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Abstract: With many countries experiencing a resurgence in COVID-19 cases, it is important to
forecast disease trends to enable effective planning and implementation of control measures. This
study aims to develop Seasonal Autoregressive Integrated Moving Average (SARIMA) models using
593 data points and smoothened case and covariate time-series data to generate a 28-day forecast of
COVID-19 case trends during the third wave in Malaysia. SARIMA models were developed using
COVID-19 case data sourced from the Ministry of Health Malaysia’s official website. Model training
and validation was conducted from 22 January 2020 to 5 September 2021 using daily COVID-19
case data. The SARIMA model with the lowest root mean square error (RMSE), mean absolute
percentage error (MAE) and Bayesian information criterion (BIC) was selected to generate forecasts
from 6 September to 3 October 2021. The best SARIMA model with a RMSE = 73.374, MAE = 39.716
and BIC = 8.656 showed a downward trend of COVID-19 cases during the forecast period, wherein
the observed daily cases were within the forecast range. The majority (89%) of the difference between
the forecasted and observed values was well within a deviation range of 25%. Based on this work,
we conclude that SARIMA models developed in this paper using 593 data points and smoothened
data and sensitive covariates can generate accurate forecast of COVID-19 case trends.

Keywords: COVID-19; forecast; ARIMA; Malaysia

1. Introduction

The novel coronavirus, also known as COVID-19, was first detected in Wuhan, China
on 31 December 2019. Within a short period, this virus has spread globally affecting many
countries worldwide [1,2]. As a result, the World Health Organization (WHO) declared
COVID-19 a Public Health Emergency of International Concern (PHEIC) on 30 January
2020, and subsequently declared it a pandemic on 11 March 2020 [2]. Since then, many
countries globally have implemented several non-pharmaceutical interventions (NPIs)
to contain the spread of COVID-19 and control the outbreak. However, despite these
measures, there have been reports of resurgence of cases resulting in recurrent waves of
COVID-19 infection worldwide [3–6].

Similarly, Malaysia reported its first wave of COVID-19 infection from 25 January to
16 February 2020 involving 22 cases, of which the majority were imported cases from China.
Following this, the second wave occurred from 27 February to 19 September 2020 involving
10,167 cases. Currently, Malaysia is experiencing a resurgence with the third wave, which
began on 20 September 2020 [7,8]. As of 3 October 2021, Malaysia has reported 2,277,565
(7% per total population) positive cases with 26,212 deaths, with a 7-day incidence rate of
34.9 per 100,000 populations [9]. In view of COVID-19 being a novel disease with limited
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baseline data and uncertain and exponential case trends, forecasting this disease will assist
health authorities in planning and implementing outbreak control strategies efficiently and
effectively. Hence, the modeling of COVID-19 case trends has been widely explored and
adopted as an approach to assist in controlling infectious disease outbreaks [10,11].

Several studies have modeled COVID-19 case trends to guide decision making on
the management and control of the pandemic [12]. In addition, forecasting case trends
has been able to function as an early warning system for authorities to react by instituting
appropriate NPI’s such as the movement control order (MCO), use of face masks, hand
hygiene practice, and physical distancing to prevent disease outbreaks [13,14]. Compart-
mental models (e.g., the SEIR or Susceptible-Exposed-Infected-Removed and the SIR or
Susceptible-Infected-Removed epidemic models) have been used to forecast COVID-19 case
trends globally; however, these models require complex analysis, can be time consuming to
develop, and require a wide range of parameters on the disease transmission dynamics for
the model development [15–18].

To address these challenges, where disease parameters are not available, especially for
novel diseases like COVID-19, time-series models such as the Auto-Regressive Integrated
Moving Average (ARIMA) or Seasonal ARIMA (SARIMA) models can be used as suitable
modeling methods that are relatively simple to develop and are able to produce forecasts
with a single time-series dataset [19]. ARIMA is a prediction model used for time-series
analysis and forecasting based on temporally evolving data where the observations of well-
defined attributes are obtained through repeated measurements over time [20]. Whereas
SARIMA specifically describe the seasonal models. Due to this, ARIMA models have
been frequently used for modeling infectious diseases such as Hepatitis A, Severe Acute
Respiratory Syndrome (SARS) and Dengue fever [21,22]. In addition, several recent studies
have developed ARIMA and SARIMA models to forecast COVID-19 case trends in India,
Sweden, Italy, Spain, France and Saudi Arabia [19,23–27], wherein these studies have
shown that by using ARIMA and SARIMA models, forecasts of novel diseases such as
COVID-19 can be generated accurately [23–27].

In Malaysia, ARIMA models were developed to forecast daily COVID-19 case trends
during the second wave from 18 April to 1 May 2020 [28]. Being a novel disease, the data
points available to develop ARIMA models were limited. However, limited time-series data
were able to forecast the COVID-19 case trends reasonably well using ARIMA models [28].
Evidence in literature suggests that a minimum of 50 data points is required for developing
ARIMA models. However, it is universally agreed that more data points would generally
improve the model accuracy [29]. Previous work on ARIMA modeling in Malaysia was able
to generate a 14-day forecast during the first phase of movement control order (MCO) [28].
To expand from this previous work, the availability of more data points would be important
in improving the ARIMA model forecast accuracy.

While time-series models are simple to develop and can generate accurate fore-
casts, few studies to date have forecasted COVID-19 case trends using these models in
Malaysia [28,30]. Therefore, this study aims to develop SARIMA models using more data
points with appropriate covariates and smoothening strategies to provide a 28-day forecast
during the third wave of COVID-19 in Malaysia.

2. Materials and Methods
2.1. Data Source

National- and state-level COVID-19 daily cases from 22 January 2020 to 5 September 2021
(593 data points) were sourced from the Ministry of Health (MOH) Malaysia official website
(http://covid-19.moh.gov.my/ (accessed on 1 November 2021)) [31].

2.2. Data Analysis

Statistical Package for the Social Sciences (SPSS) version 26.0 (IBM Corp. Released
2019. IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY, USA: IBM Corp)
was used to develop, train and validate the time-series (SARIMA and ARIMA) models.

http://covid-19.moh.gov.my/
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Time-series models with a Ljung Box test (18) with a non-significant p-value, the lowest
Bayesian information criterion (BIC), the lowest root mean square error (RMSE) and lowest
mean absolute error (MAE) were selected to generate forecasts of COVID-19 cases for
a duration of 28 days (6 September 2021 to 3 October 2021). The Augmented Dicky
Fuller (ADF) test was performed in R programming software version 4.0.3 to confirm data
stationarity, wherein p values < 0.05 indicate that the data are stationary [32]. In addition,
the accuracy of the 28-day forecast was analyzed by calculating the deviation index based
on the formula below:

Accuracy = ∑
(7 − day MA of daily observed cases on day t − Model forecast on day t)

Model forecast on day t
× 100% (1)

where the summation extends over all 28 days from the beginning until the end of the
validation period, and the 7-day moving average (MA) stands for the 7-day moving average
of daily cases based on a window centered around each day t. Prior to analysis, the case data
were validated with other data sets, such as COVID-19 daily and ICU admission, and deaths
by performing a correlation and cross-correlation analysis. The case data were significantly
correlated with COVID-19 daily admission, ICU admission and deaths with the Spearman’s
correlation coefficient ranging from 0.920 to 0.945. The cross-correlation findings indicated
that positive significant correlations were present at lag 0, which remained significant with
subsequent lags. This justifies the validity of the case data used in this study.

2.3. Model Development

The model development of SARIMA consists of two stages, namely, parameters
estimation and model identification. The first stage was to estimate the non-seasonal
(p,d,q) and seasonal (P,D,Q) parameters, where p refers to the order of autoregressive (AR)
component, d refers to the degree of differencing of the original time series and q refers to
the order of the MA component. These were determined by the autocorrelation function
(ACF) and partial autocorrelation function (PACF). In the parameter estimation stage,
the unknown coefficients corresponding to the AR and MA components of the ARIMA
model were estimated by implementing a multivariate regression analysis [23]. All data
were transformed into a time-series format following which, due to high degree of data
variability, seven-day moving averages were estimated. This assisted the identification of
true case trends and removed noise from the data set. Subsequently, the data were checked
and confirmed for stationarity using the ADF test. The ACF and PACF residuals were
visually examined to identify the existence of seasonality of the time-series data, wherein a
significant spike was observed at lag 7 suggesting a 7-day seasonal AR component.

In the model identification stage, independent and dependent variables were used
in several combinations in order to identify the best SARIMA model. The independent
variable (covariate) used in the model identification was the state-level COVID-19 daily
case data. We used case data from the state of Selangor as the covariate. The covariate
was found to have no evidence of multicollinearity by using the variance inflation factor
(VIF) test [33]. The dependent variable used was the 7-day moving average for the national
daily COVID-19 cases. A 7-day moving average was used because the daily COVID-19
cases were found to show a high degree of variability (noise) and skewness, determined
by estimating the variance and the test of normality, respectively. To reduce noise and
skewness, the data were averaged on a moving window using a 7-day moving average
smoother (Figure A1) [28]. Following using a 7-day moving average, the variance reduced
from 28,627,924 to 26,952,897. Subsequently, three models were identified, and the best
model was selected based on Ljung Box test with a non-significant p-value, the lowest
RMSE, lowest BIC and lowest MAE.

2.4. Model Training, Validation and Forecast Generation

A total of 415 data points were used for model training (22 January 2020 to 11 March 2021)
and 178 data points were used for validation (12 March 2021 to 5 September 2021). This
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corresponds to a 70–30% partition of total data points for model training and validation,
which is suggested as the optimal ratio in the literature [19]. During the model training
and validation periods, the model fit was ascertained by comparing the estimated case
numbers with observed COVID-19 case numbers as well as ensuring observed cases are
within the 95% confidence interval (CI) of the model forecasts. The best fitting SARIMA
model was selected based on the lowest MAE, RMSE and BIC values, which were then
used to generate a 28-day forecast (6 September 2021 to 3 October 2021) of daily COVID-19
case numbers. The forecasted case numbers were then compared to the observed case
numbers during the forecast period visually as well as by estimating the deviation index.

3. Results

This study developed three different models arising from combinations of (p,d,q)
(P,D,Q) with the inclusion or exclusion of seasonal component and the independent co-
variate. The three models used are shown in Table 1. The SARIMA model (1,2,1) (2,0,0)
with covariates of daily COVID-19 cases in Selangor (7-day moving average) was selected
as the best fit model with MAE = 39.716, BIC = 8.656 and RMSE = 73.374. The generated
ACF and PACF plots for the original time-series ARIMA model show that the correla-
tions gradually trail off as a function of the lag, thus indicating a non-stationary series as
shown in (Figure A2). Due to the non-stationary time-series data (ADF test statistic = −0.84,
p value > 0.05), a two-degree differencing was applied to transform the series to stationarity
as shown in Figure 1. Subsequently, the ADF test statistic was applied to the differenced
time series and yielded a value of −6.216 with p-value < 0.05, therefore confirming station-
arity. In addition, the model was validated using the Ljung-Box Q test, which suggested
that the ACF for the residuals at different lag times was not statistically different from zero
(the Ljung-Box Q test statistic (18) value was 52.628). The majority of the ACF and PACF
residuals were within the 95% CI as shown in Figure 2. Table 2 shows the estimated model
parameters for SARIMA (1,2,1) (2,0,0) based on the training data.

Table 1. ARIMA models.

Model RMSE MAE BIC Q18

SARIMA (1,2,1) (2,0,0) with
covariates—Selangor daily cases * 73.374 39.716 8.656 52.628

SARIMA (1,2,1) (2,0,0) ** 73.704 39.111 8.654 51.505
SARIMA (1,2,1) (2,0,0) with

covariates—Selangor daily cases ** 73.584 39.436 8.662 51.812

SARIMA (1,2,1) (2,0,0) 524.894 277.137 12.580 68.129
ARIMA (1,2,1) with covariates—Selangor

daily cases * 87.301 47.836 8.982 167.963

Note: * smoothened dependent and independent variables using 7-day moving average; ** smoothened dependent
using 7-day moving average.

The SARIMA model (1,2,1) (2,0,0) forecasts showed a downward trend of COVID-19
cases during the forecast period from 6 September 2021 to 3 October 2021 as shown in
Figure 3. The observed cases during the forecast period also showed a similar downward
trend where the observed daily cases (7-day MA) were within the 95% CI of the model
forecast as shown in Figure 4. Daily forecasted values and its 95% CI are shown in Table A1).
The difference between the forecasted and observed values was well within a negative
deviation range of 25%, wherein a total of 25 observations out of the 28 data points (89%)
were within this deviation range as shown in Figure 5.
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Table 2. Model parameters for SARIMA (1,2,1) (2,0,0).

Model Covariate Estimates Standard Error (SE) p-Value *

Malaysia (7-day MA) Constant 1.157 0.988 0.242
AR (Lag 1) 0.251 0.116 0.031 *
Difference 2

MA (Lag 1) 0.564 0.098 0.000 *
AR, Seasonal (Lag 1) −0.710 0.044 0.000 *
AR, Seasonal (Lag 2) −0.365 0.047 0.000 *

Daily Selangor cases
(7-day MA) Numerator (Lag 0) −0.001 0.000 ** 0.011 *

* p-value < 0.05 indicates significance for the estimated coefficients in the fitted ARIMA model (1,2,1) (2,0,0),
** actual value: 0.000493.
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4. Discussion

Being a novel disease, a detailed understanding of COVID-19 disease dynamics is
limited resulting in difficulties to predict disease outbreaks. However, to ensure a balance
between lives and livelihood, forecasting of disease outbreaks has become an important
approach in assisting the management and control of the COVID-19 pandemic. It is
evidence in the literature that forecasting using ARIMA models was able to provide reliable
forecast results during the second wave of COVID-19 pandemic in Malaysia [28].

Despite having limited and stochastic data, a 7-day cyclical trend was observed in the
time-series data, whereby a reduction of cases was usually observed during the weekends,
which could be due to variation in data collection and surveillance during weekends. Hence,
analysis using a seasonal component was carried out to determine the most appropriate
time-series model. This is the first study to develop SARIMA models to forecast COVID-19
cases in Malaysia during the third wave (6 September 2021 to 3 October 2021), wherein this
study found that SARIMA model (1,2,1) (2,0,0) was able to provide an accurate forecast
despite the presence of limited stochastic data. To improve forecasts using SARIMA models,
several measures were taken. Among them, these include using 593 data points for model
development, smoothing time-series data of both the dependent and independent variables,
which improved the identification of signals, and using appropriate sensitive covariates.

The study found that with the available number of data points (n = 593), SARIMA
models could be developed to generate forecasts of COVID-19 case trends up to a duration
of 28 days. This is evident by the accurate forecasts of the COVID-19 case trends generated
by the SARIMA model (1,2,1) (2,0,0) which were similar to the observed downward case
trends during the forecast period. In addition, the observed cases (7-day MA) were within
the 95% CI of the model forecasts. Furthermore, 89% of the differences between the
forecasted and observed values were well within a deviation range of 25%. Therefore, these
findings indicate that the SARIMA model (1,2,1) (2,0,0) generated an accurate forecast.
Similar findings have been reported in the literature, wherein 593 data points generally
improved the SARIMA model accuracy [29]. Therefore, continuous efforts to develop
SARIMA models to forecast COVID-19 case trends should be attempted by using more
data points as time progresses.

The COVID-19 outbreak is dynamic in nature and rapidly changes resulting in fluctu-
ating daily case numbers. As a result of this, the COVID-19 time-series data are inherently
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noisy with obscure trends, which make the identification of true data trends and signals
for the development of SARIMA model challenging. In order to reduce the noise in the
time-series data, a 7-day moving average for the dependent variable (daily COVID-19
national cases) was used so that the model may transmute the true data trends into signals.
This, in turn, improved the overall trend of the dependent variable and provided better
signals for data training and validation, which subsequently resulted in a more accurate
forecast. Similar approaches using moving averages have been utilized in the past to obtain
true signals from time-series data when developing ARIMA models [28].

In addition, to improve the SARIMA model forecast, appropriate covariates such as the
daily subnational Selangor state case report was used, as it accounts for the majority of the
COVID-19 cases and has been consistently reporting high numbers of COVID-19 cases since
the beginning of the pandemic in Malaysia. Furthermore, the case trends in Selangor state
closely mirrored the observed national daily COVID-19 case trends. To further improve the
model, as with the national’s time-series data, the COVID-19 daily cases in Selangor were
also smoothened using a 7-day moving average in order to reduce the noise and improve
signal detection. The generated goodness of fit showed very minimal difference between
the smoothened and non-smoothened SARIMA model, but in terms of the model forecast,
the model forecast with smoothened covariates showed a better resemblance to the actual
COVID-19 daily cases. This study found that using a single appropriate covariate (Selangor
state COVID-19 incidence with smoothening) is sufficient to develop accurate SARIMA
models. This could be due to the selection of covariates that are truly representative of the
COVID-19 case trends as well as having the ability to reflect the national-level trends to
further improve the model forecast.

Daily data were used in this study, and the weekly variation on reporting resulted
in the seasonal model pattern observed in the study. Previous papers published by
Hernandex et al. (2020) and Alraj et al. (2021) report ARIMA (2,1,5) and ARIMA (2,0,2)
for forecasting COVID-19 cases using time-series model, respectively, which are different
from the SARIMA model reported in this study. This variation could be attributed to
methodological variations such the use of data smothering, covariates and seasonal effects
as applied in this study, which were not reported in the work done by Hernandex et al.
(2020) and Alraj et al. (2021) [34,35]. In addition, the SARIMA model developed in this
study was not based on polynomial functions or hybrid compartmental models, as done
by Hernandex et al. (2020) and Alraj et al. (2021) [34,35]. The SARIMA model devel-
oped in this study reports the model goodness-of-fit estimates (i.e., RMSE = 73.37 and
MAE = 39.72), which are better compared to previous ARIMA models developed by Her-
nandex et al. (2020) (i.e., RMSE = 89.46) and Tabar et al. (2021) (i.e., RMSE = 259.98 and
MAE = 144.84) [34,36]. In this study, the observed cases were well within the forecast range
of model, with majority of the deviation index being within a range of 25%. Similar findings
were reported by Hernandex et al. (2020) and Alraj et al. (2021), wherein the time-series
models provided accurate forecast trajectories with fairly narrow deviation index [34,35].

There are several strengths of this study. First, a total of 593 data points were used
for model training and validation. Second, data were smoothened to remove noise to
obtain better signals. Additionally, we included a smoothened covariate that was able to
generate good signals for the model development. Overall, these measures resulted in the
development of an appropriate SARIMA model, which was able to produce reasonably
accurate forecasts of COVID-19 cases. The duration of the data used for model development
remain the main limitation in this study. However, this limitation was addressed by using
covariates to develop the model. Future studies should look into developing time-series
models with the availability of more data points as time progresses as well as using more
covariates that are reflective of the transmission dynamics.

Since COVID-19 is a novel disease with continuously changing disease dynamics,
using time-series data (n = 593) and appropriate covariates would provide more signals to
train and validate the models, hence resulting in more accurate forecasts. This is especially
important as the third wave has been by far the most challenging one faced by the health
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authorities in Malaysia. In addition, this study uses smoothened data to obtain more
appropriate signals during the model development in order to improve the model accuracy.

5. Conclusions

This study showed that SARIMA models developed using 593 data points with
sensitive covariates and smoothened data can generate a reliable and accurate forecast
of COVID-19 case trends up to 28 days in Malaysia. The SARIMA models that were
developed were used to advise the extension of the national MCO from phase 1 to 2 during
the early stages of outbreak in Malaysia [28]. Modeling the COVID-19 case trends during
the pandemic has been essential in assisting authorities on deciding the appropriate time
to implement, relax, lift, strengthen or reinstitute public health social measures such as
the MCO and standard operating procedure (SOP) in managing the COVID-19 outbreak
in Malaysia.
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Figure A1. COVID-19 case trends (22 January 2020–5 September 2021), Malaysia.
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Figure A2. ACF and PACF plots for the original time-series ARIMA model.

Table A1. Forecasted and observed daily COVID-19 cases, Malaysia.

Date Forecasted
Daily Cases Lower CI Upper CI Observed Daily

Cases (MA)

6 September 2021 19,654 19,510 19,798 19,547
7 September 2021 19,434 19,151 19,716 19,211
8 September 2021 19,638 19,203 20,073 19,350
9 September 2021 19,739 19,137 20,340 19,110

10 September 2021 19,901 19,118 20,683 19,367
11 September 2021 20,046 19,070 21,021 19,437
12 September 2021 19,819 18,637 21,002 19,266
13 September 2021 19,642 18,293 20,991 19,083
14 September 2021 19,575 18,072 21,078 18,672
15 September 2021 19,404 17,753 21,055 18,638
16 September 2021 19,285 17,488 21,082 18,568
17 September 2021 19,067 17,127 21,007 18,054
18 September 2021 18,899 16,816 20,981 17,482
19 September 2021 18,812 16,588 21,036 16,876
20 September 2021 18,735 16,363 21,107 16,629
21 September 2021 18,592 16,067 21,116 16,642
22 September 2021 18,360 15,680 21,040 15,998
23 September 2021 18,123 15,284 20,961 15,275
24 September 2021 17,926 14,926 20,927 14,844
25 September 2021 17,694 14,529 20,859 14,608
26 September 2021 17,532 14,200 20,865 14,344
27 September 2021 17,339 13,829 20,850 13,860
28 September 2021 17,145 13,450 20,841 13,227
29 September 2021 17,045 13,158 20,932 12,862
30 September 2021 16,923 12,839 21,008 12,717

1 October 2021 16,802 12,514 21,089 12,336
2 October 2021 16,681 12,185 21,177 11,910
3 October 2021 16,473 11,763 21,182 11,333
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