

of the model. The layers from Q6 to Q9 forms the final

expanding layer of the FractalCovNet architecture. The final

expanding path generates the segmented output image for

the given input image I. Features from the first contracting

layers is passed through two set of convolutions before reach-

ing the final expanding path.

The expanding paths enables precise localization com-

bined with extraction of contextual information. The U-Net

model combines the location information from the down

sampling path with the contextual information obtained

from the up sampling path. The localisation and context

information is obtained from the contracting and expanding
ocks and U-Net for segmenting lesion region.
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path of the model. In this work, each layer in the first con-

tracting path of the model is concatenated with features of

the expanding path. These features are processed by a convo-

lutional block and then concatenated with the features

obtained from an another down sampling path of the second

U-Net. For example we can see that the features from P5 is

concatenated from up sampling features from P6. These fea-

tures are processed by convolution block at P7 and provided

as input to P8 and also Q4. The features at Q4 again undergoes

the same process and given as input to Q6. This acts like a

fractal block, which processes the features at various levels

of convolution, thus enables the model to accurately deter-

mine the segmentation regions.

After the final convolution and pooling layer we have

applied sigmoid activation function to classify the pixel val-

ues and to detect the localization of lesion in the image pixel.

The output array with dark region deNotes 0’s and white

region represent the lesion region denoted by 1’s. The model

is trained using cross entropy error calculated for each pixel

in the segmented output image. The proposed FractalCovNet

model yields lower MAE and higher F-measure value com-

pared to the other deep learning models proposed in the

literature.

3.2. FractalCovNet for classification of chest X-ray images

The FractalCovNet architecture proposed in Section 3.1 is

adapted for classification of chest X-ray images of COVID-19

patients. We apply transfer learning on the FractalCovNet

architecture. Fig. 3 shows the architecture for the classifica-

tion of the chest X-ray images using the pre-trained Frac-

talCovNet model used for segmentation. The input chest X-

ray image is passed through the FractalCovNet and an

another set of convolution and pooling layers for extracting

the features. Let J be the input chest X-ray images for classi-

fication. The input is passed through the FractalCovNet model

F to obtain feature vector f1 and another set of convolution

and pooling layers denoted as G to extract the feature vector

f2. These features are concatenated and passed through fully

connected layers for classification of whether the given input

image belong to COVID-19 patients or other cases. The output

of the model is defined as:

ŷ ¼ FCðf1 � f2Þ ð1Þ
where � is the concatenation of the two vectors. We use cate-

gorical cross entropy loss function for training the model. The

categorical cross-entropy loss function is defined as
Fig. 3 – FractalCovNet architecture for classification.
loss ¼ �
XC

i¼1

yilogðŷiÞ ð2Þ

where C is the number of class and yi is the ground truth label

and ŷi is the predicted probability. As the FractalCovNet is

trained using slices of CT-scan images, it is not suitable for

extracting features of X-ray images. Hence we use transfer

learning on the FractalCovNet for fine tuning the model for

X-ray images. The layers of the FractalCovNet is trainable dur-

ing the training of classification model. The final fully con-

nected layer produces the final label whether the input

chest X-ray image is diagnosed with COVID-19 or not.

4. Experiments

4.1. Dataset

4.1.1. COVID-19 CT Dataset:
The CT-scan image requires manual annotation of the slices

for the CT-scan by radiologist for creating ground truth mask.

There are only limited number of datasets available publicly

for use. In this work, we use CT-scan image dataset available

in [42]. It consists of initially 100 slices of CT-scan images with

masks. Later, another 373 CT-scan images was added with

masks. Thus we have totally 473 CT-scan images with ground

truth mask for lesion region. As we were interested only in

segmentation of lesion region we chose only the CT-scan

images available with ground truth masks.

4.1.2. COVID-19 chest X-ray Dataset 1
Cohen et al. proposed a collection of X-ray and CT-scan

images [43] on 25th March 2020 which comprised of 100 chest

X-ray images of COVID-19 patients and 22 chest X-ray images

of other disease. Later the number of images in the dataset

was improved in [44] which consists of totally 422 images

which comprises of chest X-ray/ CT-scan images of patients

with different diseases like Acute Respiratory Distress Syn-

drome (ARDS), COVID-19, Middle East Respiratory Syndrome

(MERS), pneumonia, Severe Acute Respiratory Syndrome

(SARS) and several diseases related to lungs. Where the num-

ber of images with COVID-19 is maximum of 340 images. In

addition to the above data we have used normal chest X-ray

images from Kaggle repository [45] called ”Chest X-ray Images

(Pneumonia)”. It consists of totally 1583 normal chest X-ray

images and 4273 pneumonia images. We combined this data

with Cohen dataset [44] for classification of COVID-19 from

others.

4.1.3. COVID-19 chest X-ray Dataset 2 [46]:
This dataset is obtained from the Kaggle website [46]. It con-

sists of totally 5914 normal/pneumonia chest X-ray images

and it also consists of 164 chest X-ray images from COVID-

19 patients (6078 images in total) obtained from [47].

4.2. Evaluation Metrics

In this work, we use the accuracy, precision, recall, and F-

measure as the evaluation metrics to evaluate the perfor-

mance of classification of chest X-ray images. We have used

F-measure/ Dice coefficient, Precision, Recall and Mean Abso-
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lute Error (MAE) for evaluating the segmentation results of CT-

scan images.

4.2.1. Accuracy
Accuracy measures the number of instances correctly pre-

dicted over the total number of instances as in Eq. 3.

Accuracy ¼ TNþ TP
TNþ TPþ FNþ FP

ð3Þ
4.2.2. Precision
Precision calculates the ratio of number of sample correctly

predicted as positive to the total number of samples predicted

as positive as in Eq. 4.

Precision ¼ TP
TPþ FP

ð4Þ
4.2.3. Recall
Recall calculates the ratio of number of sample correctly pre-

dicted as positive to the total number of samples available in

that particular class as in Eq. 5.

Recall ¼ TP
TPþ FN

ð5Þ
Table 1 – Results for classification for the dataset COVID-19
chest X-ray Dataset 1.

Models ACC PRE REC F1

Xception 0.95 0.84 0.91 0.87
VGG16 0.95 0.85 0.86 0.85
ResNet50 0.96 0.90 0.87 0.88
DenseNet201 0.97 0.89 0.91 0.90
InceptionResnetV2 0.96 0.96 0.90 0.84
FractalCovNet 0.99 0.99 0.87 0.92
4.2.4. F-measure
F-measure is the weighted average of both the Precision and

Recall as om Eq. 6.

F�measure ¼ 2ðPrecision� RecallÞ
Precisionþ Recall

ð6Þ

Where TP, FP, TN and FN represent the number of True Posi-

tive, False Positive, True Negative and False Negative, respec-

tively. Given a test dataset, TP is the proportion of positive

(COVID-19) that are correctly labeled as COVID-19 by the

model; FP is the proportion of negative (OTHERS) that are mis-

labeled as positive (COVID-19); TN is the proportion of nega-

tive (OTHERS) that are correctly labeled as normal and FN is

the proportion of positive (COVID-19) that are mislabeled as

negative (normal) by the model.

4.2.5. Mean Absolute Error
The Mean Absolute Error measures the correctness of the pro-

posed FractalCovNet for segmentation by comparing the

ground truth masks with the segmented output images. The

MAE is calculated as:

MAE ¼ 1
M�N

XM

x¼1

XN

y¼1

Sðx; yÞ � Gðx; yÞ ð7Þ

where Sðx; yÞ is the value of the segmented image at position

x; y. Gðx; yÞ is the value of the ground truth mask at position

x; y. Here M and N are the dimension of the images.

4.3. Implementation Details

We have implemented the proposed FractalCovNet model for

classification and segmentation using Keras with Tensorflow

backend. All experiments were performed on Google Colabo-

ratory and Kaggle Kernels. We have used random initializa-

tion weights for all the models. The model is trained using
Adam optimizer with a learning rate of 1e-4. The batch size

and number of epochs were experimentally set to 16 and

100 respectively for all experiments.

For classification the ResNet, DenseNet, Incep-

tionResNetV3, and Xception models are used with transfer

learning. These models were pre-trained with ImageNet data-

set. The optimizer used for training the model is Adam opti-

mizer with a learning rate of 1e-4. The batch size and

number of epochs were experimentally set to 8 and 50 for

all experiments. The dataset used was randomly split into

two independent datasets with 60%, 20% and 20% for training,

testing, and validation respectively.

5. Results

In this section we discuss the results obtained for classifica-

tion of X-ray images and segmentation of lesion region from

the CT-scan images. We have analysed the results obtained

for classification and segmentation by plotting confusion

matrix and ROC curve.

5.1. Analysis of Classification results

Table 1 shows the accuracy, precision, recall and F-measure

obtained for the proposed FractalCovNet and the other pre-

trained CNN models for classification of chest X-ray images

from Dataset 1. Here ACC represents accuracy, PRE represents

precision, REC represents Recall and F1 represents F-measure.

Table 2 shows the results for chest X-ray Dataset 2. Table 3

shows the result obtained by training model using both chest

X-ray Dataset 1 and Dataset 2. From the results shown in the

table we can see that the proposed approach provides better

evaluation results than the other deep learning models avail-

able in the literature. Thus we can say that the proposed Frac-

talCovNet architecture provides better performance than the

other pre-trained CNN models.

Fig. 4 shows the confusion matrix for the models trained

using the proposed FractalCovNet and the pre-trained CNN

models like VGG-16, ResNet-50, InceptionResnetV2, Xception

and DenseNet-201 using only the test set of the images.

Fig. 4a and 4b shows the confusion matrix of InceptionRes-

netV2 and Xception, there is a larger number of false positive

but no false negative. Fig. 4c, 4d and 4e shows the confusion

matrices of DenseNet-201, VGG-16 and ResNet-50 respec-

tively. It is seen that there are few number of false negatives

compared to the false positives. Fig. 4f shows the confusion

matrix obtained for the proposed FractalCovNet. It is seen



Table 2 – Results for classification for the dataset COVID-19
chest X-ray Dataset 2.

Models ACC PRE REC F1

Xception 0.99 0.97 0.96 0.96
ResNet50 0.97 0.98 0.82 0.92
InceptionResnetV2 0.98 0.98 0.91 0.94
DenseNet201 0.99 0.97 0.95 0.96
VGG16 0.98 0.95 0.96 0.96
FractalCovNet 0.99 0.99 0.97 0.98

Table 3 – Results for classification for the dataset COVID-19
chest X-ray Dataset 1 and Dataset 2.

Models ACC PRE REC F1

Xception 0.92 0.93 0.88 0.89
ResNet50 0.94 0.89 0.87 0.87
DenseNet201 0.96 0.89 0.86 0.85
InceptionResnetV2 0.95 0.93 0.89 0.89
VGG16 0.87 0.84 0.75 0.82
FractalCovNet 0.98 0.88 0.94 0.92

Fig. 4 – Confusion matrix of Classification using feat

Fig. 5 – Precision-Recall curve, ROC Curve, Plot of training accur

FractalCovNet and Resnet model.
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that there is only one false negative compared to the false

positive, which helps in containment of the COVID-19 spread.

Fig. 5a and 5b shows the Precision-Recall curve and ROC

curve plotted for chest X-ray images from Dataset 1 for Frac-

talCovNet and other pre-trained CNN models like ResNet,

InceptionResnetV2, VGG, Xception and DenseNet. It is seen

that the precision of the proposed FractalCovNet is better

than the other pre-trained CNN models. Fig. 5c and 5d shows

the plot of training accuracy and loss for Dataset 1. The plot

shows that the training loss and accuracy of FractalCovNet

is better compared to ResNet model.

Fig. 6a shows the precision curve plot for the proposed

FractalCovNet compared to the other pre-trained models like

ResNet, InceptionResnetV2, VGG, Xception and DenseNet

using chest X-ray images from Dataset 2. It is seen that the

proposed FractalCovNet provides better precision and recall

compared to the other pre-trained CNN models. Fig. 6b shows

plot of ROC curves for chest X-ray images from Dataset 2.

Fig. 6c and 6d shows the plot of accuracy and loss for chest

X-ray images from Dataset 2. It is seen that the proposed Frac-

talCovNet model converges faster than the other pre-trained

models used for classification.
ures extracted from different pre-trained models.

acy and loss for chest X-ray Dataset 1 using proposed



Fig. 6 – Precision-Recall curve, ROC Curve, Plot of training accuracy and loss for chest X-ray Dataset 2 using proposed

FractalCovNet and Resnet model.
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5.2. Analysis of Segmentation results

Table 4 shows the results obtained for segmentation using

various segmentation models. It shows the MAE, precision

and recall scores obtained for the segmentation. It is seen

that the proposed FractalCovNet provides better results com-

pared to the other segmentation models available in the liter-

ature. The FCN model provides the lowest results compared

to the other models. It can also be seen that the ResNetUNet

model provides better results compared to the U-Net model,

thus the residual blocks are useful than the model developed

using only the U-Net architecture.

Fig. 7a and 7b shows the accuracy and the loss values gen-

erated while training the segmentation models for segmenta-

tion of lesion region from CT-scan images. It is seen that the

proposed FractalCovNet model converges faster compared to

the other models.

Fig. 7c and 7d shows the F-Measure and Precision-Recall

curve plotted for segmentation using the various models.

The F-Measure is calculated for segmentation by comparing
Table 4 – Comparison of results for segmentation of chest
CT-scan images.

Models MAE PRE REC F1

FCN 0.477 0.498 0.698 0.377
Segnet 0.180 0.621 0.720 0.619
U-Net 0.076 0.768 0.630 0.661
DenseUNet 0.074 0.794 0.646 0.703
ResNetUNet 0.074 0.767 0.685 0.712
FractalCovNet 0.064 0.804 0.697 0.745

Fig. 7 – Training Accuracy and Loss for Segmentation. F-mea
the segmented results generated by models with the ground

truth images. The segmented images shows that the proposed

FractalCovNet model performs better segmentation than the

othermodels in the literature. The FCN is very poor at segmen-

tation whereas the U-Net, DenseUNet, and ResNetUNet pro-

vides better segmentation compared to the FCN model.

The segmentation results for the sample images are

shown in Fig. 8. The figures shows 6 sample CT-scan images

with various levels of infection. It is seen that the proposed

FractalCovNet provides better segmentation results and the

segmentation is more similar to the ground truth mask

region. The ResNetUNet model provides better results com-

pared to the basic FCN and SegNet models. The ResNetUNet

model provides better segmented image but not as good com-

pared to the segmented image provided by the FractalCovNet

model.

6. Discussion

6.1. Comparison with other Segmentation models

Table 5 shows the results of the various approaches proposed

for COVID-19 CT-scan image segmentation and classification.

Few approaches has been propose to use the pre-trained

CNN models for classification of CT-scan images. The

approach in [25] uses pre-trained GoogLeNet and the

approach in [48] uses pre-trained ResNet50 for classification

of CT-scan images. In this work, we have proposed a model

for only segmenting the lesion region from CT-scan images.

Another AI based approach is proposed in [39] uses CNN for

diagnosis of COVID-19 patients, it requires intervention by

medical experts. But in our approach we propose an auto-
sure curve and Precision-Recall curve for segmentation.



Fig. 8 – Results obtained for various segmentation methods.
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mated FractalCovNet architecture for segmentation of lesion

region from CT-scan images of COVID-19 patients.

The approach proposed in [26,28] uses UNet++ architecture

for segmentation and diagnosis of CT-scan images of COVID-

19 patients. The UNet++ [26] uses only around 100 images for

training and testing, it achieves accuracy of 96% per patient.

The approach in [28] uses UNet + CNN with AI assisted model

for diagnosis of COVID-19 patients using CT-scan images. In

the proposed approach, we perform segmentation of lesion

region which produces a F-measure of 74.5%. Thus the U-

Net based FractalCovNet architecture provides better results

compared to the other U-Net based approaches.

The COVID-CT-Seg segmentation model in [21] uses data

augmentation and performs 3D segmentation to achieve dice

coefficient of 78.3%. But in our proposed approach we have

used 2D-segmentation without any augmentation. Thus the

proposed approach performs well compared to the approach

used in [21]. The Inf-Net [19] uses reverse attention model

with parallel partial decoder. It uses semi-supervised algo-

rithm for segmentation of the lesion to produce MAE error

of 0.64. Without the semi-supervised training algorithm it

produces an MAE of only 0.082, which is less than our pro-
posed approach. The weakly supervised approach DeCovNet

[23] achieves hit rate of 65.7% for segmentation. But the pro-

posed approach provides F-measure of 74.5% which is better

than the DeCovNet model.

The approach in [8] uses segmentation and provides seg-

mentation region for classification, it produces an accuracy

of 86.7% for the classificationmodel. The approach in [40] pro-

duces segmentation accuracy of 70% for CT-scan images. Our

approach produces precision socre of 80.4% for pixel-wise

segmentation thus it will be able to diagnose COVID-19 with

greater accuracy than the other existing approaches. The

multi-tasking approach in MSD [22] produces dice coefficient

of 74.22% but the proposed approach provides multi-tasking

and produces dice coefficient of 74.5% and precision of

80.4%. Thus the proposed approach provides better segmen-

tation results for segmentation of CT-scan images compared

to the other state-of-the-art approaches.

6.2. Comparison with other Classification models

Table 6 shows the results for the various approaches proposed

for COVID-19 X-ray image classification. There are many



Table 5 – Comparison of various approaches to COVID-19 CT-scan image segmentation and classification.

Methods Task Results Dataset

GoogleNet InceptionV3 [25] Classification Accuracy - 79.3%
Specificity - 83%
Sensitivity - 67%

COVID-19 and
Viral Pneumonia:1065

ResNet + Attention [8] Segmentation and
classification

Accuracy - 86.7% COVID-19:219
Influenza-A:224
Normal:175

MSD-Net [22] Segmentation Dice co-efficient - 74.22% COVID-19:219
Influenza-A:224
Normal:175

AI model [39] Segmentation and
classification

Specificity - 96.36%
Sensitivity - 80.09%

COVID-19:313
others:229

U-Net++ [26] Segmentation and
classification

Per patient result:
Accuracy-96%
Specificity - 94%
Sensitivity - 98%

COVID-19:51
others:55

U-Net++ + CNN [28] Segmentation and
classification

Specificity - 92.2% Sensitivity - 97.4% COVID-19:723
others:413

DRENet
ResNet-50 + FPN [48]

Segmentation and
classification

Segmentation:
Sensitivity-96%
Precision-79%

COVID-19:88
Bacterial Pneumonia:100
Normal:86

DNN + fractal [40] Segmentation and
classification

Segmentation:
Accuracy:70%
Classification:
Accuracy: 83.84%

COVID-19: 100

Inf-Net [19] Segmentation MAE: 0.082 COVID-19: 100
DeCoVNet [23] Segmentation and

classification
Segmentation–Hit rate:65.7%
Classification:
Accuracy: 90.1%

COVID-19: 131

ResidualAtt U-Net [24] Segmentation multi-class Accuracy-79%
Precision: 82%

Covid-19: 110

COVID-CT-Seg [21] Segmentation Dice co-efficient - 78.3% COVID-19: 201
FractalCovNet Segmentation F-measure (dice coefficient) - 74.5%
Precision-80.4%
MAE-0.064 COVID-19:349
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approaches proposed for classification chest X-ray of COVID-

19 patients images using basic machine learning and deep

learning approaches.

The approaches in [49,52,35,55] uses pre-trained ResNet

model for classification of chest X-ray images of COVID-19

and non COVID-19 patients. The approach in [52] uses trans-

fer learning of ResNet50 model and approach in [55] uses

ResNet-101 for classification of chest X-ray images. The

approach in [35] uses Bayesian model with ResNet50 model

for classification. The approach in [33] uses several pre-

trained CNN models and uses feature selection for choosing

the features and performs classification. The approach in

[31,30] uses Xception architecture and for classification of

chest X-ray images.

The approach in [34,53] uses VGG-16 with transfer learning

for classification of chest X-ray images. It is seen that the use

of ResNet pre-trained model provides better accuracy when

compared to the other approaches. But the proposed

approach applies transfer learning on the FractalCovNet

architecture for classification of the X-ray images. Table 6

shows that the proposed approach provides better results

compared to the models that uses pre-trained CNN using

transfer learning for classification of X-ray images. The
OptiDCNN [56] uses Biogeography-Based optimisation for

training the classification model, it produces an accuracy of

99.16%. But our proposed model uses Adam optimizer for

training the model and provides an accuracy of 99.8% which

proves the effectiveness of the proposed FractalCovNet

architecture.

The lightweight architecture proposed in [50] uses spatial

pyramid pooling along with convolution layers for developing

a classification model. It provides an accuracy of 94.6% which

is lower compared to our proposed approach. Another light-

weight module [51] uses capsule module for classification of

chest X-ray images and produces an accuracy of 95.7%. A cus-

tom CNN model is developed for classification of X-ray

images in [36], it produces an accuracy of 97.4%. The light

weight models trade-off accuracy for the model complexity.

But we need more accurate model for diagnosis of the

COVID-19 disease for the containment of the disease. The

proposed model provides higher accuracy than the other

state-of-the-art approaches. Hence the proposed approach

will help in timely diagnosis of the disease.

The Fractal based network [40] produces an accuracy of

93.2% for classification of X-ray images into COVID or non-

COVID patients. But the proposed approach using Fractal



Table 6 – Comparison of various approaches to COVID-19 chest X-ray image classification.

Methods Task Results Dataset

CAAD [49] COVID-19 or others Accuracy-78.57% COVID-19:599
Others-2107

CoroNet [31] 4 class classification Accuracy-89.60% COVID-19:290
Pneumonia bacterial:660
pneumonia viral:931
normal:1203

Bayesian ResNet50v2 [35] COVID-19 or other Accuracy-89.82% Normal: 1583
Bacterial Pneumonia: 2786
Viral Pneumonia: 1504
COVID-19: 68

CNN + Bayesnet [33] COVID-19 or others Accuracy-91.6% COVID-19:453
Others:497

DNN + fractal [40] COVID-19 or others Accuracy-93.2% COVID-19:342
Others:341

COVID-Net [38] COVID-19, Pneumonia or Normal Accuracy-93.3% COVID-19: 266
Normal:8066
Pneumonia: 5538

SPP-COVID-19 [50] 4 class classification Accuracy-94.60% COVID-19:219
Others:2686

Capsule Networks [51] COVID-19 or others Accuracy-95.7% COVID-19: 266
Normal:8066
Pneumonia: 5538

ResNet-50 [52] COVID-19 or normal Accuracy - 96.1% COVID-19:341
Normal:2800

Xception [30] COVID-19 or others Accuracy-97.40% COVID-19–127
Pneumonia-500
Others-500

CNN [36] COVID-19 or others Accuracy-97.56% COVID-19:165
Normal:497

nCOVnet [53] COVID-19, Pneumonia or others Sensitivity-97.62%
Specificity-78.57%

COVID-19:42
Others:42

DenseNet-121 [29] COVID-19 or other Sensitivity-98%
Specificity-75.1%

COVID-19: 184
Others:5000

DarkNet [54] COVID-19 or others Accuracy-98.08% COVID-19–127
Pneumonia-500
Others-500

VGG-16 [34] COVID-19 or other Accuracy-98.1% COVID-19: 415
Others:8059

ResNet101 [55] COVID-19, pneumonia, bacterial and other virus Accuracy-98.93% COVID-19:250
pneumonia, bacterial and others: 1115

OptiDCNN [56] COVID-19 or others Accuracy-99.16% COVID-19:184
Others:5000

Robust DL [57] COVID-19 or others Accuracy-99.6% COVID-19:659
Others:6225

FractalCovNet COVID-19 or others Accuracy-99.8% COVID-19:458
Others:5914
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blocks provides an accuracy of 99.8% for classification of chest

X-ray images. The approach in [57] uses Darknet-53 model for

classification of chest X-ray images. But it also uses the exper-

tise of medical representative for the classification model,

which is very difficult due to the pandemic. The proposed

approach provides better results without intervention of

human experts. Thus the proposed approach provides better

results than the other state-of-the-art approaches for classifi-

cation of chest X-ray images.

7. Conclusion

In this paper, we have proposed a novel FractalCovNet for

classification and segmentation of chest X-ray images and

CT-scan images respectively. The classification of chest X-

ray images will help in faster diagnosis of the disease which

in turn helps in early diagnosis and containment of the

COVID-19 disease in the patients. The segmentation of the

chest CT-scan images helps in identifying the percentage of

infection which will help to provide timely medical support

for the patients. The FractalCovNet is model adapted from

the U-Net architecture for segmentation. The U-Net based

segmentation have provided promising results of segmenta-

tion of CT-scan images of COVID-19 patients. The Frac-

talCovNet proposed in this work is used for both

classification and segmentation. The proposed approach pro-

vides an accuracy of 99% for classification which is better

than the other state-of-the-art approaches. The segmentation

model provides MAE of 0.064 and F-measure of 74.5% which is

better than the other existing approaches proposed for seg-

mentation of CT-scan images.
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